Minghui Chang 1 , Siyu Chen 2 , Changhao Li 3 , Yuhan Zhang 4 , Hong Zhao 5 *
Correspondence: zhaohong-vivi@whu.edu.cn
DOI: https://doi.org/10.55976/jcd.1202219630-48
Show More
[1]Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2018;68(6):394-424. doi:10.3322/caac.21492 .
[2]Siegel, R. L., Miller, K. D., Fuchs, H. E. et al. Cancer Statistics, 2021. CA: a Cancer Journal for Clinicians. 2021;71(1):7-33. doi:10.3322/caac.21654.
[3]Fois S S, Paliogiannis P, Zinellu A, et al. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. International Journal of Molecular Sciences. 2021;22(2): 612. doi:10.3390/ijms22020612.
[4]Gupta S C, Prasad S, Sethumadhavan D R, et al. Nimbolide, a Limonoid Triterpene, Inhibits Growth of Human Colorectal Cancer Xenografts by Suppressing the Proinflammatory Microenvironment Nimbolide Inhibits Colorectal Cancer Growth. Clinical Cancer Research. 2013;19(16):4465-4476. doi:10.1158/1078-0432.CCR-13-0080 .
[5]Ting C T, Kuo C J, Hu H Y, et al. Prescription frequency and patterns of Chinese herbal medicine for liver cancer patients in Taiwan: a cross-sectional analysis of the National Health Insurance Research Database. BMC Complementary and Alternative Medicine. 2017;17(1):1-11. doi:10.1186/s12906-017-1628-0.
[6]Chung T W, Choi H, Lee J M, et al. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells. Journal of Ethnopharmacology. 2017;195: 309-317.doi:10.1016/j.jep.2016.11.036 .
[7]Song Y H, Jeong S J, Kwon H Y, et al. Ursolic acid from Oldenlandia diffusa induces apoptosis via activation of caspases and phosphorylation of glycogen synthase kinase 3 beta in SK-OV-3 ovarian cancer cells. Biological and Pharmaceutical Bulletin. 2012; 35(7): 1022-1028.doi:10.1248/bpb.b110660 .
[8]Song X, Xie L, Chang M, et al. Temozolomide–perillyl alcohol conjugate downregulates O6-methylguanin DNA methltransferase via inducing ubiquitination-dependent proteolysis in non-small cell lung cancer. Cell Death & Disease. 2018; 9(2): 1-10.doi:10.1038/s41419-017-0193-2 .
[9]Chen S, Li X, Wu J, et al. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. Journal of Ethnopharmacology. 2021;266: 113429. doi:10.1016/j.jep.2020.113429.
[10]Zhang X, Wang X, Wu T, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Scientific Reports. 2015; 5(1): 1-13. doi:10.1038/srep12579 .
[11]Zhou J, Li G, Zheng Y, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11(8): 1259-1279. doi:10.1080/15548627.2015.1056970.
[12]Qi Q, Li R, Li H, et al. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacologica Sinica. 2016; 37(7): 963-972. doi:10.1038/aps.2016.53.
[13]Hopkins A L. Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology. 2008;4(11): 682-690. doi:10.1038/nchembio.118.
[14]Wan Y, Xu L, Liu Z, et al. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms. BMC Complementary and Alternative Medicine. 2019;19(1): 1-12. doi:10.1186/s12906-019-2580-y.
[15]Li J, Guo C, Lu X, et al. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: study of molecular networks. European Journal of Pharmacology. 2019; 858: 172483. doi:10.1016/j.ejphar.2019.172483.
[16]Shen C, Zhang Z, Xie T, et al. Rhein suppresses lung inflammatory injury induced by human respiratory syncytial virus through inhibiting NLRP3 inflammasome activation via NF-κB pathway in mice. Frontiers in Pharmacology. 2020;10: 1600. doi:10.3389/fphar.2019.01600.
[17]Dong Y, Yang J, Yang L, et al. Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: the key role of Src-mediated fibroblast growth factor-inducible 14 (Fn14)/nuclear factor kappa B (NF-κB) pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2020; 26: e920537-1. doi:10.12659/MSM.920537.
[18]Wu B, Xiong J, Zhou Y, et al. Luteolin enhances TRAIL sensitivity in non-small cell lung cancer cells through increasing DR5 expression and Drp1-mediated mitochondrial fission. Archives of Biochemistry and Biophysics. 2020; 692: 108539. doi:10.1016/j.abb.2020.108539.
[19]Fouzder C, Mukhuty A, Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Archives of Biochemistry and Biophysics.2021; 697: 108700. doi:10.1016/j.abb.2020.108700.
[20]Fischer R, Marsal J, Guttà C, et al. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Scientific Reports. 2017; 7(1): 1-13. doi:10.1038/s41598-017-06993-4.
[21]Sethi G, Sung B, Aggarwal B B. TNF: a master switch for inflammation to cancer. Frontiers in Bioscience-Landmark. 2008; 13(13): 5094-5107. doi:10.2741/3066.
[22]Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008; 454(7203): 436-444. doi:10.1038/nature07205.
[23]Chen W, Dai X, Chen Y, et al. Significance of STAT3 in immune infiltration and drug response in cancer. Biomolecules. 2020;10(6): 834. doi:10.3390/biom10060834.
[24]Duan W, Chen J, Wu Y, et al. Protective effect of higenamine ameliorates collageninduced arthritis through heme oxygenase1 and PI3K/Akt/Nrf2 signaling pathways. Experimental and Therapeutic Medicine. 2016;12(5): 3107-3112. doi:10.3892/etm.2016.3730.
[25]Wu H, Yang Y, Guo S, et al. Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Frontiers in Pharmacology. 2017; 8: 939. doi:10.3389/fphar.2017.00939.
[26]Yang L, Shen L, Li Y, et al. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. Journal of Inflammation. 2017; 14(1): 1-10. doi:10.1186/s12950-017-0172-5.
[27]Chen G L, Fan M X, Wu J L, et al. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chemistry. 2019; 277: 706-712. doi:10.1016/j.foodchem.2018.11.040.
[28]Bauer S, Adrian N, Siebenborn U, et al. Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8. Cancer Immunity. 2009; 9(1).
[29]Smith W L, Langenbach R. Why there are two cyclooxygenase isozymes. The Journal of Clinical Investigation. 2001; 107(12): 1491-1495. doi:10.1172/JCI13271.
[30]Wolff H, Saukkonen K, Anttila S, et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Research.1998; 58(22): 4997-5001.
[31]Guo S, Li X, Gao M, et al. Synergistic association of PTGS2 and CYP2E1 genetic polymorphisms with lung cancer risk in northeastern Chinese. PLoS One. 2012; 7(6): e39814. doi: 10.1371/journal.pone.0039814.
[32]Baumann S, Hess J, Eichhorst S T, et al. An unexpected role for FosB in activation-induced cell death of T cells. Oncogene. 2003; 22(9): 1333-1339. doi:10.1038/sj.onc.1206126.
[33]Manios K, Tsiambas E, Stavrakis I, et al. c-Fos/c-Jun transcription factors in non-small cell lung carcinoma. Journal of BUON. 2020; 25(5): 2141-2143.
[34]Silva E M, Mariano V S, Pastrez P R A, et al. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PloS One. 2017; 12(7): e0181125. doi:10.1371/journal.pone.0181125.
[35]Yang Y, Wang W, Chang H, et al. Reciprocal regulation of miR‐206 and IL‐6/STAT3 pathway mediates IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer cells. Journal of Cellular and Molecular Medicine. 2019; 23(11): 7331-7341. doi:10.1111/jcmm.14592.
[36]Miliani de Marval P L, Macias E, Conti C J, et al. Enhanced malignant tumorigenesis in Cdk4 transgenic mice. Oncogene. 2004; 23(10): 1863-1873. doi:10.1038/sj.onc.1207309 (2004).
[37]Wikman H, Nymark P, Väyrynen A, et al. CDK4 is a probable target gene in a novel amplicon at 12q13. 3–q14. 1 in lung cancer. Genes. Chromosomes and Cancer. 2005; 42(2): 193-199. doi:10.1002/gcc.20122.
[38]Wu A, Wu B, Guo J, et al. Elevated expression of CDK4 in lung cancer. Journal of Translational Medicine. 2011; 9(1): 1-9. doi:10.1186/1479-5876-9-38.
[39]Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics. 2014; 6(1): 1-6. doi:10.1186/1758-2946-6-13.
[40]Varma M V S, Obach R S, Rotter C, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. Journal of Medicinal Chemistry. 2010;53(3): 1098-1108. doi:10.1021/jm901371v.
[41]Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. Journal of Ethnopharmacology. 2013;145(1): 1-10. doi:10.1016/j.jep.2012.09.051.
[42]Yang H, Zhang W, Huang C, et al. A novel systems pharmacology model for herbal medicine injection: a case using reduning injection. BMC Complementary and Alternative Medicine. 2014; 14(1): 1-19. doi:10.1186/1472-6882-14-430.
[43]Hu X, Guo Z, Zhou B, et al. Quantitative determination of neferine in plumula Nelumbinis by thin layer chromatography scanning. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 1997; 22(1): 41-2, 62.
[44]Liu W, Wang H J, Si N, et al. Study on preparation technology of plumula nelumbinis alkaloid dripping pill and determination of content by HPLC. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2007; 32(7): 581-584.
[45]Liu J, He Y, Gao S, et al. Study on content determination of alkaloids and HPLC fingerprint of" Jianlian" Nelumbinis Plumula. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica. 2015;40(16): 3239-3244.
[46]Yang Y, Li X Z, Zhang Q H, et al. Studies on the chemical components of Nelumbinis Plumula and the inhibitory activity on protein disulfide isomerase. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2017; 42(15): 3004-3010. doi:10.19540/j.cnki.cjcmm.20170512.002 .
[47]Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic acids research. 2019; 47(D1): D1102-D1109. doi:10.1093/nar/gky1033.
[48]Szklarczyk D, Santos A, Von Mering C, et al. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Research. 2016; 44(D1): D380-D384. doi:10.1093/nar/gkv1277.
[49]UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 2019;47(D1): D506-D515. doi:10.1093/nar/gky1049.
[50]Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-140. doi:10.1093/bioinformatics/btp616.
[51]Li R, Qu H, Wang S, et al. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics. 2018; 34(14): 2515-2517.doi:10.1093/bioinformatics/bty124.
[52]Szklarczyk D, Morris J H, Cook H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research. 2016; gkw937.doi:10.1093/nar/gkw937.
[53]Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11): 2498-2504. doi:10.1101/gr.1239303.
[54]Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols.2009; 4(1): 44-57. doi:10.1038/nprot.2008.211 .
[55]Burley S K, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research. 2021; 49(D1): D437-D451. doi:10.1093/nar/gkaa1038.
[56]Mooers B H M. Shortcuts for faster image creation in PyMOL. Protein Science. 2020;29(1): 268-276. doi:10.1002/pro.3781.
[57]Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009; 30(16): 2785-2791. doi:10.1002/jcc.21256.
[58]Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2): 455-461. doi:10.1002/jcc.21334.
[59]Győrffy B, Surowiak P, Budczies J, et al. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PloS One. 2013; 8(12): e82241. doi:10.1371/journal.pone.0082241.
Copyright © 2022 Minghui Chang, Siyu Chen, Changhao Li, Yuhan Zhang, Hong Zhao
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn