Make Knowledge Veritable, Visible and Valuable.

Exploring the bioactive compounds derived from Plumula Nelumbinis and potential targets for the treatment of non-small cell lung cancer: A network pharmacology study

Minghui Chang 1 , Siyu Chen 2 , Changhao Li 3 , Yuhan Zhang 4 , Hong Zhao 5 *

  • 1. Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
  • 2. Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
  • 3. Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
  • 4. Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong, China
  • 5. Department of Radiation Therapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

Correspondence: zhaohong-vivi@whu.edu.cn

DOI: https://doi.org/10.55976/jcd.1202219630-48

  • Received

    01 July 2022

  • Revised

    08 August 2022

  • Accepted

    15 August 2022

  • Published

    19 August 2022

Plumula nelumbinis NSCLC Network pharmacology Molecular docking

Show More

Abstract


References
V

[1]Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2018;68(6):394-424. doi:10.3322/caac.21492 .

[2]Siegel, R. L., Miller, K. D., Fuchs, H. E. et al. Cancer Statistics, 2021. CA: a Cancer Journal for Clinicians. 2021;71(1):7-33. doi:10.3322/caac.21654.

[3]Fois S S, Paliogiannis P, Zinellu A, et al. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. International Journal of Molecular Sciences. 2021;22(2): 612. doi:10.3390/ijms22020612.

[4]Gupta S C, Prasad S, Sethumadhavan D R, et al. Nimbolide, a Limonoid Triterpene, Inhibits Growth of Human Colorectal Cancer Xenografts by Suppressing the Proinflammatory Microenvironment Nimbolide Inhibits Colorectal Cancer Growth. Clinical Cancer Research. 2013;19(16):4465-4476. doi:10.1158/1078-0432.CCR-13-0080 .

[5]Ting C T, Kuo C J, Hu H Y, et al. Prescription frequency and patterns of Chinese herbal medicine for liver cancer patients in Taiwan: a cross-sectional analysis of the National Health Insurance Research Database. BMC Complementary and Alternative Medicine. 2017;17(1):1-11. doi:10.1186/s12906-017-1628-0.

[6]Chung T W, Choi H, Lee J M, et al. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells. Journal of Ethnopharmacology. 2017;195: 309-317.doi:10.1016/j.jep.2016.11.036 .

[7]Song Y H, Jeong S J, Kwon H Y, et al. Ursolic acid from Oldenlandia diffusa induces apoptosis via activation of caspases and phosphorylation of glycogen synthase kinase 3 beta in SK-OV-3 ovarian cancer cells. Biological and Pharmaceutical Bulletin. 2012; 35(7): 1022-1028.doi:10.1248/bpb.b110660 .

[8]Song X, Xie L, Chang M, et al. Temozolomide–perillyl alcohol conjugate downregulates O6-methylguanin DNA methltransferase via inducing ubiquitination-dependent proteolysis in non-small cell lung cancer. Cell Death & Disease. 2018; 9(2): 1-10.doi:10.1038/s41419-017-0193-2 .

[9]Chen S, Li X, Wu J, et al. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. Journal of Ethnopharmacology. 2021;266: 113429. doi:10.1016/j.jep.2020.113429.

[10]Zhang X, Wang X, Wu T, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Scientific Reports. 2015; 5(1): 1-13. doi:10.1038/srep12579 .

[11]Zhou J, Li G, Zheng Y, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11(8): 1259-1279. doi:10.1080/15548627.2015.1056970.

[12]Qi Q, Li R, Li H, et al. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacologica Sinica. 2016; 37(7): 963-972. doi:10.1038/aps.2016.53.

[13]Hopkins A L. Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology. 2008;4(11): 682-690. doi:10.1038/nchembio.118.

[14]Wan Y, Xu L, Liu Z, et al. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms. BMC Complementary and Alternative Medicine. 2019;19(1): 1-12. doi:10.1186/s12906-019-2580-y.

[15]Li J, Guo C, Lu X, et al. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: study of molecular networks. European Journal of Pharmacology. 2019; 858: 172483. doi:10.1016/j.ejphar.2019.172483.

[16]Shen C, Zhang Z, Xie T, et al. Rhein suppresses lung inflammatory injury induced by human respiratory syncytial virus through inhibiting NLRP3 inflammasome activation via NF-κB pathway in mice. Frontiers in Pharmacology. 2020;10: 1600. doi:10.3389/fphar.2019.01600.

[17]Dong Y, Yang J, Yang L, et al. Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: the key role of Src-mediated fibroblast growth factor-inducible 14 (Fn14)/nuclear factor kappa B (NF-κB) pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2020; 26: e920537-1. doi:10.12659/MSM.920537.

[18]Wu B, Xiong J, Zhou Y, et al. Luteolin enhances TRAIL sensitivity in non-small cell lung cancer cells through increasing DR5 expression and Drp1-mediated mitochondrial fission. Archives of Biochemistry and Biophysics. 2020; 692: 108539. doi:10.1016/j.abb.2020.108539.

[19]Fouzder C, Mukhuty A, Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Archives of Biochemistry and Biophysics.2021; 697: 108700. doi:10.1016/j.abb.2020.108700.

[20]Fischer R, Marsal J, Guttà C, et al. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Scientific Reports. 2017; 7(1): 1-13. doi:10.1038/s41598-017-06993-4.

[21]Sethi G, Sung B, Aggarwal B B. TNF: a master switch for inflammation to cancer. Frontiers in Bioscience-Landmark. 2008; 13(13): 5094-5107. doi:10.2741/3066.

[22]Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008; 454(7203): 436-444. doi:10.1038/nature07205.

[23]Chen W, Dai X, Chen Y, et al. Significance of STAT3 in immune infiltration and drug response in cancer. Biomolecules. 2020;10(6): 834. doi:10.3390/biom10060834.

[24]Duan W, Chen J, Wu Y, et al. Protective effect of higenamine ameliorates collageninduced arthritis through heme oxygenase1 and PI3K/Akt/Nrf2 signaling pathways. Experimental and Therapeutic Medicine. 2016;12(5): 3107-3112. doi:10.3892/etm.2016.3730.

[25]Wu H, Yang Y, Guo S, et al. Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Frontiers in Pharmacology. 2017; 8: 939. doi:10.3389/fphar.2017.00939.

[26]Yang L, Shen L, Li Y, et al. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. Journal of Inflammation. 2017; 14(1): 1-10. doi:10.1186/s12950-017-0172-5.

[27]Chen G L, Fan M X, Wu J L, et al. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chemistry. 2019; 277: 706-712. doi:10.1016/j.foodchem.2018.11.040.

[28]Bauer S, Adrian N, Siebenborn U, et al. Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8. Cancer Immunity. 2009; 9(1).

[29]Smith W L, Langenbach R. Why there are two cyclooxygenase isozymes. The Journal of Clinical Investigation. 2001; 107(12): 1491-1495. doi:10.1172/JCI13271.

[30]Wolff H, Saukkonen K, Anttila S, et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Research.1998; 58(22): 4997-5001.

[31]Guo S, Li X, Gao M, et al. Synergistic association of PTGS2 and CYP2E1 genetic polymorphisms with lung cancer risk in northeastern Chinese. PLoS One. 2012; 7(6): e39814. doi: 10.1371/journal.pone.0039814.

[32]Baumann S, Hess J, Eichhorst S T, et al. An unexpected role for FosB in activation-induced cell death of T cells. Oncogene. 2003; 22(9): 1333-1339. doi:10.1038/sj.onc.1206126.

[33]Manios K, Tsiambas E, Stavrakis I, et al. c-Fos/c-Jun transcription factors in non-small cell lung carcinoma. Journal of BUON. 2020; 25(5): 2141-2143.

[34]Silva E M, Mariano V S, Pastrez P R A, et al. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PloS One. 2017; 12(7): e0181125. doi:10.1371/journal.pone.0181125.

[35]Yang Y, Wang W, Chang H, et al. Reciprocal regulation of miR‐206 and IL‐6/STAT3 pathway mediates IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer cells. Journal of Cellular and Molecular Medicine. 2019; 23(11): 7331-7341. doi:10.1111/jcmm.14592.

[36]Miliani de Marval P L, Macias E, Conti C J, et al. Enhanced malignant tumorigenesis in Cdk4 transgenic mice. Oncogene. 2004; 23(10): 1863-1873. doi:10.1038/sj.onc.1207309 (2004).

[37]Wikman H, Nymark P, Väyrynen A, et al. CDK4 is a probable target gene in a novel amplicon at 12q13. 3–q14. 1 in lung cancer. Genes. Chromosomes and Cancer. 2005; 42(2): 193-199. doi:10.1002/gcc.20122.

[38]Wu A, Wu B, Guo J, et al. Elevated expression of CDK4 in lung cancer. Journal of Translational Medicine. 2011; 9(1): 1-9. doi:10.1186/1479-5876-9-38.

[39]Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics. 2014; 6(1): 1-6. doi:10.1186/1758-2946-6-13.

[40]Varma M V S, Obach R S, Rotter C, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. Journal of Medicinal Chemistry. 2010;53(3): 1098-1108. doi:10.1021/jm901371v.

[41]Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. Journal of Ethnopharmacology. 2013;145(1): 1-10. doi:10.1016/j.jep.2012.09.051.

[42]Yang H, Zhang W, Huang C, et al. A novel systems pharmacology model for herbal medicine injection: a case using reduning injection. BMC Complementary and Alternative Medicine. 2014; 14(1): 1-19. doi:10.1186/1472-6882-14-430.

[43]Hu X, Guo Z, Zhou B, et al. Quantitative determination of neferine in plumula Nelumbinis by thin layer chromatography scanning. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 1997; 22(1): 41-2, 62.

[44]Liu W, Wang H J, Si N, et al. Study on preparation technology of plumula nelumbinis alkaloid dripping pill and determination of content by HPLC. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2007; 32(7): 581-584.

[45]Liu J, He Y, Gao S, et al. Study on content determination of alkaloids and HPLC fingerprint of" Jianlian" Nelumbinis Plumula. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica. 2015;40(16): 3239-3244.

[46]Yang Y, Li X Z, Zhang Q H, et al. Studies on the chemical components of Nelumbinis Plumula and the inhibitory activity on protein disulfide isomerase. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2017; 42(15): 3004-3010. doi:10.19540/j.cnki.cjcmm.20170512.002 .

[47]Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic acids research. 2019; 47(D1): D1102-D1109. doi:10.1093/nar/gky1033.

[48]Szklarczyk D, Santos A, Von Mering C, et al. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Research. 2016; 44(D1): D380-D384. doi:10.1093/nar/gkv1277.

[49]UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 2019;47(D1): D506-D515. doi:10.1093/nar/gky1049.

[50]Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-140. doi:10.1093/bioinformatics/btp616.

[51]Li R, Qu H, Wang S, et al. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics. 2018; 34(14): 2515-2517.doi:10.1093/bioinformatics/bty124.

[52]Szklarczyk D, Morris J H, Cook H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research. 2016; gkw937.doi:10.1093/nar/gkw937.

[53]Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11): 2498-2504. doi:10.1101/gr.1239303.

[54]Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols.2009; 4(1): 44-57. doi:10.1038/nprot.2008.211 .

[55]Burley S K, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research. 2021; 49(D1): D437-D451. doi:10.1093/nar/gkaa1038.

[56]Mooers B H M. Shortcuts for faster image creation in PyMOL. Protein Science. 2020;29(1): 268-276. doi:10.1002/pro.3781.

[57]Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009; 30(16): 2785-2791. doi:10.1002/jcc.21256.

[58]Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2): 455-461. doi:10.1002/jcc.21334.

[59]Győrffy B, Surowiak P, Budczies J, et al. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PloS One. 2013; 8(12): e82241. doi:10.1371/journal.pone.0082241.

How to Cite

Chang, M., S. . Chen, C. Li, Y. Zhang, and H. Zhao. “Exploring the Bioactive Compounds Derived from Plumula Nelumbinis and Potential Targets for the Treatment of Non-Small Cell Lung Cancer: A Network Pharmacology Study”. Journal of Cancer Discovery, vol. 1, no. 1, Aug. 2022, pp. 30-48, doi:10.55976/jcd.1202219630-48.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.