Make Knowledge Veritable, Visible and Valuable.

A review on the nutraceuticals of Parkinson's disease

Cassidy Vella 1 , Renald Blundell 2 *

  • 1. Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta
  • 2. Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta

Correspondence: renaldblundell@gmail.com

DOI: https://doi.org/10.55976/fnds.22024124151-65

  • Received

    03 January 2024

  • Revised

    16 April 2024

  • Accepted

    23 April 2024

  • Published

    30 April 2024

Parkinson’s disease Nutraceuticals Mitochondrial dysfunction Oxidative stress Coenzyme Q Caffeine Creatinine

Show More

Abstract


References
V

[1]Lama A, Pirozzi C, Avagliano C, Annunziata C, Mollica MP, Calignano A, et al. Nutraceuticals: An integrative approach to starve Parkinson’s disease. Brain, Behavior, & Immunity - Health. 2020; 2:100037. doi: 10.1016/j.bbih.2020.100037.

[2]Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. The Lancet Neurology. 2020; 19(2): 170-178. doi: 10.1016/S1474-4422(19)30287-X.

[3]Hang L, Basil AH, Lim K-L. Nutraceuticals in parkinson’s disease. Neuromolecular Medicine. 2016; 18(3): 306-321. doi: 10.1007/s12017-016-8398-6.

[4]Prenger MTM, Madray R, Van Hedger K, Anello M, MacDonald PA. Social symptoms of parkinson’s disease. Parkinson's Disease. 2020; 2020: 8846544. doi: 10.1155/2020/8846544.

[5]Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-Worn Sensors for Remote Monitoring of Parkinson’s Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. Journal of Parkinson's Disease. 2021; 11(s1): S35-47. doi: 10.3233/JPD-202471.

[6]Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. Journal of Neurochemistry. 2016; 139 Suppl 1: 318-324. doi: 10.1111/jnc.13691.

[7]Peball M, Krismer F, Knaus H-G, Djamshidian A, Werkmann M, Carbone F, et al. Non-Motor Symptoms in Parkinson’s Disease are Reduced by Nabilone. Annals of Neurology. 2020; 88(4):712-722. doi: 10.1002/ana.25864.

[8]Upaganlawar AB, Uddin MS, Upasani CD. Bioactive Nutraceuticals for Brain Disorders. Series: New Developments in Medical Research. New York: Nova Science Publishers; 2021. Available from: https://novapublishers.com/shop/bioactive-nutraceuticals-for-brain-disorders/.

[9]Rakowski M, Porębski S, Grzelak A. Nutraceuticals as modulators of autophagy: relevance in parkinson’s disease. International Journal of Molecular Sciences. 2022; 23(7): 3625. doi: 10.3390/ijms23073625.

[10]Sergi CM. Epigallocatechin gallate for Parkinson’s disease. Clinical and Experimental Pharmacology & Physiology. 2022; 49(10):1029-1041. doi: 10.1111/1440-1681.13691.

[11]Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021; 397(10291):2284-2303. doi: 10.1016/S0140-6736(21)00218-X.

[12]Makkar R, Behl T, Bungau S, Zengin G, Mehta V, Kumar A, et al. Nutraceuticals in neurological disorders. International Journal of Molecular Sciences. 2020; 21(12): 4424. doi: 10.3390/ijms21124424.

[13]Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, et al. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of parkinson’s disease. International Journal of Molecular Sciences. 2022; 23(18):10808. doi: 10.3390/ijms231810808.

[14]Rathore AS, Birla H, Singh SS, Zahra W, Dilnashin H, Singh R, et al. Epigenetic modulation in parkinson’s disease and potential treatment therapies. Neurochemical Research. 2021; 46(7): 1618-1626. doi: 10.1007/s11064-021-03334-w.

[15]Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery & Psychiatry. 2020; 91(8): 795-808. doi: 10.1136/jnnp-2019-322338.

[16]Pyatha S, Kim H, Lee D, Kim K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel). 2022; 15; 11(12): 2467. doi: 10.3390/antiox11122467.

[17]Raj K, Kaur P, Gupta GD, Singh S. Metals associated neurodegeneration in Parkinson’s disease: Insight to physiological, pathological mechanisms and management. Neuroscience Letters. 2021; 753:135873. doi: 10.1016/j.neulet.2021.135873.

[18]Abbas Q, Yousaf B, Amina, Ali MU, Munir MAM, El-Naggar A, et al. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International. 2020; 138: 105646. doi: 10.1016/j.envint.2020.105646.

[19]Bisaglia M, Bubacco L. Copper ions and parkinson’s disease: why is homeostasis so relevant? Biomolecules. 2020; 10(2):195. doi: 10.3390/biom10020195.

[20]Lee C-P, Zhu C-H, Su C-C. Increased prevalence of Parkinson’s disease in soils with high arsenic levels. Parkinsonism & Related Disorders. 2021; 88:19-23. doi: 10.1016/j.parkreldis.2021.05.029.

[21]Chang MC, Kwak SG, Kwak S. Effect of dietary vitamins C and E on the risk of Parkinson’s disease: A meta-analysis. Clinical Nutrition. 2021; 40(6): 3922-3930. doi: 10.1016/j.clnu.2021.05.011.

[22]Chang K-H, Chen C-M. The role of oxidative stress in parkinson’s disease. Antioxidants (Basel). 2020; 9(7): 597. doi: 10.3390/antiox9070597.

[23]Pignolo A, Mastrilli S, Davì C, Arnao V, Aridon P, Dos Santos Mendes FA, et al. Vitamin D and parkinson’s disease. Nutrients. 2022;14(6):1220. doi: 10.3390/nu14061220.

[24]Wear D, Vegh C, Sandhu JK, Sikorska M, Cohen J, Pandey S. Ubisol-Q10, a Nanomicellar and Water-Dispersible Formulation of Coenzyme-Q10 as a Potential Treatment for Alzheimer’s and Parkinson’s Disease. Antioxidants (Basel). 2021; 10(5):764. doi: 10.3390/antiox10050764.

[25]Li P, Song C. Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutritional Neuroscience. 2022; 25(1):180-191. doi: 10.1080/1028415X.2020.1735143.

[26]Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective. 3 Biotech. 2020; 10(12): 522. doi: 10.1007/s13205-020-02532-7.

[27]Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, et al. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochemical Research. 2022; 47(7):1816-1829. doi: 10.1007/s11064-022-03591-3.

[28]Chiu H-F, Venkatakrishnan K, Wang C-K. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. Journal of Traditional and Complementary Medicine. 2020; 10(5): 434-439. doi: 10.1016/j.jtcme.2020.03.008.

[29]Dos Santos MG, Schimith LE, André-Miral C, Muccillo-Baisch AL, Arbo BD, Hort MA. Neuroprotective Effects of Resveratrol in In vivo and In vitro Experimental Models of Parkinson’s Disease: a Systematic Review. Neurotoxicity Research. 2022; 40(1): 319-345. doi: 10.1007/s12640-021-00450-x.

[30]Wang W-W, Han R, He H-J, Li J, Chen S-Y, Gu Y, et al. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging (Albany NY). 2021; 13(8): 11738-11751. doi: 10.18632/aging.202868.

[31]Yan Y-C, Xu Z-H, Wang J, Yu W-B. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson’s disease. Frontiers in Pharmacology. 2022; 13:1007556. doi: 10.3389/fphar.2022.1007556.

[32]Rodsiri R, Benya-aphikul H, Teerapattarakan N, Wanakhachornkrai O, Boonlert W, Tansawat R, et al. Neuroprotective Effect of Oxyresveratrol in Rotenone-Induced Parkinsonism Rats. Natural Product Communications. 2020;15(10). doi: 10.1177/1934578X20966199.

[33]Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, et al. Genistein: A focus on several neurodegenerative diseases. Journal of Food Biochemistry. 2022; 46(7): e14155. doi: 10.1111/jfbc.14155.

[34]Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic acid: from herbal medicine to clinical development for cancer and chronic diseases. Frontiers in Pharmacology. 2020; 11:151. 10.3389/fphar.2020.00151.

[35]Ren X, Chen J-F. Caffeine and parkinson’s disease: multiple benefits and emerging mechanisms. Frontiers in Neuroscience. 2020; 14:602697. doi: 10.3389/fnins.2020.602697.

[36]Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules. 2021; 26(4):1107. doi: 10.3390/molecules26041107.

[37]Dai C, Xiao X, Yuan Y, Sharma G, Tang S. A comprehensive toxicological assessment of fulvic acid. Evidence-Based Complementary and Alternative Medicine. 2020; 2020:8899244. doi: 10.1155/2020/8899244.

[38]Trotta T, Porro C, Cianciulli A, Panaro MA. Beneficial effects of spirulina consumption on brain health. Nutrients. 2022; 14(3):676. doi: 10.3390/nu14030676.

[39]Yuan Q, Li H, Wei Z, Lv K, Gao C, Liu Y, et al. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. International Journal of Biological Macromolecules. 2020; 163:2199-2209. doi: 10.1016/j.ijbiomac.2020.09.080.

[40]Bakshi R, Macklin EA, Hung AY, Hayes MT, Hyman BT, Wills A-M, et al. Associations of Lower Caffeine Intake and Plasma Urate Levels with Idiopathic Parkinson’s Disease in the Harvard Biomarkers Study. Journal of Parkinson's Disease. 2020; 10(2): 505-510. doi: 10.3233/JPD-191882.

[41]Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: an overview of its beneficial effects in experimental models and clinical trials of parkinson’s disease. International Journal of Molecular Sciences. 2020; 21(13): 4766. doi: 10.3390/ijms21134766.

[42]Parkinson Study Group QE3 Investigators, Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurology. 2014; 71(5): 543-552. doi: 10.1001/jamaneurol.2014.131.

[43]Müller T. The role of istradefylline in the Parkinson’s disease armamentarium. Expert Opinion on Pharmacotherapy. 2023; 24(7): 863-871. doi: 10.1080/14656566.2023.2201374.

[44]Zampese E, Surmeier DJ. Calcium, bioenergetics, and parkinson’s disease. Cells. 2020; 9(9): 2045. doi: 10.3390/cells9092045.

[45]Liu T-W, Chen C-M, Chang K-H. Biomarker of neuroinflammation in parkinson’s disease. International Journal of Molecular Sciences. 2022; 23(8):4148. doi: 10.3390/ijms23084148.

[46]Hargreaves I, Heaton RA, Mantle D. Disorders of human coenzyme Q10 metabolism: an overview. International Journal of Molecular Sciences. 2020; 21(18): 6695. doi: 10.3390/ijms21186695.

[47]Ashafaq M, Intakhab Alam M, Khan A, Islam F, Khuwaja G, Hussain S, et al. Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats. International Immunopharmacology. 2021; 94:107494. doi: 10.1016/j.intimp.2021.107494.

[48]Tian B, Liu J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. Journal of the Science of Food and Agriculture. 2020; 100(4):1392-1404. doi: 10.1002/jsfa.10152.

[49]Park H-A, Stumpf A, Broman K, Jansen J, Dunn T, Scott M, et al. Role of lycopene in mitochondrial protection during differential levels of oxidative stress in primary cortical neurons. Brain Disorders. 2021; 3:100016. doi: 10.1016/j.dscb.2021.100016.

[50]Percário S, da Silva Barbosa A, Varela ELP, Gomes ARQ, Ferreira MES, de Nazaré Araújo Moreira T, et al. Oxidative stress in parkinson’s disease: potential benefits of antioxidant supplementation. Oxidative Medicine and Cellular Longevity. 2020; 2020: 2360872. doi: 10.1155/2020/2360872.

[51]Elvers B, Hawkins S, Russey WE, Arpe H-J, Biekert E. Complete Set: Part A, Part B, And Index (37 Volumes), Ullmann’s Encyclopedia Of Industrial Chemistry, 5th Edition. Wiley-vch; 1997.

[52]Sanz FJ, Solana-Manrique C, Paricio N. Disease-modifying effects of Vincamine supplementation in Drosophila and human cell models of Parkinson’s disease. BioRxiv. 2022. doi: 10.1101/2022.12.28.522104.

[53]Dubey A., Kumar R., Kumar S., Kumar N., Mishra A., Singh Y. and Tiwari M. Review on Vinpocetine. International Journal of Pharmacy and Life Sciences. 2020; 11(5): 6590-6597.

[54]Zheng Q, Li L, Liu M, Huang B, Zhang N, Mehmood R, et al. In situ scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye disease therapy. Chemical Engineering Journal. 2020; 398:125621. doi: 10.1016/j.cej.2020.125621.

[55]Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias M de J, Montes-de-Oca-Luna R, Garcia-Garcia A, et al. Antioxidant therapeutics in parkinson’s disease: current challenges and opportunities. Antioxidants (Basel). 2021; 10(3): 453. doi: 10.3390/antiox10030453.

[56]Mou Z, Yuan Y-H, Zhang Z, Song L-K, Chen N-H. Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicology Letters. 2020; 324: 20-29. doi: 10.1016/j.toxlet.2020.01.019.

[57]Rankin L, Fowler CJ. The basal pharmacology of palmitoylethanolamide. International Journal of Molecular Sciences. 2020; 21(21):7942. doi: 10.3390/ijms21217942.

[58]Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients. 2021; 13(5): 1703. doi: 10.3390/nu13051703.

[59]Ahmed S, Hasan MM, Heydari M, Rauf A, Bawazeer S, Abu-Izneid T, et al. Therapeutic potentials of crocin in medication of neurological disorders. Food and Chemical Toxicology. 2020; 145:111739. doi: 10.1016/j.fct.2020.111739.

[60]Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. Journal of Food Biochemistry. 2022; 46(9): e14230. doi: 10.1111/jfbc.14230.

[61]Wang Y, Wei N, Li X. Preclinical Evidence and Possible Mechanisms of Baicalein for Rats and Mice With Parkinson’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Aging Neuroscience. 2020; 12. doi: 10.3389/fnagi.2020.00277.

[62]Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. Naunyn-Schmiedeberg's Archives of Pharmacology. 2020; 393(10):1779-1795. doi: 10.1007/s00210-020-01935-w.

[63]Xu Y, Tang G, Zhang C, Wang N, Feng Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules. 2021; 26(23):7115. doi: 10.3390/molecules26237115.

[64]Shabani S, Rabiei Z, Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: a review. International Journal of Food Properties. 2020; 23(1): 736-752. doi: 10.1080/10942912.2020.1753769.

[65]He Y-B, Liu Y-L, Yang Z-D, Lu J-H, Song Y, Guan Y-M, et al. Effect of ginsenoside-Rg1 on experimental Parkinson’s disease: A systematic review and meta-analysis of animal studies. Experimental and Therapeutic Medicine. 2021; 21(6): 552. doi: 10.3892/etm.2021.9984.

[66]Han Y, Wang T, Li C, Wang Z, Zhao Y, He J, et al. Ginsenoside Rg3 exerts a neuroprotective effect in rotenone-induced Parkinson’s disease mice via its anti-oxidative properties. European Journal of Pharmacology. 2021; 909:174413. doi: 10.1016/j.ejphar.2021.174413.

[67]Jin M, Wang C, Xu Y, Zhang Z, Wu X, Ye R, et al. Pharmacological effects of salidroside on central nervous system diseases. Biomedicine & Pharmacotherapy. 2022; 156: 113746. doi: 10.1016/j.biopha.2022.113746.

[68]Cao B, Zhang Y, Chen J, Wu P, Dong Y, Wang Y. Neuroprotective effects of liraglutide against inflammation through the AMPK/NF-κB pathway in a mouse model of Parkinson’s disease. Metabolic Brain Disease. 2022; 37(2):451-462. doi: 10.1007/s11011-021-00879-1.

[69]Su J, Zhang J, Bao R, Xia C, Zhang Y, Zhu Z, et al. Mitochondrial dysfunction and apoptosis are attenuated through activation of AMPK/GSK-3β/PP2A pathway in Parkinson’s disease. European Journal of Pharmacology. 2021; 907:174202. doi: 10.1016/j.ejphar.2021.174202.

[70]Chao J, Leung Y, Wang M, Chang RC-C. Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutrition Reviews. 2012; 70(7): 373-386. doi: 10.1111/j.1753-4887.2012.00484.x.

[71]Su J, Zhang J, Bao R, Xia C, Zhang Y, Zhu Z, et al. Mitochondrial dysfunction and apoptosis are attenuated through activation of AMPK/GSK-3β/PP2A pathway in Parkinson’s disease. European Journal of Pharmacology. 2021; 907: 174202. doi:10.1016/j.ejphar.2021.174202.

How to Cite

Vella, C., & Blundell, R. (2024). A review on the nutraceuticals of Parkinson’s disease. Journal of Food, Nutrition and Diet Science, 2(1), 51–65. https://doi.org/10.55976/fnds.22024124151-65
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.