Make Knowledge Veritable, Visible and Valuable.

Advancing the extraction of bioactive compound from fruit by-products through solid-state fermentation: A review

Rahim Khan 1 * , Farinazleen Mohamad Ghazali 2 , Nor Ainy Mahyudin 3

  • 1. Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • 2. Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • 3. Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43300, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor 43300, Malaysia

Correspondence: sirifrahim1@yahoo.com

DOI: https://doi.org/10.55976/fnds.32025134237-52

  • Received

    24 December 2024

  • Revised

    08 March 2025

  • Accepted

    19 March 2025

  • Published

    01 April 2025

Agro-waste utilization Fungal metabolism Nutraceuticals Secondary metabolites Sustainable bioprocessing Food by-product valorization Functional compounds

Show More

Abstract


References
V

[1]Buenrostro-Figueroa J, Ascacio-Valdés A, Sepúlveda L, De la Cruz R, Prado-Barragán A, Aguilar-González MA, et al. Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food and Bioproducts Processing. 2014; 92(4): 376-82. doi: 10.1016/j.fbp.2013.08.010.

[2]Sepúlveda L, Aguilera-Carbó A, Ascacio-Valdés J, Rodríguez-Herrera R, Martínez-Hernández J, Aguilar C. Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid-state culture using pomegranate shell powder as a support. Process Biochemistry. 2012; 47(12): 2199-203. doi: 10.1016/j.procbio.2012.08.013.

[3]Sepúlveda L, Wong-Paz JE, Buenrostro-Figueroa J, Ascacio-Valdés JA, Aguilera-Carbó A, Aguilar CN. Solid state fermentation of pomegranate husk: Recovery of ellagic acid by SEC and identification of ellagitannins by HPLC/ESI/MS. Food Bioscience. 2018; 22: 99-104. doi: 10.1016/j.fbio.2018.01.006.

[4]Kc KB, Dias GM, Veeramani A, Swanton CJ, Fraser D, Steinke D, et al. When too much is not enough: Does current food production meet global nutritional needs? PloS One. 2018; 13(10): e0205683. doi: 10.1371/journal.pone.0205683.

[5]Torres-León C, Ramírez-Guzmán N, Ascacio-Valdés J, Serna-Cock L, dos Santos Correia MT, Contreras-Esquivel JC, et al. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. LWT. 2019; 112:108236. doi: 10.1016/j.lwt.2019.06.003.

[6]Torres-León C, Vicente AA, Flores-López ML, Rojas R, Serna-Cock L, Alvarez-Pérez OB, et al. Edible films and coatings based on mango (var. Ataulfo) by-products to improve the gas transfer rate of peach. LWT. 2018; 97:624-31. doi: 10.1016/j.lwt.2018.07.057.

[7]Vodnar DC, Călinoiu LF, Dulf FV, Ştefănescu BE, Crişan G, Socaciu C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry. 2017; 231:131-140. doi:10.1016/j.foodchem.2017.03.131.

[8]Bandara N, Chalamaiah M. Bioactives from agricultural processing by-products. Encyclopedia of Food Chemistry. 2019:472-480. doi: 10.1016/b978-0-08-100596-5.22408-6.

[9]Hernández-Almanza A, Montañez-Sáenz J, Martínez-Ávila C, Rodríguez-Herrera R, Aguilar CN. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Bioscience. 2014; 7: 31-36. doi: 10.1016/j.fbio.2014.04.001.

[10]Bogacz-Radomska L, Harasym J, Piwowar A. Commercialization aspects of carotenoids. In: Carotenoids: Properties, Processing, and Applications. Academic Press, Elsevier; 2020. p. 327-57.

[11]Kammerer DR, Kammerer J, Valet R, Carle R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International. 2014; 65:2-12. doi: 10.1016/j.foodres.2014.06.012.

[12]López-Gómez JP, Manan MA, Webb C. Solid-state fermentation of food industry wastes. In: Food Industry Wastes. Elsevier; 2020. p. 135-61.

[13]Khan R, Anwar F, Ghazali FM, Mahyudin NA. Valorization of waste: Innovative techniques for extracting bioactive compounds from fruit and vegetable peels-A comprehensive review. Innovative Food Science & Emerging Technologies. 2024; 97: 103828. doi: 10.1016/j.ifset.2024.103828.

[14]Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska‐Sekowska E, et al. Exploring the biochemical and nutra‐pharmaceutical prospects of some Thymus species–A review. Chemistry & Biodiversity. 2024; 21(7): e202400500. doi: 10.1002/cbdv.202400500.

[15]Alañón M, Pimentel-Moral S, Arráez-Román D, Segura-Carretero A. HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chemistry. 2021; 337:127764. doi: 10.1016/j.foodchem.2020.127764.

[16]Bobinaitė R, Kraujalis P, Tamkutė L, Urbonavičienė D, Viškelis P, Venskutonis PR. Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents. Journal of Industrial and Engineering Chemistry. 2020; 85:152-160. doi: 10.1016/j.jiec.2020.01.036.

[17]Espinosa-Pardo FA, Nakajima VM, Macedo GA, Macedo JA, Martínez J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing. 2017; 101:1-10. doi: 10.1016/j.fbp.2016.10.002.

[18]Nile SH, Nile A, Liu J, Kim DH, Kai G. Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food and Chemical Toxicology. 2019; 131:110563. doi: 10.1016/j.fct.2019.110563.

[19]Plaza M, Marina ML. Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry. 2019; 116:236-247. doi: 10.1016/j.trac.2019.03.024.

[20]Loh WLC, Huang K-C, Ng HS, Lan JC-W. Exploring the fermentation characteristics of a newly isolated marine bacteria strain, Gordonia terrae TWRH01 for carotenoids production. Journal of Bioscience and Bioengineering. 2020; 130 (2):187-194. doi: 10.1016/j.jbiosc.2020.03.007.

[21]Santos VAQ, Nascimento CG, Schmidt CA, Mantovani D, Dekker RF, da Cunha MAA. Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT. 2018; 92:509-515. doi: 10.1016/j.lwt.2018.02.067.

[22]Durante M, Montefusco A, Marrese PP, Soccio M, Pastore D, Piro G, et al. Seeds of pomegranate, tomato, and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. Journal of Food Composition and Analysis. 2017; 63:65-72. doi: 10.1016/j.jfca.2017.07.026.

[23]Górnaś P, Mišina I, Olšteine A, Krasnova I, Pugajeva I, Lācis G, et al. Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Industrial Crops and Products. 2015; 74:607-612. doi: 10.1016/j.indcrop.2015.05.030.

[24]Dulf FV, Vodnar DC, Socaciu C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry. 2016; 209:27-36. doi: 10.1016/j.foodchem.2016.04.016.

[25]Pertuzatti PB, Mendonça SC, Alcoléa M, Guedes CT, da Encarnação Amorim F, Beckmann APS, et al. Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT. 2020; 129:109625. doi: 10.1016/j.lwt.2020.109625.

[26]Teles AS, Chávez DW, Oliveira RA, Bon EP, Terzi SC, Souza EF, et al. Use of grape pomace to produce hydrolytic enzymes by solid-state fermentation and recovery of its bioactive compounds. Food Research International. 2019; 120:441-448. doi: 10.1016/j.foodres.2018.10.083.

[27]Zambrano C, Kotogán A, Bencsik O, Papp T, Vágvölgyi C, Mondal KC, et al. Mobilization of phenolic antioxidants from grape, apple, and pitahaya residues via solid-state fungal fermentation and carbohydrase treatment. LWT. 2018; 89:457-465. doi: 10.1016/j.lwt.2017.11.025.

[28]Gulsunoglu Z, Purves R, Karbancioglu-Guler F, Kilic-Akyilmaz M. Enhancement of phenolic antioxidants in industrial apple waste by fermentation with Aspergillus spp. Biocatalysis and Agricultural Biotechnology. 2020; 25:101562. doi: 10.1016/j.bcab.2020.101562.

[29]Dulf FV, Vodnar DC, Toşa MI, Dulf E-H. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chemistry. 2020; 310:125927. doi: 10.1016/j.foodchem.2019.125927.

[30]Singh RS, Chauhan K, Kaur K, Pandey A. Statistical optimization of solid-state fermentation to produce fungal inulinase from apple pomace. Bioresource Technology Reports. 2020; 9:100364. doi: 10.1016/j.biteb.2019.100364.

[31]Verotta L, Panzella L, Antenucci S, Calvenzani V, Tomay F, Petroni K, et al. Fermented pomegranate wastes as a sustainable source of ellagic acid: Antioxidant properties, anti-inflammatory action, and controlled release under simulated digestion conditions. Food Chemistry. 2018; 246:129-36. doi: 10.1016/j.foodchem.2017.10.131.

[32]Natalello A, Hervás G, Toral PG, Luciano G, Valenti B, Mendoza AG, et al. Bioactive compounds from pomegranate by-products increase the in vitro ruminal accumulation of potentially health-promoting fatty acids. Animal Feed Science and Technology. 2020; 259:114355. doi: 10.1016/j.anifeedsci.2019.114355.

[33]Sun YQ, Xin T, Men XM, Xu ZW, Tian W. In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin. Journal of Integrative Agriculture. 2017; 16(8):1808-1818. doi: 10.1016/S2095-3119(16)61560-5.

[34]Abdel-Aty AM, Salama WH, Hamed MB, Fahmy AS, Mohamed SA. Phenolic-antioxidant capacity of mango seed kernels: therapeutic effect against viper venoms. Revista Brasileira de Farmacognosia. 2018; 28 (5): 594-601. doi: 10.1016/j.bjp.2018.06.008.

[35]Adilah AN, Jamilah B, Noranizan M, Hanani ZN. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life. 2018; 16:1-7. doi: 10.1016/j.fpsl.2018.01.006.

[36]Ruiz HA, Rodríguez-Jasso RM, Rodríguez R, Contreras-Esquivel JC, Aguilar CN. Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal. 2012; 65:90-95. doi: 10.1016/j.bej.2012.03.007.

[37]Torres-León C, Rojas R, Contreras-Esquivel JC, Serna-Cock L, Belmares-Cerda RE, Aguilar CN. Mango seed: Functional and nutritional properties. Trends in Food Science & Technology. 2016; 55:109-117. doi: 10.1016/j.tifs.2016.06.009.

[38]Martínez R, Torres P, Meneses MA, Figueroa JG, Pérez-Álvarez JA, Viuda-Martos M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fiber concentrate. Food Chemistry. 2012; 135(3):1520-1526. doi: 10.1016/j.foodchem.2012.05.057.

[39]Putra A, Or KH, Selamat MZ, Nor MJM, Hassan MH, Prasetiyo I. Sound absorption of extracted pineapple-leaf fibers. Applied Acoustics. 2018; 136:9-15. doi: 10.1016/j.apacoust.2018.01.029.

[40]Selani MM, Shirado GA, Margiotta GB, Saldana E, Spada FP, Piedade SM, et al. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of a low-fat beef burger. Meat Science. 2016; 112:69-76. doi: 10.1016/j.meatsci.2015.10.020.

[41]Rodsamran P, Sothornvit R. Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing. 2019; 118:198-206.doi: 10.1016/j.fbp.2019.09.010.

[42]Anindya AL, Oktaviani RD, Praevina BR, Damayanti S, Kurniati NF, Riani C, et al. Xylan from pineapple stem waste: a potential biopolymer for colonic targeting of anti-inflammatory agent mesalamine. AAPS PharmSciTech. 2019; 20:1-13. doi: 10.1208/s12249-018-1205-y.

[43]Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, et al. Bacterial nanocellulose‐reinforced arabinoxylan films. Journal of Applied Polymer Science. 2011; 122 (2):1030-1039. doi: 10.1002/app.34217.

[44]Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial, and urban residues. Resources, Conservation and Recycling. 2007; 50 (1):1-39. doi: 10.1016/j.resconrec.2006.05.007.

[45]Kim M, Day DF. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and Biotechnology. 2011; 38 (7):803-807. doi: 10.1007/s10295-010-0812-8.

[46]Banerjee S, Patti AF, Ranganathan V, Arora A. Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing. 2019; 117:38-50. doi: 10.1016/j.fbp.2019.06.012.

[47]Lizardi-Jiménez M, Hernández-Martínez R. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech. 2017; 7(1): 44. doi: 10.1007/s13205-017-0692-y.

[48]Rashad MM, Mahmoud AE, Ali MM, Nooman MU, Al-Kashef AS. Antioxidant and anticancer agents produced from pineapple waste by solid-state fermentation. International Journal of Toxicological and Pharmacological Research. 2015; 7(6): 287-296.

[49]Singh B, Singh JP, Kaur A, Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International. 2020; 132:109114. doi: 10.1016/j.foodres.2020.109114.

[50]Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in the plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology. 2020; 105:347-362. doi: 10.1016/j.tifs.2020.09.029.

[51]Steingass CB, Glock MP, Schweiggert RM, Carle R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MS n and GC-MS analysis. Analytical and Bioanalytical Chemistry. 2015; 407:6463-79. doi: 10.1007/s00216-015-8811-2.

[52]Correia RT, McCue P, Magalhães MM, Macêdo GR, Shetty K. Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry. 2004; 39 (12):2167-2172. doi: 10.1016/j.procbio.2003.11.034.

[53]Hossain MA, Rahman SM. Total phenolics, flavonoids, and antioxidant activity of tropical fruit pineapple. Food Research International. 2011; 44(3): 672-676. doi: 10.1016/j.foodres.2010.11.036.

[54]Silvestre MPC, Carreira RL, Silva MR, Corgosinho FC, Monteiro MRP, Morais HA. Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food and Bioprocess Technology. 2012; 5:1824-1831. doi: 10.1007/s11947-011-0616-5.

[55]Rojas LF, Cortés CF, Zapata P, Jiménez C. Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to a higher scale. Waste Management. 2018; 78:58-68. doi: 10.1016/j.wasman.2018.05.020.

[56]Ketnawa S, Chaiwut P, Rawdkuen S. Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing. 2012; 90 (3):385-391. doi: 10.1016/j.fbp.2011.12.006.

[57]Mitchell DA, Sugai-Guérios MH, Krieger N. Solid-state fermentation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2019; 1-9. doi:10.1016/b978-0-12-409547-2.13922-8.

[58]Pandey A, Soccol CR, Mitchell D. New developments in solid-state fermentation: I-bioprocesses and products. Process Biochemistry. 2000; 35 (10):1153-1169. doi: 10.1016/S0032-9592(00)00152-7.

[59]Munishamanna K, Suresha K, Veena R, Subramanya S. Solid state fermentation of mango peel and mango seed waste by different yeasts and bacteria for nutritional improvement. International Journal of Food and Fermentation Technology. 2017; 7 (1):111-118. doi:10.5958/2277-9396.2017.00011.3.

[60]Ajila C, Brar S, Verma M, Tyagi R, Valéro J. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium–Liberation and extraction of phenolic antioxidants. Food Chemistry. 2011; 126 (3):1071-1080. doi: 10.1016/j.foodchem.2010.11.129.

[61]Feitosa PRB, Santos TRJ, Gualberto NC, Narain N, de Aquino Santana LCL. Solid-state fermentation with Aspergillus niger for the bio-enrichment of bioactive compounds in Moringa oleifera (moringa) leaves. Biocatalysis and Agricultural Biotechnology. 2020; 27:101709. doi:10.1016/j.bcab.2020.101709.

[62]Lopez-Ramirez N, Volke-Sepulveda T, Gaime-Perraud I, Saucedo-Castañeda G, Favela-Torres E. Effect of stirring on growth and cellulolytic enzymes production by Trichoderma harzianum in a novel bench-scale solid-state fermentation bioreactor. Bioresource Technology. 2018; 265:291-298. doi: 10.1016/j.biortech.2018.06.015.

[63]Klempová T, Slaný O, Šišmiš M, Marcinčák S, Čertík M. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. Journal of Biotechnology. 2020; 311:1-11. doi: 10.1016/j.jbiotec.2020.02.006.

[64]Doriya K, Kumar DS. Solid state fermentation of mixed substrate for l-asparaginase production using a tray and in-house designed rotary bioreactor. Biochemical Engineering Journal. 2018; 138:188-196. doi: 10.1016/j.bej.2018.07.024.

[65]Ávila SN, Gutarra ML, Fernandez-Lafuente R, Cavalcanti ED, Freire DM. Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis. Biochemical Engineering Journal. 2019; 144:1-7. doi: 10.1016/j.bej.2018.12.024.

[66]Demir H, Tari C. Bioconversion of wheat bran for polygalacturonase production by Aspergillus sojae in tray-type solid-state fermentation. International Biodeterioration & Biodegradation. 2016; 106:60-66. doi: 10.1016/j.ibiod.2015.10.011.

[67]Magro AEA, de Castro RJS. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatalysis and Agricultural Biotechnology. 2020; 28:101753. doi: 10.1016/j.bcab.2020.101753.

[68]Lekshmi R, Nisha SA, Kaleeswaran B, Alfarhan A. Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid-state fermentation. Journal of King Saud University-Science. 2020; 32(3):1831-1837. doi: 10.1016/j.jksus.2020.01.022.

[69]Garcia-Mendoza MP, Paula JT, Paviani LC, Cabral FA, Martinez-Correa HA. Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT-Food Science and Technology. 2015; 62 (1):131-137. doi: 10.1016/j.lwt.2015.01.026.

[70]de la Cruz R, Ascacio JA, Buenrostro J, Sepúlveda L, Rodríguez R, Prado-Barragán A, et al. Optimization of ellagitannase production by Aspergillus niger GH1 by solid-state fermentation. Preparative Biochemistry and Biotechnology. 2015; 45 (7):617-631. doi: 10.1080/10826068.2014.940965.

[71]Abdel-Razik M, Ashoush I, Yassin N. Characteristics of mango seed kernel butter and its effects on quality attributes of muffins. Alexandria Journal of Food Science and Technology. 2012; 9(2):1-9. doi: 10.21608/AJFS.2012.20219.

[72]Aruna T. Production of value-added product from pineapple peels using solid-state fermentation. Innovative Food Science & Emerging Technologies. 2019; 57:102193. doi: 10.1016/j.ifset.2019.102193.

[73]Vega-Castro O, Contreras-Calderon J, León E, Segura A, Arias M, Pérez L, et al. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. Journal of Biotechnology. 2016; 231:232-238. doi: 10.1016/j.jbiotec.2016.06.018.

[74]Zain NAM, Aziman SN, Suhaimi MS, Idris A. Optimization of L (+) lactic acid production from solid pineapple waste (SPW) by Rhizopus oryzae NRRL 395. Journal of Polymers and the Environment. 2021; 29:230-249. doi: 10.1007/s10924-020-01862-0.

[75]de la Rosa O, Múñiz-Marquez DB, Contreras-Esquivel JC, Wong-Paz JE, Rodríguez-Herrera R, Aguilar CN. Improving the fructooligosaccharides production by solid-state fermentation. Biocatalysis and Agricultural Biotechnology. 2020; 27:101704. doi: 10.1016/j.bcab.2020.101704.

[76]Silva CND, Bronzato GRF, Cesarino I, Leão AL. Second-generation ethanol from pineapple leaf fibers. Journal of Natural Fibers. 2020; 17 (1):113-21. doi: 10.1080/15440478.2018.1469453.

[77]Casabar JT, Unpaprom Y, Ramaraj R. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery. 2019; 9:761-765. doi: 10.1007/s13399-019-00436-y.

[78]Diaz-Vela J, Totosaus A, Cruz-Guerrero AE, de Lourdes Pérez-Chabela M. In vitro, evaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-indica L.) peel and pineapple (Ananas comosus) peel as functional ingredients. International Journal of Food Science and Technology. 2013; 48 (7):1460-1467. doi: 10.1111/ijfs.12113.

[79]Idris A, Suzana W. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry. 2006; 41 (5):1117-1123. doi: 10.1016/j.procbio.2005.12.002.

[80]Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels. 2018; 11:1-15. doi: 10.1186/s13068-018-1207-8.

[81]Echeverria F, Patino PAJ, Castro-Sepulveda M, Bustamante A, Concha PAG, Poblete-Aro C, et al. Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. British Journal of Nutrition. 2021; 126(6):825-836. doi: 10.1017/S000711452000481X.

[82]Robledo A, Aguilera-Carbó A, Rodriguez R, Martinez JL, Garza Y, Aguilar CN. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. Journal of Industrial Microbiology and Biotechnology. 2008; 35(6):507-513. doi: 10.1007/s10295-008-0309-x.

[83]Singhania RR, Patel AK, Gottumukkala LD, Rajasree K, Soccol CR, Pandey A. Solid-state fermentation: current trends and future prospects. In: Fermentation Microbiology and Biotechnology, Fourth Edition: CRC Press; 2018. p. 243-254.

[84]Santiago LG, Soccol CR, Castro GR. Emerging technologies for bioactive applications in foods. In: Food Bioactives: Extraction and Biotechnology Applications. Springer; 2017: 205-26.

[85]Lobo M, García J, Del Pino J. Foods: Functional foods, food additives and dietetic supplements. Thyroid Toxicity. 2016: 165-185. doi: 10.2174/9781681082219116010013.

[86]Sousa D, Simões L, Oliveira R, Salgado JM, Cambra-López M, Belo I, et al. Evaluation of biotechnological processing through solid-state fermentation of oilseed cakes on extracts bioactive potential. Biotechnology Letters. 2023; 45(10):1293-1307. doi:10.1007/s10529-023-03417-4.

[87]García-Pérez P, Gallego PP. Plant phenolics as dietary antioxidants: Insights on their biosynthesis, sources, health-promoting effects, sustainable production, and effects on lipid oxidation. In: Lipid Oxidation in Food and Biological Systems. Springer; 2022: 405-26.

[88]De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Critical Reviews in Food Science and Nutrition. 2023; 63 (21):5388-5413. doi: 10.1080/10408398.2021.2018989.

[89]Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances. 2011; 29 (3):365-373. doi: 10.1016/j.biotechadv.2011.01.008.

[90]Cheng W, Chen X, Zhou D, Xiong F. Applications and prospects of the automation of compound flavor baijiu production by solid-state fermentation. International Journal of Food Engineering. 2022; 18 (12):737-749. doi: 10.1515/ijfe-2022-0200.

[91]García P, Fredes C, Cea I, Lozano-Sánchez J, Leyva-Jiménez FJ, Robert P, et al. Recovery of bioactive compounds from pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods. 2021; 10(2):203. doi: 10.3390/foods10020203.

[92]Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends in Microbiology. 2018; 26(7):563-574. doi: 10.1016/j.tim.2017.11.002.

[93]Parvez S, Malik KA, Ah Kang S, Kim HY. Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology. 2006; 100(6):1171-1185. doi: 10.1111/j.1365-2672.2006.02963.x.

[94]Garcia EF, Luciano WA, Xavier DE, da Costa WC, de Sousa Oliveira K, Franco OL, et al. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Frontiers in Microbiology. 2016; 7:1371. doi: 10.3389/fmicb.2016.01371.

[95]Verduzco-Oliva R, Gutierrez-Uribe JA. Beyond enzyme production: Solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability. 2020; 12(2):495. doi: 10.3390/su12020495.

[96]Couto SR, Sanromán MA. Application of solid-state fermentation to the food industry—a review. Journal of Food Engineering. 2006; 76(3):291-302. doi: 10.1016/j.jfoodeng.2005.05.022.

[97]Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochemical Engineering Journal. 2013; 81:146-161. doi: 10.1016/j.bej.2013.10.013.

[98]Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered enzymes and precision fermentation in the food industry. International Journal of Molecular Sciences. 2023; 24(12):10156. doi: 10.3390/ijms241210156.

[99]Meena J, Gupta A, Ahuja R, Singh M, Bhaskar S, Panda AK. Inorganic nanoparticles for natural product delivery: A review. Environmental Chemistry Letters. 2020; 18:2107-2118. doi: 10.1007/s10311-020-01061-2.

How to Cite

Khan, R., Ghazali, F. M., & Mahyudin, N. A. . (2025). Advancing the extraction of bioactive compound from fruit by-products through solid-state fermentation: A review. Journal of Food, Nutrition and Diet Science, 3(1), 37–52. https://doi.org/10.55976/fnds.32025134237-52
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.