George Kaliampos 1 , Michalis Ioannou 2 , Panagiotis Pantidos 3 , Konstantinos Ravanis 4 *
Correspondence: ravanis@upatras.gr
DOI: https://doi.org/10.55976/rppe.3202513061-8
Show More
[1]Akerson, V. L. (2019). Teaching and learning science in early childhood care and education. In C. P., Brown, M. Benson McMullen & N. File (Eds.), The Wiley Handbook of Early Childhood Care and Education (pp. 355-376). Medford MA, USA: John Wiley & Sons, Inc.
[2]Amorín de Abreu, T., Lorenzo Rial, M. A., Álvarez Lires, M. M., & Álvarez Lires, F. J. (2022). Jugando con el agua en un aula de Educación Infantil para explicar cambios de estado. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 19(3). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2022.v19.i3.3203.
[3]Ampatzidis, G., & Tsevreni, I. (2024). Investigating early childhood education students' ideas about microorganisms. International Journal of Science Education, 1-13. https://doi.org/10.1080/09500693.2024.2400316.
[4]Australian Government, Department of Education, Skills and Employment. (2010). Belonging, Being & Becoming - The Early Years Learning Framework for Australia. https://bit.ly/2yCuGTb.
[5]Barenthien, J., & Steffensky, M. (2023). Übersichtsartikel: Interventionsstudien zu naturwissenschaftlichen lernumgebungen im kindergarten: empirische zugänge und befunde. Psychologie in Erziehung und Unterricht, 70(4), 257-292. http://dx.doi.org/10.2378/peu2023.art17d.
[6]Begacarslan, E., Azahin, F., Azenel,B., Kazmaz, E., & Burasin, Z. (2021). Developing STEM skills with water games in early childhood. International Journal of Learning and Teaching, 13(4), 184-203. https://doi.org/10.18844/ijlt.v13i4.5407.
[7]Canedo-Ibarra, S. P. Castelló-Escandell J., & García-Wehrle P. (2010) Enseñanza-aprendizaje de las ciencias en educación infantil: la construcción de modelos científicos precursores. Revista d'Innovació i Recerca en Educació, 3(1), 29-45. http://www.raco.cat/index.php/REIRE.
[8]Cruz-Guzmán, M., García-Carmona, A., Criado, A. M., (2017) Aprendiendo sobre los cambios de estado en educación infantil mediante secuencias de pregunta–predicción– comprobación experimental. Enseñanza de las Ciencias, 35(3), 175-193. https://doi.org/10.5565/rev/ensciencias.2336.
[9]Christidou, V. (2006). Accounting for natural phenomena. International Journal of Learning, 12(8), 22-28.
[10]Christodoulakis, N., & Adbo, K. (2024). An analysis of the development of preschoolers' natural science concepts from the perspective of framework theory. Education Sciences, 14, 126. https://doi.org/10.3390/educsci14020126.
[11]Draganoudi, A., Lavidas, K., Kaliampos, G., & Ravanis, K. (2023). Developing a research instrument to record preschool teachers' beliefs about teaching practices in natural sciences. South African Journal of Education, 43(1), 2031. https://doi.org/10.15700/saje.v43n1a2031.
[12]Elmalı, Ş., & Laçin Şimşek, C. (2021). Pre-school children's opinions about the concepts of floating and sinking and the effect of in-class interactions on their opinions. Hacettepe University Journal of Education, 36(1), 227-238. https://doi.org/10.16986/HUJE.2020058755.
[13]Ergazaki, M., & Zogza, V. (2012). How does the model of inquiry-based science education work in the kindergarten: the case of biology. Review of Science, Mathematics and ICT Education, 7(2), 73-97.
[14]Fragkiadaki, G. (2020). Conflicts during science concept formation in early childhood: barriers or turning points? Review of Science, Mathematics and ICT Education, 14(1), 113-128. https://doi.org/10.26220/rev.3367.
[15]Fragkiadaki, G., & Ravanis, K. (2016). Genetic research methodology meets early childhood science education research: a cultural-historical study of child's scientific thinking development. Cultural-Historical Psychology, 12(3), 310-330.
[16]García-Rodeja, I., Barros, S., & Sesto, V. (2024). Inquiry-based activities with woodlice in early childhood education. Education Sciences, 14, 710. https://doi.org/10.3390/educsci14070710.
[17]García-Rodeja, I., Rodríguez Rouco, E. V., Lorenzo Flores, M., & Sesto Varela, V. (2023). Construyendo modelos precursores sobre la flotabilidad de objetos macizos a los seis años. Enseñanza de las Ciencias, 41(2), 137-154. https://doi.org/10.5565/rev/ensciencias.5718.
[18]Greek Ministry of National Education and Religious Affairs - Greek Pedagogical Institute. (2002). Cross-thematic curriculum framework for the kindergarten and curriculum for activities' development. Athens: Greek Pedagogical Institute. http://www.pi-schools.gr/programs/depps.
[19]Hsin, C. T., Wu, H. K., Tam Luu, D., & Wei, M. E. (2024). Fostering young children’s scientific practices in urban and Indigenous areas: An investigation of instructional strategies. International Journal of Science Education, 1–25. https://doi.org/10.1080/09500693.2024.2343437.
[20]Hu, J., Gordon, C., Yang, N., & Ren, Y. (2021). “Once upon a star”: a science education program based on personification storytelling in promoting preschool children's understanding of Astronomy concepts. Early Education and Development, 32(1), 7-25. https://doi.org/10.1080/10409289.2020.1759011.
[21]Impedovo, M. A., Delserieys-Pedregosa, A., Jégou, C., & Ravanis, K. (2017). Shadow formation at preschool from a socio-materiality perspective. Research in Science Education, 47(3), 579-601. https://doi.org/10.1007/s11165-016-9518-x
[22]Ioannou, M. (2023). Ice melting in early childhood education: a case of the designing and implementing a STEAM project about water state changes. Mediterannean Journal of Education, 3, 164-175. https://doi.org/10.26220/mje.4478
[23]Ioannou, M., Kaliampos, G., Fragkiadaki, G., Pantidos, P., & Ravanis, K. (2023). Thermal concepts and phenomena in early childhood science education: a literature review. European Journal of Education Studies, 10(5), 1-12. http://dx.doi.org/10.46827/ejes.v10i5.4770.
[24]Irish Government (2009). Early Childhood Curriculum Framework. https://bit.ly/2VbzkyY.
[25]Jégou, C., Gobert, J., Delserieys, A., & Ergazaki, M. (2022). A system to identify young children's reasoning about variations within populations. In J.-M. Boilevin, A. Delserieys, K. Ravanis (Eds.), Precursor Models for Teaching and Learning Science During Early Childhood (pp. 193-217). Springer, Cham. https://doi.org/10.1007/978-3-031-08158-3_11.
[26]Jelinek, J. A. (2022). Dziecięca meteorologia. Rozumienie przez dzieci zjawisk pogodowych w różnych częściach świata. Edukacja Elementarna w Teorii i Praktyce, 17, 25-38. https://doi.org/10.35765/eetp.2022.1764.02.9.
[27]Jelinek, J. A. (2024). From the spherical Earth model to the Globe: The effectiveness of a planetary model-building intervention. Education Sciences, 14, 761. https://doi.org/10.3390/educsci14070761.
[28]Kaliampos, G. (2021). Early childhood special science education: setting the frame of a newly born and well-promising trend? Review of Science, Mathematics and ICT Education, 15(2), 61-76. https://doi.org/10.26220/rev.3795.
[29]Kaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: mental representations in 5-6 years old children's thinking. Jurnal Ilmiah Pendidikan Fisika ''Al-BiRuNi'', 8(1), 1-9. https://doi.org/10.24042/jipfalbiruni.v8i1.3737.
[30]Kampeza M., & Delserieys A. (2020). Acknowledging drawing as a mediating system for young children's ideas concerning change of state of matter. Review of Science, Mathematics and ICT Education, 14(2), 105-124. https://doi.org/10.26220/rev.3512.
[31]Kampeza, M., & Ravanis, K. (2012). Children's understanding of the earth's shape: an instructional approach in early education. Skholê, 17, 115-120. https://www.researchgate.net/publication/236256493_Kampeza_M_Ravanis_K_2012_Children's_understanding_of_the_earth's_shape_an_instructional_approach_in_early_education_Skhole_17_115-120.
[32]Ouabich, R., Tifroute, L., & Rafouk, L. (2024). Effectiveness of an inquiry-based science program on enhancing science process skills and knowledge among Moroccan preschool children. International Journal of Educational Methodology, 10(4), 543-558. https://doi.org/10.12973/ijem.10.4.543.
[33]Papantonis Stajcic, M., & Nilsson, P. (2024). Teachers' considerations for a digitalised learning context of preschool science. Research in Science Education, 54, 499-521. https://doi.org/10.1007/s11165-023-10150-5.
[34]Ravanis, K. (2020). Precursor models of the physical sciences in early childhood education students' thinking. Science Education Research and Praxis, 76, 24-31.
[35]Ravanis, K. (2021). The physical sciences in early childhood education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092. https://doi.org/10.1088/1742-6596/1796/1/012092.
[36]Ravanis, K. (2022). Research trends and development perspectives in early childhood science education: Αn overview. Education Sciences, 12(7), 456. https://doi.org/10.3390/educsci12070456.
[37]Ravanis, K., & Boilevin, J.-M. (2022). What use is a precursor model in early science teaching and learning? Didactic perspectives. In J.-M. Boilevin, A. Delserieys & K. Ravanis (Eds.), Precursor Models for teaching and learning Science during early childhood (pp. 33-49). Springer.
[38]Ravanis, K. Charalampopoulou, C. Boilevin, J.-M., & Bagakis, G. (2005). La construction de la formation des ombres chez la pensée des enfants de 5-6 ans : procédures didactiques sociocognitives. Revue de Recherches en Éducation : Spirale, 36, 87-98. https://www.persee.fr/doc/spira_0994-3722_2005_num_36_1_1327.
[39]Raviv, A., & Dadon, M. (2021). Teaching astronomy in kindergarten: children's perceptions and projects. Athens Journal of Education, 8, 305-328. https://doi.org/10.30958/aje.8-3-4.
[40]Siry, C., Trundle, K. C., & Saçkes, M. (2023). Science education during the early childhood years. In N. G. Lederman, D. L. Zeidler & J. S. Lederman (Eds.), Handbook of Research on Science Education (Vol. III, pp. 499-527). Routledge.
[41]Smith, L. L., & Samarakoon, D. (2017). Teaching kindergarten students about the Water Cycle through arts and invention. Journal of STEM Arts, Craft, and Constructions, 2(1), 60-78. https://scholarworks.uni.edu/journal-stem-arts/vol2/iss1/5/.
[42]Tetik, G., & Tetik, M. (2024). Measuring water saving awareness in preschool children. Education Science and Management, 2(2), 94-100. https://doi.org/10.56578/esm020203
[43]Ursavaş, N., & Aytar, A. (2018). Analysing pre-school students' water awareness and water literacy development in a project-based study. Journal of Research in Informal Environments, 3(1), 19-45. https://dergipark.org.tr/en/pub/jrinen/issue/39907/400194.
[44]UK Government, Early years foundation stage statutory framework. (2017). Statutory framework for the early years foundation stage. Setting the standards for learning, development and care for children from birth to five. https://bit.ly/3bTHcfd.
[45]Yurt Tarakcı, O., Keleş, S., & Kolemen, E. B. (2020). Preschool teachers' science talks during picture storybook telling. Journal of Baltic Science Education, 19(6), 940-953. https://doi.org/10.33225/jbse/20.19.940.
[46]Wei, A. S., & Karpudewan, M. (2018). Effects of social and emotional learning on disadvantaged year 1 pupils' understanding of sinking and floating concepts. Eurasia Journal of Mathematics, Science and Technology Education, 14(6), 2609-2622. https://doi.org/10.29333/ejmste/90258.
Copyright © 2025 George Kaliampos, Michalis Ioannou, Panagiotis Pantidos, Konstantinos Ravanis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn