Make Knowledge Veritable, Visible and Valuable.

In vitro toxicity of microalgae species of the phyla chlorophyta and ochrophyta in CHO-k1 and HEP G2 cells for potential use in human nutrition

Tomke F. Prueser 1 * , Peggy G. Braun 2 , Carola Griehl 3 , Claudia Wiacek 4

  • 1. Institute of Food Hygiene, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
  • 2. Institute of Food Hygiene, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
  • 3. Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, Bernburger Str. 55, 06366 Köthen, Germany
  • 4. Institute of Food Hygiene, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany

Correspondence: tomke_friederike.prueser@vetmed.uni-leipzig.de

DOI: https://doi.org/10.55976/fnds.220241297141-155

  • Received

    19 August 2024

  • Revised

    12 October 2024

  • Accepted

    21 October 2024

  • Published

    25 October 2024

Microalgae Cytotoxicity in vitro toxicity Human nutrition Food safety

Show More

Abstract


References
V

[1]Borowitzka MA. Systematics, taxonomy and species names: Do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds.) The physiology of microalgae. Springer International Publishing; 2016. p. 665-81.

[2]Guiry MD. How many Species of Algae are there? Journal of Phycology. 2012; 48(5):1057-63. Available from: doi:10.1111/j.1529-8817.2012.01222.x.

[3]Algae Products Market - Global Industry Size, Share, Trends, Algae Products Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F. ID: 4790320.; 2023. Available from: https://www.researchandmarkets.com/reports/4790320/algae-products-market-global-industry-size#rela1-4521311. [Accessed 11th October 2024].

[4]Borowitzka MA. High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology. 2013; 25(3): 743-56. doi:10.1007/s10811-013-9983-9.

[5]Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology. 2004; 65(6): 635-48. doi:10.1007/s00253-004-1647-x.

[6]Safafar H, van Wagenen J, Møller P, Jacobsen C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Marine Drugs. 2015; 13(12): 7339-56. doi:10.3390/md13127069.

[7]Sandgruber F, Höger A-L, Kunze J, Schenz B, Griehl C, Kiehntopf M et al. Impact of Regular Intake of Microalgae on Nutrient Supply and Cardiovascular Risk Factors: Results from the NovAL Intervention Study. Nutrients. 2023; 15(7). doi:10.3390/nu15071645.

[8]Food and Agriculture Organization of the United Nations (FAO). Global Fishery and Aquaculture Production Statistics. Available from: www.fao.org/fishery/statistics/software/fishstatj. [Accessed 11th October 2024].

[9]Enzing C, Ploeg M, Barbosa M, Sijtsma L. Microalgae-based products for the food and feed sector: An outlook for Europe. Luxembourg: Publications Office; 2014. (EUR, Scientific and technical research series; vol 26255).

[10]Prüser TF, Braun Peggy Gabriele, Wiacek C. Microalgae as a novel food: Potential and legal framework. Ernährungsumschau. 2021; 68(4): 78-85. doi:10.4455/eu.2021.016.

[11]Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microbial Cell Factories. 2020; 19(1): 201. doi:10.1186/s12934-020-01459-1.

[12]García JL, Vicente M de, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology. 2017; 10(5): 1017-24. doi:10.1111/1751-7915.12800.

[13]Rhodes L, Wood S. Micro-algal and Cyanobacterial Producers of Biotoxins. In: Rossini GP (ed.) Toxins and biologically active compounds from microalgae Origin, chemistry and detection. Boca Raton, FL: CRC Press Taylor & Francis Group; 2014. p. 21-51

[14]Guiry, M.D. & Guiry, G.M. AlgaeBase; 2019. Available from: http://www.algaebase.org. [Accessed 11th October 2024].

[15]Tasker RA. Chemistry and Detection of Domoic Acid and Isomers. In: Rossini GP (ed.) Toxins and biologically active compounds from microalgae Origin, chemistry and detection. Boca Raton, FL: CRC Press Taylor & Francis Group; 2014. p. 232-50

[16]Jiang Y, Xie P, Chen J, Liang G. Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Additives and Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment. 2008; 25(7): 885-94. doi:10.1080/02652030701822045.

[17]Parra-Riofrío G, García-Márquez J, Casas-Arrojo V, Uribe-Tapia E, Abdala-Díaz RT. Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides From Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Marine Drugs. 2020; 18(11). doi:10.3390/md18110534.

[18]Rellán S, Osswald J, Saker M, Gago-Martinez A, Vasconcelos V. First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food and Chemical Toxicology. 2009; 47(9): 2189-95. doi:10.1016/j.fct.2009.06.004.

[19]Sánchez-Parra E, Boutarfa S, Aboal M. Are Cyanotoxins the Only Toxic Compound Potentially Present in Microalgae Supplements? Results from a Study of Ecological and Non-Ecological Products. Toxins (Basel). 2020; 12(9). doi:10.3390/toxins12090552.

[20]Yu F-Y, Liu B-H, Chou H-N, Chu FS. Development of a sensitive ELISA for the determination of microcystins in algae. Journal of Agricultural and Food Chemistry. 2002; 50(15): 4176-82. doi:10.1021/jf0202483.

[21]Leflaive J, Ten-Hage L. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology. 2007; 52(2): 199-214. doi:10.1111/j.1365-2427.2006.01689.x.

[22]EFSA Panel on Dietetic Products, Nutrition and Allergies. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFS2. 2016; 14(11): 54. doi:10.2903/j.efsa.2016.4594.

[23]Cabanelas ITD, Marques SSI, Souza CO de, Druzian JI, Nascimento IA. Botryococcus what to do with it? Effect of nutrient concentration on biorefinery potential. Algal Research. 2015; 11:43-9. doi:10.1016/j.algal.2015.05.009.

[24]Lang I, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology. 2011; 11:124. doi:10.1186/1471-2229-11-124.

[25]Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D et al. Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Engineering in Life Sciences. 2011; 11(1): 52-8. doi:10.1002/elsc.201000086.

[26]Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International. 2007; 15(1): 1-9. doi:10.1007/s10499-006-9060-3.

[27]Santos-Sánchez NF, Valadez-Blanco R, Hernández-Carlos B, Torres-Ariño A, Guadarrama-Mendoza PC, Salas-Coronado R. Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Applied Microbiology and Biotechnology. 2016; 100(20): 8667-84. doi:10.1007/s00253-016-7818-8.

[28]Zanella L, Vianello F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. Journal of Functional Foods. 2020; 68:103919. doi:10.1016/j.jff.2020.103919.

[29]Sandgruber F, Gielsdorf A, Baur AC, Schenz B, Müller SM, Schwerdtle T et al. Variability in Macro- and Micronutrients of 15 Commercially Available Microalgae Powders. Marine Drugs. 2021; 19(6). doi:10.3390/md19060310.

[30]Brown MR, Mular M, Miller I, Farmer C, Trenerry C. The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology. 1999; 11(3): 247-55. doi:10.1023/A:1008075903578.

[31]Edelmann M, Aalto S, Chamlagain B, Kariluoto S, Piironen V. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. Journal of Food Composition and Analysis. 2019; 82:103226. doi:10.1016/j.jfca.2019.05.009.

[32]Da Silva MET, Correa KdP, Martins MA, Da Matta SLP, Martino HSD, Coimbra JSdR. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. Journal of Functional Foods. 2020; 65:103711. doi:10.1016/j.jff.2019.103711.

[33]Morowvat MH, Ghasemi Y. Screening of some Naturally Isolated Microalgal Strains for Polyunsaturated Fatty Acids Production. Asian Journal of Pharmaceutical Research and Health Care. 2016; 8(4): 122. doi:10.18311/ajprhc/2016/6113.

[34]Sandgruber F, Gielsdorf A, Schenz B, Müller SM, Schwerdtle T, Lorkowski S et al. Variability in Macro- and Micronutrients of 15 Rarely Researched Microalgae. Marine Drugs. 2023; 21(6). doi:10.3390/md21060355.

[35]Klejdus B, Kopecký J, Benesová L, Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. Journal of Chromatography A. 2009; 1216(5): 763-71. doi:10.1016/j.chroma.2008.11.096.

[36]Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews. 1998; 56(11): 317-33. doi:10.1111/j.1753-4887.1998.tb01670.x.

[37]Morais MG de, Da Vaz BS, Morais EG de, Costa JAV. Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International. 2015; 2015: 835761. doi:10.1155/2015/835761.

[38]Putnam K, Bombick D, Avalos J, Doolittle D. Comparison of the Cytotoxic and Mutagenic Potential of Liquid Smoke Food Flavourings, Cigarette Smoke Condensate and Wood Smoke Condensate. Food and Chemical Toxicology. 1999; 37(11): 1113-8. doi:10.1016/S0278-6915(99)00104-0.

[39]Tofiño-Rivera A, Ortega-Cuadros M, Galvis-Pareja D, Jiménez-Rios H, Merini LJ, Martínez-Pabón MC. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology. 2016; 194: 749-54. doi: 10.1016/j.jep.2016.10.044.

[40]Whitwell J, Fowler P, Allars S, Jenner K, Lloyd M, Wood D et al. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzoapyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487. Mutation Research. 2010; 702(2): 237-47. doi:10.1016/j.mrgentox.2010.05.004.

[41]Organisation for Economic Co-operation and Development. OECD Guidelines for the Testing of Chemicals 487: In vitro mammalian cell micronucleus test. Paris: OECD Publishing; 2023. (OECD Guidelines for the Testing of Chemicals. Section 4, Health Effects).

[42]EFSA Scientific Committee. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA Journal. 2011; 9(9). doi:10.2903/j.efsa.2011.2379.

[43]Liu ZH, Zeng S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicology Letters. 2009; 187(3): 13106. doi: 10.1016/j.toxlet.2009.02.012.

[44]Machana S, Weerapreeyakul N, Barusrux S, Nonpunya A, Sripanidkulchai B, Thitimetharoch T. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chinese Medicine. 2011; 6(1): 39. doi:10.1186/1749-8546-6-39.

[45]Senthilraja P, Kathiresan K. In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF -7 cell lines study of Marine Yeast. Journal of Applied Pharmaceutical Science. 2015:80-4. doi:10.7324/JAPS.2015.50313.

[46]Salem N, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Current Opinion in Clinical Nutrition & Metabolic Care. 2015; 18(2):147-54. doi:10.1097/MCO.0000000000000145.

[47]Calder PC. Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proceedings of the Nutrition Society. 2018; 77(1): 52-72. doi:10.1017/S0029665117003950.

[48]Schade S, Stangl GI, Meier T. Distinct microalgae species for food—part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein. Journal of Applied Phycology. 2020; 32(5): 2997-3013. doi:10.1007/s10811-020-02181-6.

[49]Himuro S, Ueno S, Noguchi N, Uchikawa T, Kanno T, Yasutake A. Safety evaluation of Chlorella sorokiniana strain CK-22 based on an in vitro cytotoxicity assay and a 13-week subchronic toxicity trial in rats. Food and Chemical Toxicology. 2017; 106(Pt A): 1-7. doi:10.1016/j.fct.2017.05.025.

[50]Niccolai A, Bigagli E, Biondi N, Rodolfi L, Cinci L, Luceri C et al. In vitro toxicity of microalgal and cyanobacterial strains of interest as food source. Journal of Applied Phycology. 2017; 29(1): 199-209. doi:10.1007/s10811-016-0924-2.

[51]Bechelli J, Coppage M, Rosell K, Liesveld J. Cytotoxicity of algae extracts on normal and malignant cells. Leukemia Research and Treatment. 2011: 373519. doi:10.4061/2011/373519.

[52]Balaji M, Dhanapal T, Chidambara Vinayagam S, S Balakumar B. Anticancer, Antioxidant Activity and GC-MS Analysis of selected Microalgal Members of Chlorophyceae. International Journal of Pharmaceutical Sciences and Research. 2017; 8(8): 3302-14. doi:10.13040/IJPSR.0975-8232.8(8).3302-14.

[53]Daniel R. Antibacterial Activity of the Marine Diatom Skeletonema costatum Against Selected Human Pathogens. International Journal of Current Pharmaceutical Review and Research. 2016; 7(5): 233-6. Available from: https://impactfactor.org/PDF/IJCPR/7/IJCPR,Vol7,Issue5,Article1.pdf. [Accessed 11th October 2024].

[54]Gille A, Trautmann A, Gomez MR, Bischoff SC, Posten C, Briviba K. Photoautotrophically Grown Chlorella vulgaris Shows Genotoxic Potential but No Apoptotic Effect in Epithelial Cells. Journal of Agricultural and Food Chemistry. 2019; 67(31): 8668-76. doi:10.1021/acs.jafc.9b03457.

[55]Boyd MR. The NCI In Vitro Anticancer Drug Discovery Screen. In: Teicher BA (ed.) Anticancer Drug Development Guide. Totowa, NJ: Humana Press; 1997. p. 23-42.

[56]Tan ML, Sulaiman SF, Najimuddin N, Samian MR, Muhammad TST. Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line. Journal of Ethnopharmacology. 2005; 96(1-2):287-94. doi:10.1016/j.jep.2004.09.025.

[57]Ngawhirunpat T, Opanasopi P, Sukma M, Sittisombut C, Kat A, Adachi I. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharmaceutical Biology. 2010; 48(1): 55-62. doi:10.3109/13880200903046138.

[58]Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International. 2022; 157: 111268. doi:10.1016/j.foodres.2022.111268.

[59]Ilieva Y, Dimitrova L, Zaharieva MM, Kaleva M, Alov P, Tsakovska I et al. Cytotoxicity and Microbicidal Activity of Commonly Used Organic Solvents: A Comparative Study and Application to a Standardized Extract from Vaccinium macrocarpon. Toxics. 2021; 9(5). doi:10.3390/toxics9050092.

[60]Atasever-Arslan B, Yilancioglu K, Kalkan Z, Timucin AC, Gür H, Isik FB et al. Screening of new antileukemic agents from essential oils of algae extracts and computational modeling of their interactions with intracellular signaling nodes. European Journal of Pharmaceutical Sciences. 2016; 83:120-31. doi:10.1016/j.ejps.2015.12.001.

[61]Gürlek C, Yarkent Ç, Köse A, Tuğcu B, Gebeloğlu IK, Öncel SŞ et al. Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health and Technology. 2020; 10(1): 111-7. doi:10.1007/s12553-019-00388-3.

[62]Santhakumaran P, Ayyappan SM, Ray JG. Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research. 2020; 47:101878. doi:10.1016/j.algal.2020.101878.

[63]Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology. 2010; 85(6): 1629-42. doi:10.1007/s00253-009-2355-3.

[64]Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. European Journal of Pharmacology. 2020; 871: 172937. doi:10.1016/j.ejphar.2020.172937.

[65]Marrez DA, Naguib MM, Sultan YY, Higazy AM. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon. 2019; 5(3): e01404. doi:10.1016/j.heliyon.2019.e01404.

[66]Suriyavathana M., Indupriya S. GC-MS analysis of phytoconstituents and concurrent determination of flavonoids by HPLC in ethanolic leaf extract of Blepharis maderaspatensis (L) B. World Jounrla of Pharmaceutical Research. 2014; 3(9): 405-14. Available from: https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1414823052.pdf. [Accessed 11th October 2024].

[67]Abd El Baky HH, El-Baroty GS, Ibrahim EA. Antiproliferation and antioxidant properties of lipid extracts of the microalgae Scenedesmus obliquus grown under stress conditions. Der Pharma Chemica. 2014; 6(5): 24-34. Available from: https://www.researchgate.net/publication/286266869_Antiproliferation_and_antioxidant_properties_of_lipid_extracts_of_the_microalgae_Scenedesmus_obliquus_grown_under_stress_conditions. [Accessed 11th October 2024].

[68]Singab AN, Ibrahim N, Elsayed AE, El-Senousy W, Aly H, Abd Elsamiae A et al. Antiviral, cytotoxic, antioxidant and anti-cholinesterase activities of polysaccharides isolated from microalgae Spirulina platensis, Scenedesmus obliquus and Dunaliella salina. HSPI. Ain Shams University 2018; 2(2):121-37. doi:10.21608/aps.2018.18740.

[69]Custódio L, Soares F, Pereira H, Barreira L, Vizetto-Duarte C, Rodrigues MJ et al. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: possible application in the pharmaceutical and functional food industries. Journal of Applied Phycology. 2014; 26(1):151-61. doi:10.1007/s10811-013-0098-0.

[70]Zaharieva MM, Zheleva-Dimitrova D, Rusinova-Videva S, Ilieva Y, Brachkova A, Balabanova V et al. Antimicrobial and Antioxidant Potential of Scenedesmus obliquus Microalgae in the Context of Integral Biorefinery Concept. Molecules. 2022; 27(2). doi:10.3390/molecules27020519.

[71]Reyna-Martinez R, Gomez-Flores R, López-Chuken U, Quintanilla-Licea R, Caballero-Hernandez D, Rodríguez-Padilla C et al. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México. PeerJ. 2018; 6:e4358. doi:10.7717/peerj.4358.

[72]Ördög V, Stirk WA, Lenobel R, Bancířová M, Strnad M, van Staden J et al. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology. 2004; 16(4): 309-14. doi:10.1023/B:JAPH.0000047789.34883.aa.

[73]Khadem S, Marles RJ. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules. 2010; 15(11): 7985-8005. doi:10.3390/molecules15117985.

[74]Ávila-Román J, Talero E, Los Reyes C de, Zubía E, Motilva V, García-Mauriño S. Cytotoxic Activity of Microalgal-derived Oxylipins against Human Cancer Cell lines and their Impact on ATP Levels. Natural Product Communications. 2016; 11(12): 1871-5. doi:10.1177/1934578X1601101225.

[75]Kagan ML, Matulka RA. Safety assessment of the microalgae Nannochloropsis oculata. Toxicology Reports. 2015; 2:617-23. doi:10.1016/j.toxrep.2015.03.008.

[76]Neumann U, Derwenskus F, Gille A, Louis S, Schmid-Staiger U, Briviba K et al. Bioavailability and Safety of Nutrients from the Microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 Mice. Nutrients. 2018; 10(8). doi:10.3390/nu10080965.

[77]Venkatraman A, Moovendhan M, Chandrasekaran K, Ramesh S, Albert A, Panchatcharam S et al. Alcoholic concentrate of microalgal biomass modulates cytotoxicity, apoptosis, and gene expression studied in hepatocellular carcinoma. Biomass Conversion and Biorefinery. 2022. doi:10.1007/s13399-022-02786-6.

[78]Sanjeewa KKA, Fernando IPS, Samarakoon KW, Lakmal HHC, Kim E-A, Kwon O-N et al. Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsis oculata. ALGAE. 2016; 31(3): 277-87. doi:10.4490/algae.2016.31.6.29.

[79]Kagan ML, Sullivan DW, Gad SC, Ballou CM. Safety assessment of EPA-rich polar lipid oil produced from the microalgae Nannochloropsis oculata. International Journal of Toxicology. 2014; 33(6): 459-74. doi:10.1177/1091581814553453.

[80]Custódio L, Soares F, Pereira H, Rodrigues MJ, Barreira L, Rauter AP et al. Botryococcus braunii and Nannochloropsis oculata extracts inhibit cholinesterases and protect human dopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity. Journal of Applied Phycology. 2015; 27(2):839-48. doi:10.1007/s10811-014-0369-4.

[81]İnan B, Çakır Koç R, Özçimen D. Comparison of the anticancer effect of microalgal oils and microalgal oil-loaded electrosprayed nanoparticles against PC-3, SHSY-5Y and AGS cell lines. Artificial Cells, Nanomedicine, and Biotechnology. 2021; 49(1): 381-9. doi:10.1080/21691401.2021.1906263.

[82]Bhagavathy S, Sumathi P. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes. Asian Pacific Journal of Tropical Biomedicine. 2012; 2(2):109-17. doi:10.1016/S2221-1691(11)60203-7.

[83]Office P. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. 2017. ( vol 60). Available from: http://data.europa.eu/eli/reg_impl/2017/2468/oj. [Accessed 11th October 2024].

[84]Mantecón L, Moyano R, Cameán AM, Jos A. Safety assessment of a lyophilized biomass of Tetraselmis chuii (TetraSOD®) in a 90 day feeding study. Food and Chemical Toxicology. 2019; 133:110810. doi:10.1016/j.fct.2019.110810.

[85]Rosa A, Deidda D, Serra A, Deiana M, Dessi MA, Pompei R. Omega-3 fatty acid composition and biological activity of three microalgae species. Journal of Food, Agriculture & Environment. 2005; 3(2): 120-4. Available from: https://www.academia.edu/63537470/Omega_3_fatty_acid_composition_and_biological_activity_of_three_microalgae_species. [Accessed 11th October 2024].

[86]Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. Journal of Biological Chemistry. 2001; 276(18): 14890-5. doi:10.1074/jbc.M010286200.

[87]Yao H-R, Liu J, Plumeri D, Cao Y-B, He T, Lin L et al. Lipotoxicity in HepG2 cells triggered by free fatty acids. American Journal of Translational Research. 2011; 3(3): 284-91. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102573/. [Accessed 11th October 2024].

How to Cite

Prueser, T. F., Braun, P. G., Griehl, C., & Wiacek, C. (2024). In vitro toxicity of microalgae species of the phyla chlorophyta and ochrophyta in CHO-k1 and HEP G2 cells for potential use in human nutrition. Journal of Food, Nutrition and Diet Science, 2(1), 141–155. https://doi.org/10.55976/fnds.220241297141-155
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.