Francois Blachier 1 , Xiangfeng Kong 2
Correspondence: francois.blachier@agroparistech.fr
DOI: https://doi.org/10.55976/fnds.1202311533-19
Show More
[1]Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forcers shaping microbial diversity in the human intestine. Cell. 2006;124(4): 837-848. doi:https://doi.org/10.1016/j.cell.2006.02.017.
[2]Burgess SL, Gilchrist CA, Lynn TC, et al. Parasitic protozoan and interactions with the host intestinal microbiota. Infection and Immunity. 2017;85(8): e00101-17. doi:https://doi.org/10.1128/iai.00101-17.
[3]Blachier F. Metabolism of dietary substrates by intestinal bacteria and consequences for the host intestine. In Metabolism of alimentary compounds by the intestinal microbiota and health. 2023: 45-144. https://doi.org/10.1007/978-3-031-26322-4_3.
[4]Stephen AM, Cummings JH. The microbial contribution to human fecal mass. Journal of Medical Microbiology. 1980;13(1): 45-56. doi:https://doi.org/10.1099/00222615-13-1-45.
[5]Libao-Mercado AJO, Zhu CL, Cant JP, et al. Dietary and endogenous amino acids are the main contributors to microbial protein synthesis in the upper gut of normally nourished pigs. The Journal of Nutrition. 2009;139(6): 1088-1094. doi:https://doi.org/10.3945/jn.108.103267.
[6]Portune KJ, Beaumont M, Davila AM, et al. Gut microbiota role in dietary protein metabolism and health-related outcomes: the two dides of the coin. Trends in Food Science & Technology. 2016;57: 213-232. doi:https://doi.org/10.1016/j.tifs.2016.08.011.
[7]Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. Journal of Proteome Research. 2012;11(12): 5573-5585. doi:https://doi.org/10.1021/pr300637d.
[8]Gaudichon C, Bos C, Morens C, et al. Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirement. Gastroenterology. 2002;123(1): 50-59. doi:https://doi.org/10.1053/gast.2002.34233.
[9]Liu M, Bayjanov JR, Renckens B, et al.The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010;11: 36. doi:https://doi.org/10.1186/1471-2164-11-36.
[10]van der Wielen N, Moughan PJ, Mensink M. Amino acid absorption in the large intestine of human and porcine models. The Journal of Nutrition. 2017;147(8): 1493-1498. doi:https://doi.org/10.3945/jn.117.248187.
[11]Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scandinavian Journal of Gastroenterology. 1997;32(222): 3-9. doi:https://doi.org/10.1080/00365521.1997.11720708.
[12]Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environmental microbiology. 2017;19(1): 29-41. doi:https://doi.org/10.1111/1462-2920.13589.
[13]Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome major fermentation by-products and their impact on host health. Microbiome. 2019;7(1): 1-15. doi:https://doi.org/10.1186/s40168-019-0704-8.
[14]Asare PT, Zurfluh K, Greppi A, et al. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. Isolates. Microorganisms. 2020;8(1):78. doi:https://doi.org/10.3390/microorganisms8010078.
[15]Hussain T, Tan B, Yin Y, et al. Oxidtive stress and inflammation: what polyphenols can do for us? Oxidative medicine and cellular longevity. 2016;2016: 7432797. doi:https://doi.org/10.1155/2016/7432797.
[16]Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 2004;79(5): 727-747. doi:https://doi.org/10.1093/ajcn/79.5.727.
[17]Blachier F, Mariotti F, Huneau JF, et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007;33(4): 547-562. doi:https://doi.org/10.1007/s00726-006-0477-9.
[18]Koestler BJ, Fisher CR, Payne SM. Formate promotes Shigella intercellular spread and virulence gene expression. mBio. 2018;9(5): e01777-18. doi:https://doi.org/10.1128/mbio.01777-18.
[19]Shaulov Y, Shimokawa C, Trebicz-Geffren M, et al. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog. 2018;14(10): e1007295. doi:https://doi.org/10.1371/journal.ppat.1007295.
[20]Ferreyra JA, Wu KJ, Hryckowian AJ, et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014;16(6): 770-777. doi:https://doi.org/10.1016/j.chom.2014.11.003.
[21]Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. The American Journal of Clinical Nutrition. 1976;29(12): 1448-1454. doi:https://doi.org/10.1093/ajcn/29.12.1448.
[22]Geypens B, Claus D, Evenepoel P, et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41(1): 70-76. doi:http://dx.doi.org/10.1136/gut.41.1.70.
[23]Birkett A, Muir J, Phillips J, et al. Resistant starch lowers fecal concentrations of ammonia and phenol in humans. The American Journal of Clinical Nutrition. 1996;63(5): 766-772. doi:https://doi.org/10.1093/ajcn/63.5.766.
[24]Passmore IJ, Letertre MPM, Preston MD, et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018;14(9): e1007191. doi:https://doi.org/10.1371/journal.ppat. 1007191.
[25]Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology. 2018;8: 13. doi:https://doi.org/10.3389/fcimb.2018.00013.
[26]Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews. 2010;34(4): 426-444. doi:https://doi.org/10.1111/j.1574-6976.2009.00204.x.
[27]Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, et al. Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes. FEMS Microbiology Letters. 2020;367(14): 116. doi:https://doi.org/10.1093/femsle/fnaa116.
[28]Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology. 2013;159(2): 402-410. doi: https://doi.org/10.1099/mic.0.064139-0.
[29]Nowak A, Libudzisz Z. Influence of phenol, p-cresol and indole on growth and survival of intestinal lacticacid bacteria. Anaerobe. 2006;12(2): 80-84. doi:https://doi.org/10.1016/j.anaerobe.2005.10.003.
[30]Ledala N, Malik M, Rezaul K, et al. Bacterial indole as a multifunctional regulator of Klebsella oxytoca complex enterotoxicity. mBio. 2022;13(1): e0375221. doi:https://doi.org/10.1128/mbio.03752-21.
[31]Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. Journal of Applied Bacteriology. 1996;81(3): 288-302. doi:https://doi.org/10.1111/j.1365-2672.1996.tb04331.x.
[32]Choi SH, Kim Y, Oh S, et al. Inhibitory effect of skatole (3-methylindole) on enterohemorrhagic Escherichia coli O157:H7 ATCC 43894 biofilm formation mediated by elevated endogenous oxidative stress. Letters in applied microbiology. 2014;58(5): 454-461. doi:https://doi.org/10.1111/lam.12212.
[33]Probert HM, Gibson GR. Bacterial biofilms in the human gastrointestinal tract. Current issues in intestinal microbiology. 2002;3(2): 23-27. Available from:https://www.caister.com/backlist/ciim/v/v3/03.pdf.
[34]Tittsler RP. The effects of temperature upon the production of hydrogen sulphide by Salmonella pullorum. Journal of Bacteriology. 1931;21(2): 111-118. Available from:https://journals.asm.org/doi/pdf/10.1128/jb.21.2.111-118.1931.
[35]Rowan FE, Docherty NG, Coffey JC, et al. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Journal of British Surgery. 2009;96(2): 151-158. doi:https://doi.org/10.1002/bjs.6454.
[36]Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life. 2018;70(5): 393-410. doi:https://doi.org/10.1002/iub.1740.
[37]Shatalin K, Shatalina E, Mironov A, et al. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334(6058): 986-990. doi:https://doi.org/10.1126/science.1209855.
[38]Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61(9): 880-894. doi:https://doi.org/10.1002/iub.230.
[39]Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Molecular microbiology. 2008;68(1): 4-16. doi:https://doi.org/10.1111/j.1365-2958.2008.06126.x.
[40]Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. The International Journal of Biochemistry & Cell Biology. 2010;42(1): 39-51. doi:https://doi.org/10.1016/j.biocel.2009.07.009.
[41]Maurelli AT, Fernandez RE, Bloch CA, et al. "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proceedings of the National Academy of Sciences. 1998;95(7): 3943-3948. doi:https://doi.org/10.1073/pnas.95.7.3943.
[42]Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. Journal of Applied Microbiology. 2013;114(1): 11-24. doi:https://doi.org/10.1111/j.1365-2672.2012.05434.x.
[43]Boyanova L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe. 2017;44: 13-19. doi:https://doi.org/10.1016/j.anaerobe.2017.01.003.
[44]Lustri BC, Sperandio V, Moreira CG. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Infection and Immunity. 2017;85(12): e00476-17. doi:https://doi.org/10.1128/iai.00476-17.
[45]Liu Y, Shi C, Zhang G, et al. Antimicrobial mechanism of 4-hydroxyphenylacetic acid on Listeria monocytogenes membrane and virulence. Biochemical and Biophysical Research Communications. 2021;572: 145-150. doi:https://doi.org/10.1016/j.bbrc.2021.07.096.
[46]Engevik MA, Danhof HA, Shrestha R, et al. Reuterin disrupts Clostridioides difficile metabolism and pathogenecity through reactive oxygen species generation. Gut Microbes. 2020;12(1): 1795388. doi:https://doi.org/10.1080/19490976.2020.1795388.
[47]Cleusix V, Lacroix C, Vollenweider S, et al. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiology. 2007;7(1): 1-9. doi:https://doi.org/10.1186/1471-2180-7-101.
[48]Benton D., Williams C., Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. European journal of clinical nutrition. 2007;61(3): 355-361. doi:https://doi.org/10.1038/sj.ejcn.1602546.
[49]Darwich AS, Aslam U, Ashcroft DM, et al. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metabolism and Disposition. 2014;42(12): 2016-2022. doi:https://doi.org/10.1124/dmd.114.058404.
[50]Gehart H, Clevers H. Tales from the crypt: new insights into stem cells. Nature reviews Gastroenterology & hepatology. 2019;16(1): 19-34. doi:https://doi.org/10.1038/s41575-018-0081-y.
[51]van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual review of physiology. 2009;71: 241-260. doi:https://doi.org/10.1146/annurev.physiol.010908.163145.
[52]Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12): 2232-2243. doi:https://doi.org/10.1146/annurev.physiol.010908.163145.
[53]McKinley ET, Sui Y, Al-Kofahi Y, et al. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight. 2017;2(11):e93487. doi:https://doi.org/10.1172%2Fjci.insight. 93487.
[54]Gallo RL, Hopper LV. Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology. 2012;12(7): 503-516. doi:https://doi.org/10.1038/nri3228.
[55]Liu X, Blouin JM, Santacruz A, et al. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism: the increased luminal bulk connection. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2014;307(4): G459-G470. doi:https://doi.org/10.1152/ajpgi.00400.2013.
[56]Musch MW, Bookstein C, Xie Y, et al. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2001;280(4): G687-G693. doi:https://doi.org/10.1152/ajpgi.2001.280.4.G687.
[57]Diener M, Helmle-Kolb C, Murer H, et al. Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflügers Archiv. 1993;424: 216-223. doi:https://doi.org/10.1007/BF00384345.
[58]Zaharia V, Varzescu M, Djavadi I, et al. Effects of short-chain fatty acids on colonic Na+ absorption and enzyme activity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001;128(2): 335-347. doi:https://doi.org/10.1016/S1095-6433(00)00318-4.
[59]Darcy-Vrillon B, Morel MT, Cherbuy C, et al. Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet. The Journal of Nutrition. 1993;123(2): 234-243. doi:https://doi.org/10.1093/jn/123.2.234.
[60]Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal Tuft cells triggers a type 2 innate immune circuit. Immunity. 2018;49(1): 33-41. doi:https://doi.org/10.1016/j.immuni.2018.06.016.
[61]Banerjee A, Herring CA, Chen B, et al. Succinate produced by intestinal microbes promotes specification of Tuft cells to suppress ileal inflammation. Gastroenterology. 2020;159(6): 2101-2115. doi:https://doi.org/10.1053/j.gastro.2020.08.029.
[62]Andriamihaja M, Davila AM, Eklou-Lawson M, et al. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2010;299(5): G1030-G1037. doi:https://doi.org/10.1152/ajpgi.00149.2010.
[63]Darcy-Vrillon B, Cherbuy C, Morel MT, et al. Short-chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by NH4+. Molecular and cellular biochemistry. 1996;156: 145-151. doi:https://doi.org/10.1007/BF00426337.
[64]Mouillé B, Robert V, Blachier F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes following hyperproteic diet ingestion. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2004;287(2): G344-G351. doi:https://doi.org/10.1152/ajpgi. 00445. 2003.
[65]Andriamihaja M, Lan A, Beaumont M, et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radical Biology and Medicine. 2015;85: 219-227. doi: https://doi.org/10.1016/j.freeradbiomed.2015.04.004.
[66]Wong X, Carrasco-Pozo C, Escobar E, et al. Deleterious effect of p-cresol on human colonic epithelial cells prevented by proanthocyanidin-containing polyphenol extracts from fruits and proanthocyanidin bacterial metabolites. Journal of Agricultural and Food Chemistry. 2016;64(18): 3574-3583. doi:https://doi.org/10.1021/acs.jafc.6b00656.
[67]Al Hinai EA, Kullamethee P, Rowland IR, et al. Modelling the role of microbial p-cresol in colorectal genotoxicity. Gut Microbes. 2019;10(3): 398-411. doi:https://doi.org/10.1080/19490976.2018.1534514.
[68]Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metabolism and Disposition. 2015;43(10): 1522-1535. doi:https://doi.org/10.1124/dmd.115.064246.
[69]Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences. 2010;107(1): 228-233. doi:https://doi.org/10.1073/pnas.0906112107.
[70]Shimada Y, Kinoshita M, Harada K, et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013;8(11): e80604. doi:https://doi.org/10.1371/journal.pone.0080604.
[71]Armand L, Fofana M, Couturier-Becavin K, et al. Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sufate. Amino Acids. 2022;54(10): 1371-1382. doi:https://doi.org/10.1007/s00726-021-03122-4.
[72]Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid metabolism malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408): 477-481. doi:https://doi.org/10.1038/nature11228.
[73]Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41(2): 296-310. doi:https://doi.org/10.1016/j.immuni.2014.06.014.
[74]Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.
[75]Immunity. 2013;39(2): 372-385. doi:https://doi.org/10.1016/j.immuni.2013.08.003.
[76]Whitefield-Cargile C, Cohen ND, Chapkin RS, et al. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes. 2016;7(3): 246-261. doi:https://doi.org/10.1080/19490976.2016.1156827.
[77]Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nature Medicine. 2016;22(6): 598-605. doi:https://doi.org/10.1038/nm.4102.
[78]Xiao HW, Cui M, Li Y, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome. 2020;8(1): 69. doi:https://doi.org/10.1186/s40168-020-00845-6.
[79]Jennis M, Cavanaugh CR, Leo GC, et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterology & Motility. 2018;30(2): e13178. doi:https://doi.org/10.1111/nmo.13178.
[80]Scott SA, Fu J, Chang PM. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. National Academy of Sciences. 2020;117(32): 19376-19387. doi:https://doi.org/10.1073/pnas.2000047117.
[81]Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1): 25-37. doi:https://doi.org/10.1016/j.chom.2017.06.007.
[82]Chimerel C, Emery E, Summers DK, et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Reports. 2014;9(4): 1202-1208. doi:https://doi.org/10.1016/j.celrep.2014.10.032.
[83]Beaumont M, Andriamihaja M, Lan A, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free Radical Biology and Medicine. 2016;93: 155-164. doi:https://doi.org/10.1016/j.freeradbiomed.2016.01.028.
[84]Mimoun S, Andriamihaja M, Chaumontet C, et al. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxidants & Redox Signaling. 2012;17(1): 1-10. doi:https://doi.org/10.1089/ars.2011.4186.
[85]Goubern M, Andriamihaja M, Nübel T, et al. Sulfide, the first inorganic substrate for human cells. The FASEB Journal. 2007;21(8): 1699-1706. doi:https://doi.org/10.1096/fj.06-7407com.
[86]Giuffrè A, Vicente JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxidative Medicine and Cellular Longevity. 2018;2008: 6290931. doi:https://doi.org/10.1155/2018/6290931.
[87]Ijssennagger N, Belzer C, Hooiveld G, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proceedings of the National Academy of Sciences. 2015;112(32): 10038-10043. doi:https://doi.org/10.1073/pnas.1507645112.
[88]Van der Sluis M, De Koning BAE, De Bruijn ACJM, et al. Muc-2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1): 117-129. doi:https://doi.org/10.1053/j.gastro.2006.04.020.
[89]Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulate the secretion of GLP-1 and improve glycemia in male mice. Endocrinology. 2017;158(10): 3416-3425. doi:https://doi.org/10.1210/en.2017-00391.
[90]Cheng SX, Geibel JP, Hebert SC. Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology. 2004;126(1): 148-158. doi:https://doi.org/10.1053/j.gastro.2003.10.064.
[91]Fioramonti J, Fargeas MJ, Bertrand V, et al. Induction of postprandial intestinal motility and release of cholecystokinin by polyamines in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1994;267(6): G960-G965. doi:https://doi.org/10.1152/ajpgi.1994.267.6.G960.
[92]Ma L, Ni Y, Wang Z, et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes. 2020;12(1): 1-19. doi:https://doi.org/10.1080/19490976.2020.1832857.
[93]Ginty DD, Osborne DL, Seidel ER. Putrescine stimulates DNA synthesis in intestinal epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1989;257(1): G145-G150. doi:https://doi.org/10.1152/ajpgi.1989.257.1.G145.
[94]Timmons J, Chang ET, Wang JY, et al. Polyamines and gut mucosal homeostasis. Journal of Gastrointestinal & Digestive System. 2012;2(7): 001. Available from:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165078/.
[95]Löser C, Eisel A, Harms D, et al. Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 1999;44(1): 12-16. doi:http://dx.doi.org/10.1136/gut. 44.1.12.
[96]Nakamura A, Kurihara S, Takahashi D, et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nature Communications. 2021;12(1): 2105. doi:https://doi.org/10.1038/s41467-021-22212-1.
[97]Gamet L, Cazenave Y, Trocheris V, et al. Involvement of ornithine decarboxylase in the control of proliferation of the HT29 human colon cancer cell line. Effect ofvasoactive intestinal peptide on enzyme activity. International Journal of Cancer. 1991;47(4): 633-638. doi:https://doi.org/10.1002/ijc.2910470425.
[98]Mayeur C, Veuillet G, Michaud M, et al. Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2005;1745(1): 111-123. doi:https://doi.org/10.1016/j.bbamcr.2004.12.004.
[99]Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163(6): 1428-1443. doi:https://doi.org/10.1016/j.cell.2015.10.048.
[100]Grosheva I, Zheng D, Levy M, et al. High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology. 2020;159(5): 1807-1823. doi:https://doi.org/10.1053 /j.gastro.2020.07.003.
[101]Blachier F, Davila AM, Benamouzig R, et al. Chanelling of arginine in NO and polyamine pathways in colonocytes and consequences. Frontiers in Bioscience-Landmark. 2011;16(4): 1331-1343. Available from:https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark3792.pdf.
[102]Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings of the National Academy of Sciences. 2011;108(37): 15354-15359. doi:https://doi.org/10. 1073/pnas.1010203108.
[103]Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2012;303(11): G1288-G1295. doi:https://doi.org/10.1152/ajpgi.00341.2012.
[104]Li Y, Zhang Y, Zhang XL, et al. Dopamine promotes colonic mucus secretion through dopamine D5 receptor in rats. American Journal of Physiology-Cell Physiology. 2019;316(3): C393-C403. doi: https://doi.org/10.1152/ajpcell.00261.2017.
[105]Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. Journal of Cell Science. 2017;130(23): 3955-3963. doi:https://doi.org/ 10.1242/jcs.207365.
[106]Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2): 264-276. doi:https://doi.org/10.1016/j.cell.2015.02.047.
[107]Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018;23(6): 775-785. doi:https://doi.org/10.1016/j.chom.2018.05.004.
[108]Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83(2): 424-429. doi:https://doi.org/10.1016/S0016-5085(82)80339-9.
[109]Sauer J, Richter KK, Pool-Zobel BL. Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. British Journal of Nutrition. 2007;97(5): 928-937. doi:doi:10.1017/S0007114507666422.
[110]Archer SY, Johnson J, Kim HJ, et al. The histone deacetylase inhibitor butyrate downregulates cyblin B1 gene expression via a p21/WAF-1 dependent mechanism in human colon cancer cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2005;289(4): G696-G703. doi:https://doi.org/10.1152/ajpgi.00575.2004.
[111]Zhang Y, Sun Z, Jia J, et al. Overview of histone modification. Histone Mutations and Cancer. 2021;1283: 1-16. doi:https://doi.org/10.1007/978-981-15-8104-5_1.
[112]Andriamihaja M, Chaumontet C, Tome D, et al. Butyrate metabolism in human colon carcinoma cells: implications concerning its growth-inhibitory effect. Journal of Cellular Physiology. 2009;218(1): 58-65. doi:https://doi.org/10.1002/jcp.21556.
[113]Kaiko GE, Ryu SH, Koues OI, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165(7): 1708-1720. doi: https://doi.org/10.1016/j.cell.2016.05.018.
[114]Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annual Review of Physiology. 2010;72: 297-313. doi:https://doi.org/10.1146/annurev-physiol-021909-135817.
[115]Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition. 2009;139(9): 1619-1625. doi:https://doi.org/10.3945/jn.109.104638.
[116]Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Digestive Diseases and Sciences. 2012;57(12): 3126-3135. doi:https://doi.org/10.1007/s10620-012-2259-4.
[117]Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences. 2014;111(6): 2247-2252. doi:https://doi.org/10.1073/pnas.1322269111.
[118]Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480): 446-450. doi:https://doi.org/10.1038/nature12721.
[119]Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochemical Journal. 2009;420(2): 211-219. doi:https://doi.org/10.1042/BJ20082222.
[120]Barcelo A, Claustre J, Moro F, et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut. 2000;46(2): 218-224. doi:http://dx.doi.org/10.1136/gut.46.2.218.
[121]Finnie IA, Dwarakanath AD, Taylor BA, et al. Colonic mucin synthesis is increased by sodium butyrate. Gut. 1995;36(1): 93-99. doi:http://dx.doi.org/10.1136/gut.36.1.93.
[122]Nohr MK, Pedersen MH, Gille A, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10): 3552-3564. doi:https: //doi.org/10.1210/en.2013-1142.
[123]Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports. 2018;8(1): 74. doi:https://doi.org/10.1038/s41598-017-18259-0.
[124]Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11): 1744-1754. doi:http://dx.doi.org/10.1136/gutjnl- 2014-307913.
[125]Van der Beek CM, Canfora EE, Lenaerts K, et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clinical Science. 2016;130(22): 2073-2082. doi:https://doi.org/10.1042/CS20160263.
[126]Chen WY, Wang M, Zhang J, et al. Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stress-mediated epithelial cell death leading to intestinal barrier dysfunction and permeability. The American Journal of Pathology. 2017;187(12): 2686-2697. doi:https://doi.org/10.1016/j.ajpath.2017.08.015.
[127]Hinzman MJ, Novotny C, Ullah A, et al. Fecal mutagen fecapentaene-12 damages mammalian colon epithelial DNA. Carcinogenesis. 1987;8(10): 1475-1479. doi:https://doi.org/10.1093/carcin/8.10.1475.
[128]Tang Y, Nakashima S, Saiki S, et al. 3,4-dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Research International. 2016;89(1): 716-723. doi:https://doi.org/10.1016/j.foodres.2016.09.034.
[129]Monogas M, Khan N, Andrés-Lacueva C, et al. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. British Journal of Nutrition. 2009;102(2): 201-206. doi:https://doi.org/10.1017/S0007114508162110.
[130]Crespo I, San-Miguel B, Mauriz JL, et al. Protective effect of protocatechuic acid on TNBS-induced colitis in mice is associated with modulation of the SphK/S1P signaling pathway. Nutrients. 2017;9(3): 288. doi:https://doi.org/10.3390/nu9030288.
[131]Hu R, He Z, Liu M, et al. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. Journal of Animal Science and Biotechnology. 2020;11: 92. doi:https://doi.org/10.1186/s40104-020-00492-9.
[132]Farombi EO, Adedara IA, Awoyemi OV, et al. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Function. 2016;7(2): 913-921. doi:https://doi.org/10.1039/C5FO01228G.
[133]Singer II, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology. 1996;111(4): 871-885. doi:https://doi.org/10.1016/S0016-5085(96)70055-0.
[134]Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. American Journal of Physiology-cell physiology. 1996;271(5): C1424-C1437. doi:https://doi.org/10.1152/ajpcell.1996.271.5.C1424.
[135]Cires MJ, Navarrete P, Pastene E, et al. Protective effect of avocado peel polyphenolic compounds rich in proanthocyanidins on the alterations of colonic homeostasis induced by a high-protein diet. Journal of Agricultural and Food Chemistry. 2019;67(42): 11616-11626. doi:https://doi.org/10.1021/acs.jafc. 9b03905.
[136]Cires MJ, Navarrete P, Pastene E, et al. Effects of proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food Function. 2019;10(7): 4022-4035. doi:https://doi.org/10.1039/C9FO00700H.
[137]Blachier F, Beaumont M, Andriamihaja M, et al. Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. The American journal of pathology. 2017;187(3): 476-486. doi:https://doi.org/10.1016/j.ajpath.2016.11.015.
[138]Blachier F. Lessons to be learned from clinical and experimental research on the intestinal microbiota metabolic activity for health benefits and perspectives. In Metabolism of alimentary compounds by the intestinal microbiota and health. 2023. Springer, in press.
[139]Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, et al. Intestinal organoid cocultures with microbes. Nature Protocols. 2021;16(10): 4633-4649. doi:https://doi.org/10.1038/s41596-021-00589-z.
Copyright © 2023 Francois Blachier, Xiangfeng Kong
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn