Abhishek Bhattacharya 1 * , Rabi Ranjan Chattopadhyay 2
Correspondence: abhishekbhattacharya224@gmail.com
DOI: https://doi.org/10.55976/fnds.22024123129-40
Show More
[1]CC. Jacobsen, A.-D.M. Sørensen, N.S. Nielsen. 4 - Stabilization of omega-3 oils and enriched foods using antioxidants. In: Food Enrichment with Omega-3 Fatty Acids. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2013, p. 130-149. doi: 10.1533/9780857098863.2.130.
[2]P. Anbudhasan, A. Surendraraj, S. Karkuzhali, D. Ramasamy. Development of omega 3 fatty acid enriched stable functional foods: challenges and options. International Journal of Innovative Research and Review. 2014; 2 (1): 1-13.
[3]S. Sharma, S. Food preservatives and their harmful effects. International Journal of Scientific and research publication. 2015; 5(4): 1-2.
[4]LB. Chibane, P. Degraeve, H. Ferhout, J Bouajila, N Oulahal. Plant antimicrobial polyphenols as potential natural food preservatives. Journal of Science of Food and Agriculture. 2019; 99 (4): 1457-1474. doi: 10.1002/jsfa.9357.
[5]P.Martinengo, K. Arunachalam, K, C. ShI. Polyphenolic antibacterials for food preservation: Review, Challenges, and Current Applications. Foods. 2021; 10: 2469. doi :10.3390/foods10102469.
[6]C. Torres-Leon, N. Ramírez-Guzman, L. Londoño-Hernandez, GA. Martinez-Medina, R. Díaz- Herrera, V. Navarro-Macias, OB. Alvarez-Pérez, B. Picazo, M. Villarreal-Vazquez, J. Ascacio-Valdes, CN. Aguilar. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Frontier in Sustainable Food System. 2018; 2:1-17. doi: 10.3389/fsufs.2018.00052.
[7]H.Kumar, K. Bhardwaj, R. Sharma, E. Nepovimova, K.Kuca, DS. Daljeet, R. Verma, P. Bhardwaj, S.Sharma, & D.Kumar. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules. 2020; 25(12): 2812. doi: 10.3390/molecules25122812.
[8]SFK. Habeebullah, NS. Nielsen & C. Jacobsen. Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. Journal of the American Oil Chemists' Society. 2018; 87(11): 1319-1332. doi: 10.1007/s11746-010-1611-0.
[9]H. Akyol, Y. Riciputi, E. Capanoglu, MF. Caboni & V.Verardo. Phenolic compounds in the potato and its byproducts: An Overview. International Journal of Molecular Sciences. 2016; 17(6): 835-853. doi: 10.3390/ijms17060835.
[10]HY. Gebrechristos, X. Ma, F. Xiao, Y. He, S. Zheng, G. Oyungerel & W. Chen. Potato peel extracts as an antimicrobial and potential antioxidant in active edible film. Food Science and Nutrition. 2020; 12(8): 6338-6345. doi: 10.1002/fsn3.1119.
[11]A. Bhattacharya, S. Purkait, A. Bag, RR. Chattopadhyay. Evaluation of antimicrobial and antioxidant efficacy of hydro ethanol extract of peels of Kufri Chandramukhi, Kufri Chipsona-3, and Kufri Jyoti potato varieties alone and in combination. Journal of Food Safety. 2021; 41(4): e12901. doi:10.1111/jfs.12901.
[12]IM. Abu-Reidah, D. Arraez-Roman, A. Segura-Carretero & A. Fernández-Gutiérrez. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chemistry. 2013; 141(3): 2269-2277. doi : 10.1016/j.foodchem.2013.04.066.
[13]L. Gu, T. Wu, Z. Wang. TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT - Food Science and Technology. 2009; 42 (1):131-136. doi:10.1016/j.lwt.2008.04.006.
[14]K. Ali, A. Meredith, T. Wilkes. Techniques for analysis of plant phenolic compounds. Molecules. 2013; 18(2): 2328-2375. doi: 10.3390/molecules18022328.
[15]MM. Suleimana, LJ. McGaw, V. Naidoo, JN. Eloff. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. African Journal of Traditional, Complementary, and Alternative Medicines. 2010; 7(1): 64-78. doi :10.4314%2Fajtcam.v7i1.57269.
[16]M.Wang, J. Li, M. Rangarajan, Y. Shao, EJ. La Voie, T. Huang, C. Ho. Antioxidative phenolic compounds from Sage (Salvia officinalis). Journal of Agricultural Food and Chemistry. 1998; 46: 4869-4873. doi: 10.1021/jf980614b.
[17]I. Rodea-Palomares, AL. Petre, K. Boltes, F. Leganes, JA. Perdigon-Melon, R. Rosal & F. Fernandez-Pinas. Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Research. 2010; 44: 427-438. doi: 10.1016/j.watres.2009.07.026.
[18]TC.Chou, RJ. Motzer, Y. Tong & GJ. Bosl. Computerized quantitation of synergism and antagonism of taxol, topotecan and cesplantin against human tetra carcinoma cell growth: A rational approach to clinical protocol design. Journal of the National Cancer Institute. 1994; 86 (20): 1517-1524.
[19]G. Fiskesjo. The Allium test as a standard in environmental monitoring. Hereditas. 1985; 102: 99-112.
[20]CS. Ku, and SP. Mun. Characterization of Seed Oils from Fresh Bok Bunja (Rubus coreanus miq) and Wine Processing Waste. Bioresource Technology. 2007; 99: 4503-4509. doi : 10.1016/j.biortech.2007.08.063.
[21]Z. Jurasekova, C. Domingo, JV. García-Ramos, S. Sánchez-Cortés. Vibrational spectroscopy as an analytical tool in the identification and characterization of natural dyes employed in the cultural heritage. COALITION. 2017; (14). ISSN: 1579-8410. Available from: www.rtphc.csic.es/boletin.htm.
[22]R. Olivera, CM. Mancini, FCS. de Olivera, TM. Passos, B. Quilty et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro). 2016; 21(3): 767-779, doi: 10.1590/S1517-707620160003.0072.
[23]F. Qa'Dan, F. Petereit, A. Nahrstedt. Prodelphinidin trimers and characterization of a proanthocyanidin oligomer from Cistus albidus. Pharmazie. 2003; 58(6): 416-419.
[24]I. Macedo, JH. da Silva, PT. da Silva, BG. Cruz, JPC. do Vale et al. Structural and Microbiological Characterization of 5-Hydroxy-3,7,4'-Trimethoxyflavone: A Flavonoid Isolated from Vitex gardneriana Schauer Leaves. Microbial Drug Resistance. 2019; 25: 434-438. doi: 10.1089/mdr.2018.0359.
[25]D. Jimenez-Champia, L.F. Orejona, R., Moran-Reyesb, A., Muñoza, AM., and F. Ramos-Escudero. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA –Journal of Food. 2023; 21(1): 418-432. doi: 10.1080/19476337.2023.2213746.
[26]PL. Kowalczewski, A. Olejnik, S. Anna, AB. Wróbel, P. Kubiak, M. Kujawska & G. Lewandowicz. Bioactive compounds of potato (Solanum tuberosum L.) juice: from industry waste to food and medical applications. Critical Reviews in Plant Sciences. 2022; 41(1). doi : 10.1080/07352689.2022.2057749.
[27]D. Jimenez-Champi, ROL. Frank, A. Moran-Reyes, A. María Muñoz, F. Ramos-Escudero. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA - Journal of Food. 2023; 21(1): 418-43, doi : 10.1080/19476337.2023.2213746.
[28]M. Olszowy, AL. Dawidowicz, MJ. Dolęba. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids. European Food Research and Technology. 2019; (245):1473-1485. doi : 10.1007/s00217-019-03255-7.
[29]A. Bhattacharya, S. Purkait, A. Bag, RR. Chattopadhyay. Chemical profiling, cytotoxicity study and assessment of antioxidant potential of hydro‑ethanol extract of peels of some selected varieties of potato in various in vitro models and in lipid substrate enriched with omega‑3 fatty acids. European Food Research and Technology. 2020; (246):1469-1482. doi :10.1007/s00217-020-03504-0.
[30]Y. Mcgaw, E. Elgorashi, JN. Eloff. Cytotoxicity of African medicinal plants against normal animal and human cells. Toxicological Survey of African Medicinal Plants. 2014; doi: 10.1016/B978-0-12-800018-2.00008-X.
[31]AFC. Valdes, JM. Martinez, RS. Lizama, YG. Gaiten, DA. Rodriguez, JA. Payrol. In-vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Revista do Instituto de Medicina Tropical de São Paulo. 2010; 52 (4): 197-201, doi: 10.1590/S0036-46652010000400006.
[32]SS.Khora, KK. Panda, BB. Panda. Genotoxicity of tetrodotoxin from puffer fish tested in root meristem cells of Allium cepa. Mutagenesis. 1997; 12(4): 265-269, doi: 10.1093/mutage/12.4.265.
[33]PL.Webster RD. MacLeod. The root apical meristem and its magrin. In: Waishel Y, Eshel A., Kafkafi U. (eds.) Plant Roots- the Hidden Half. 2nd edition. New York, USA: Marcel Dekker; 1997. 51-76.
[34]S. Vijayarathna, S. Sasidharan. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pacific Journal of Tropical Biomedicine. 2012; 22(10) :826-829. doi: 10.1016%2FS2221-1691(12)60237-8.
[35]ST. Sriwiriyajan, T. Ninpesh, Y. Sukpondma, T. Nasomyon, P. Graidist. Cytotoxicity screening of plants of genus Piper in breast cancer cell lines. Tropical Journal of Pharmaceutical Research. 2014; 13: 921-928. doi: 10.4314/tjpr.v13i6.14.
Copyright © 2024 Abhishek Bhattacharya, Rabi Ranjan Chattopadhyay
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn