Laura Patricia Martínez-Padilla 1 , María Guadalupe Sosa-Herrera 2 , Maritza Rocandio-Pineda 3 , Brandon Jiménez-Monroy 4
Correspondence: lpmp@unam.mx
DOI: https://doi.org/10.55976/fnds.22024124976-93
Show More
[1]Ahmed W, Rashid S. Functional and therapeutic potential of inulin: A comprehensive review. Critical Reviews in Food Science and Nutrition. 2019; 59(1):1-13. doi: 10.1080/10408398.2017.1355775.
[2]García-Villalba WG, Rodríguez-Herrera R, Ochoa-Martínez LA, Rutiaga-Quiñones OM, Gallegos-Infante JA, González-Herrera SM. Agave fructans: a review of their technological functionality and extraction processes. Journal of Food Science and Technology. 2023; 60:1265-73. doi: 10.1007/s13197-022-05375-7.
[3]Nadathur SR, Wanasundara JPD, Scanlin L (eds). Sustainable Protein Sources. 2nd ed. Cambridge, MA, USA: Academic Press; 2024.
[4]Wang Y, Wang S, Li R, Wang Y, Xiang Q, Li K, et al. Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate. Food Hydrocolloids. 2022;124:107351. doi: 10.1016/j.lwt.2020.109563.
[5]Zhao S, Huang Y, McClements DJ, Liu X, Wang P, Liu F. Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocolloids. 2022; 126:107441. doi: 10.1016/j.foodhyd.2021.107441.
[6]Wang J, Li Y, Li A, Liu RH, Gao X, Li D, et al. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Research International. 2021;150:110790. doi: 10.1016/j.foodres.2021.110790.
[7]Chang L, Lan Y, Bandillo N, Ohm JB, Chen B, Rao J. Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids. 2022; 123:107165. doi: 10.1016/j.foodhyd.2021.107165.
[8]Boukid F. Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: a review. International Journal of Food Science and Technology. 2021; 56: 5435-44. doi: 10.1111/ijfs.15046.
[9]Zhang T, Jiang B, Mu W, Wang Z. Emulsifying properties of chickpea protein isolates: Influence of pH and NaCl. Food Hydrocolloids. 2009; 23(1): 146-52. doi: 10.1016/j.foodhyd.2007.12.005.
[10]. Bi C hao, Chi S yi, Zhou T, Zhang J yi, Wang X ying, Li J, et al. Effect of low-frequency high-intensity ultrasound (HIU) on the physicochemical properties of chickpea protein. Food Research International. 2022; 159:111474. doi: 10.1016/j.foodres.2022.111474.
[11]. Bender D, Yamsaengsung R, Waziiroh E, Schoenlechner R, Jaeger H. Effect of ultrasound-assisted soaking on the hydration kinetics and physicochemical properties of chickpeas. International Journal of Food Science and Technology. 2024; 59:2221-35. doi: 10.1111/ijfs.16916.
[12]McClements DJ. Food emulsions: Principles, Practices, and Techniques. 3rd ed. Boca Raton, FL, USA: CRC Press; 2015.
[13]Zhu Y, Gao H, Liu W, Zou L, McClements DJ. A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies. 2020; 51(1):45-55. doi: 10.1111/jtxs.12444.
[14]Mańko-Jurkowska D, Domian E. The effect of heat- and salt treatment on the stability and rheological properties of chickpea protein-stabilized emulsions. Applied Sciences. 2024;14: 2698. doi: 10.3390/app14072698.
[15]Martínez‐Padilla LP. Rheology of liquid foods under shear flow conditions: Recently used models. Journal of Texture Studies. 2023; 1-25. doi: 10.1111/jtxs.12802.
[16]Niknam R, Soudi MR, Mousavi M. Rheological and stability evaluation of emulsions containing fenugreek galactomannan-xanthan gum mixtures: Effect of microwave and ultrasound treatments. Macromol. 2022; 2: 361-73. doi: 10.3390/macromol2030023.
[17]Niknam R, Mousavi M, Kiani H. Effect of ultrasonication on rheological aspects and storage stability of O/W emulsions containing Gleditsia caspica galactomannan- Trigonella foenum-graceum galactomannan mixtures. Applied Food Research. 2022; 2: 100109. doi: 10.1016/j.afres.2022.100109.
[18]Wei Y, Cai Z, Wu M, Guo Y, Tao R, Li R, et al. Comparative studies on the stabilization of pea protein dispersions by using various polysaccharides. Food Hydrocolloids. 2020; 98:105233. doi: 10.1016/j.foodhyd.2019.105233.
[19]. Schmitt C, Turgeon SL. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science. 2011; 167(1–2): 63-70. doi: 10.1016/j.cis.2010.10.001.
[20]Zheng J, Van der Meeren P, Sun W. New insights into protein-polysaccharide complex coacervation: Dynamics, molecular parameters, and applications. Aggregate. 2024; 5:1-19. doi: 10.1002/agt2.449.
[21]Cai Z, Wu J, Du B, Zhang H. Impact of distribution of carboxymethyl substituents in the stabilizer of carboxymethyl cellulose on the stability of acidified milk drinks. Food Hydrocolloids. 2018; 76:150-7. doi: 10.1016/j.foodhyd.2016.12.034.
[22]Roberfroid MB. Introducing inulin-type fructans. British Journal of Nutrition. 2005; 93(S1):S13-25. doi: 10.1079/bjn20041350.
[23]López MG, Mancilla-Margalli NA, Mendoza-Díaz G. Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry. 2003; 51(27):7835-40. doi: 10.1021/jf030383v.
[24]Khalid N, Khan RS, Hussain MI, Farooq M, Ahmad A, Ahmed I. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient- A review. Trends in Food Science and Technology. 2017; 66:176-86. doi: 10.1016/j.tifs.2017.06.009.
[25]Sosa-Herrera MG, Martínez-Padilla LP, Delgado-Reyes VA, de Avila Ortega M de los A, Cruz Martínez IP. Effect of agave fructans on xanthan rheology: Impact on sodium caseinate emulsion properties. Journal of Food Science. 2022; 87(7): 2858-68. doi: 10.1111/1750-3841.16213.
[26]ISO 13320:2020 Particle size analysis. Laser diffraction methods. Geneva Switzerland: International Organization for Standardization; 2020.
[27]ASTM E799-03 Standard practice for determining data criteria and processing for liquid drop size analysis. West Conshohocken: American Society for Testing and Materials International; 2015.
[28]Liu LH, Hung T V. Flow properties of chickpea proteins. Journal of Food Science. 2008; 63(2):229-33. doi: j.1365-2621.1998.tb15715.x.
[29]Rodríguez-González F, Parra-Montes de Oca MA, Ávila-Reyes S V., Camacho-Díaz BH, Alamilla-Beltrán L, Jiménez-Aparicio AR, et al. A rheological study of chicory and agave tequilana fructans for use in foods. LWT-Food Science and Technology. 2019; 115:108137. doi:/10.1016/j.lwt.2019.05.035.
[30]Wang Y, Wang Y, Li K, Bai Y, Li B, Xu W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT-Food Science and Technology. 2020; 129:109563. doi: 10.1016/j.lwt.2020.109563.
[31]Xu G, Kang J, You W, Li R, Zheng H, Lv L, et al. Pea protein isolates affected by ultrasound and NaCl used for dysphagia’s texture-modified food: Rheological, gel, and structural properties. Food Hydrocolloids. 2023; 139: 108566. doi: 10.1016/j.foodhyd.2023.108566.
[32]Karaca AC, Low N, Nickerson M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International. 2011; 44(9): 2742-50. doi: 10.1016/j.foodres.2011.06.012.
[33]Sosa-Herrera MG, Martínez-Padilla LP, Delgado-Reyes VA, Torres-Robledo A. Effect of agave fructans on bulk and surface properties of sodium caseinate in aqueous media. Food Hydrocolloids. 2016; 60:199-205. doi: 10.1111/1750-3841.16213.
[34]López-Castejón ML, Bengoechea C, Alguacil JM, Carrera C. Prebiotic food foams stabilized by inulin and β-lactoglobulin. Food Hydrocolloids. 2021; 119: 106829. doi: 10.1016/j.foodhyd.2021.106829.
[35]Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polym Science. 2008; 286(10): 1173-80. doi: 10.1007/s00396-008-1882-2.
[36]Zhang LM, Zhou JF. Synergistic viscosity characteristics of aqueous mixed solutions of hydroxypropyl- and carboxymethyl hydroxypropyl-substituted guar gums. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006; 279(1-3): 34-9. doi: 10.1016/j.colsurfa.2005.12.030.
[37]Rao MA. Rheology of Fluid, Semisolid, and Solid Foods. Principles and Applications. 3rd ed. New York: Springer US; 2014.
[38]Ferry JD. Viscoelastic Properties of Polymers. 3rd ed. New York: John Wiley & Sons, Inc.; 1980.
[39]Foudazi R, Qavi S, Masalova I, Malkin AY. Physical chemistry of highly concentrated emulsions. Advances in Colloid and Interface Science. 2015; 220: 78-91. doi: 10.1016/j.cis.2015.03.002.
[40]Bressel K, Müller W, Leser ME, Reich O, Hass R, Wooster TJ. Depletion-induced flocculation of concentrated emulsions probed by photon density wave spectroscopy. Langmuir. 2020; 36(13): 3504-13. doi: 10.1021/acs.langmuir.9b03642.
Copyright © 2024 Laura Patricia Martínez-Padilla, María Guadalupe Sosa-Herrera, Maritza Rocandio-Pineda, Brandon Jiménez-Monroy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn