Make Knowledge Veritable, Visible and Valuable.

Advances in research on glioma microenvironment and immunotherapeutic targets

Aiwei Tang 1 , Jianhao Liang 2 , Yiying Mai 3 , Haitao Sun 4 *

  • 1. Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
  • 2. Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
  • 3. Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
  • 4. Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain–Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.

Correspondence: msunhaitao1988@126.com

DOI: https://doi.org/10.55976/jcd.1202218514-29

  • Received

    08 June 2022

  • Revised

    26 July 2022

  • Accepted

    01 August 2022

  • Published

    04 August 2022

Tumor microenvironment Glioma Metabolic remodeling

Show More

Abstract

Introduction


Conclusion

References
V

[1]Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal Of Medicine. 2005;352(10): 987-996. doi: 10.1056/NEJMoa043330.

[2]Ostrom QT, Patil N, Cioffi G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro-oncology. 2020; 22(Supplement_1):iv1-iv96. doi: 10.1093/neuonc/noaa200.

[3]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica. 2007;114(2):97-109. doi: 10.1007/s00401-007-0243-4.

[4]Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 2016;131(6):803-820. doi: 10.1007/s00401-016-1545-1.

[5]Klemm F, Maas RR, Bowman RL, et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell. 2020;181(7):1643-1660. e17. doi: 10.1016/j.cell.2020.05.007.

[6]Friebel E, Kapolou K, Unger S, et al. Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of Tissue-Invading Leukocytes. Cell. 2020;181(7): 1626-1642. e20. doi: 10.1016/j.cell.2020.04.055.

[7]Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017; 31(3):326-341. doi: 10.1016/j.ccell.2017.02.009.

[8]Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature. 2020;582(7813): 571-576. doi: 10.1038/s41586-020-2316-7.

[9]Bowman RL, Klemm F, Akkari L, et al. Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports. 2016;17(9): 2445-2459. doi: 10.1016/j.celrep.2016.10.052.

[10]Müller S, Kohanbash G, Liu SJ, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biology. 2017;18(1): 1-14. doi: 10.1186/s13059-017-1362-4.

[11]Chen Z, Feng X, Herting CJ, et al. Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research. 2017;77(9): 2266-2278. doi: 10.1158/0008-5472.CAN-16-2310.

[12]Pinton L, Masetto E, Vettore M, et al. The immune suppressive microenvironment of human gliomas depends on the accumulation of bone marrow-derived macrophages in the center of the lesion. Journal For Immunotherapy Of Cancer. 2019;7(1): 1-14. doi: 10.1186/s40425-019-0536-x.

[13]Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology. 2011;11(11): 775-787. doi: 10.1038/nri3086.

[14]Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8(12): 958-969. doi: 10.1038/nri2448.

[15]Yeo ECF, Brown MP, Gargett T, et al. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells. 2021;10(3): 607. doi: 10.3390/cells10030607.

[16]Zhang Y, Yu G, Chu H, et al. Macrophage-Associated PGK1 Phosphorylation Promotes Aerobic Glycolysis and Tumorigenesis. Molecular Cell. 2018;71(2): 201-215. e7. doi: 10.1016/j.molcel.2018.06.023.

[17]Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell. 2021;39(6): 779-792. e11. doi: 10.1016/j.ccell.2021.05.002.

[18]Yu-Ju Wu C, Chen CH, Lin CY, et al. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro-oncology. 2020;22(2): 253-266. doi: 10.1093/neuonc/noz189.

[19]Vidyarthi A, Agnihotri T, Khan N, et al. Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Cancer Immunology, Immunotherapy. 2019;68(12): 1995-2004. doi: 10.1007/s00262-019-02423-8.

[20]Zhang Y, Xie Y, He L, et al. 1p/19q co-deletion status is associated with distinct tumor-associated macrophage infiltration in IDH mutated lower-grade gliomas. Cellular Oncology. 2021;44(1): 193-204. doi: 10.1007/s13402-020-00561-1.

[21]Shi Y, Ping YF, Zhou W, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nature Communications. 2017;8(1): 1-17. doi: 10.1038/ncomms15080.

[22]Ye XZ, Xu SL, Xin YH, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. The Journal of Immunology. 2012;189(1): 444-453. doi: 10.4049/jimmunol.1103248.

[23]Sa JK, Chang N, Lee HW, et al. Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology. 2020;21(1): 1-17. doi: 10.1186/s13059-020-02140-x.

[24]Zhang Z, Xu J, Chen Z, et al. Transfer of MicroRNA via Macrophage-Derived Extracellular Vesicles Promotes Proneural-to-Mesenchymal Transition in Glioma Stem Cells. Cancer Immunology Research. 2020; 8(7): 966-981. doi: 10.1158/2326-6066.CIR-19-0759.

[25]Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology. 2015;17(2): 170-182. doi: 10.1038/ncb3090.

[26]Wei J, Marisetty A, Schrand B, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. The Journal of Clinical Investigation. 2019;129(1): 137-149. doi: 10.1172/JCI121266.

[27]Liao X, Bu Y, Xu Z, et al. WISP1 Predicts Clinical Prognosis and Is Associated With Tumor Purity, Immunocyte Infiltration, and Macrophage M2 Polarization in Pan-Cancer. Frontiers in Genetics. 2020;11: 502. doi: 10.3389/fgene.2020.00502.

[28]Zhou C, Ma L, Xu H, et al. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity. Cell Research. 2022;32(6): 543-554. doi: 10.1038/s41422-022-00639-5.

[29]Tao W, Chu C, Zhou W, et al. Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nature Communications. 2020;11(1): 1-16. doi: 10.1038/s41467-020-16827-z.

[30]Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine. 2013; 19(10): 1264-1272. doi: 10.1038/nm.3337.

[31]Coniglio SJ, Eugenin E, Dobrenis K, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Molecular Medicine. 2012;18(3): 519-527. doi: 10.2119/molmed.2011.00217.

[32]Quail DF, Bowman RL, Akkari L, et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. 2016;352(6288): aad3018. doi: 10.1126/science.aad3018.

[33]Zhai K, Huang Z, Huang Q, et al. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nature Cancer. 2021; 2(11): 1136-1151. doi: 10.1038/s43018-021-00267-9.

[34]von Roemeling CA, Wang Y, Qie Y, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nature Communications. 2020;11(1): 1-12. doi: 10.1038/s41467-020-15129-8.

[35]Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nature Biotechnology. 2020;38(8): 947-953. doi: 10.1038/s41587-020-0462-y.

[36]Woroniecka KI, Rhodin KE, Chongsathidkiet P, et al. T-cell Dysfunction in Glioblastoma: Applying a New Framework. Clinical Cancer Research. 2018;24(16): 3792-3802. doi: 10.1158/1078-0432.CCR-18-0047.

[37]Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature Immunology. 2019; 20(9): 1100-1109. doi: 10.1038/s41590-019-0433-y.

[38]Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nature Medicine. 2018;24(9): 1459-1468. doi: 10.1038/s41591-018-0135-2.

[39]Tai X, Van Laethem F, Pobezinsky L, et al. Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood, The Journal of the American Society of Hematology. 2012;119(22): 5155-5163. doi: 10.1182/blood-2011-11-388918.

[40]DiDomenico J, Lamano JB, Oyon D, et al. The immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. Oncoimmunology. 2018;7(7): e1448329. doi: 10.1080/2162402X.2018.1448329.

[41]Peng Q, Qiu X, Zhang Z, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nature Communications. 2020;11(1): 1-8. doi: 10.1038/s41467-020-18570-x.

[42]Chang AL, Miska J, Wainwright DA, et al. CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells. Cancer Research. 2016;76(19): 5671-5682. doi: 10.1158/0008-5472.CAN-16-0144.

[43]Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clinical Cancer Research. 2012;18(22): 6110-6121. doi: 10.1158/1078-0432.CCR-12-2130.

[44]Reardon DA, Brandes AA, Omuro A, et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology. 2020; 6(7): 1003-1010. doi: 10.1001/jamaoncol.2020.1024.

[45]Han S, Ma E, Wang X, et al. Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients. Oncology Letters. 2016;12(4): 2924-2929. doi: 10.3892/ol.2016.4944.

[46]Philip M, Fairchild L, Sun L, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017;545(7655): 452-456. doi: 10.1038/nature22367.

[47]Barresi V, Simbolo M, Mafficini A, et al. Ultra-Mutation in IDH Wild-Type Glioblastomas of Patients Younger than 55 Years is Associated with Defective Mismatch Repair, Microsatellite Instability, and Giant Cell Enrichment. Cancers. 2019;11(9): 1279. doi: 10.3390/cancers11091279.

[48]Chen D, Li G, Ji C, et al. Enhanced B7-H4 expression in gliomas with low PD-L1 expression identifies super-cold tumors. Journal for Immunotherapy of Cancer. 2020; 8(1). doi: 10.1136/jitc-2019-000154.

[49]Mathewson ND, Ashenberg O, Tirosh I, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell. 2021;184(5): 1281-1298. e26. doi: 10.1016/j.cell.2021.01.022.

[50]Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine. 2019;25(3): 477-486. doi: 10.1038/s41591-018-0337-7.

[51]Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nature Medicine. 2019;25(3): 470-476. doi: 10.1038/s41591-018-0339-5.

[52]O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine. 2017; 9(399): eaaa0984. doi: 10.1126/scitranslmed.aaa0984.

[53]Ahmed N, Brawley V, Hegde M, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncology.2017;3(8): 1094-1101. doi: 10.1001/jamaoncol.2017.0184.

[54]Wang D, Prager BC, Gimple RC, et al. CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discovery. 2021;11(5): 1192-1211. doi: 10.1158/2159-8290.CD-20-1243.

[55]Shaul M E, Fridlender Z G. Cancer related circulating and tumor-associated neutrophils -subtypes, sources and function. The FEBS Journal. 2018;285(23): 4316-4342.

[56]Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nature Reviews Cancer. 2020;20(9): 485-503. doi: 10.1038/s41568-020-0281-y.

[57]Yee PP, Wei Y, Kim SY, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nature Communications. 2020;11(1): 1-22. doi: 10.1038/s41467-020-19193-y.

[58]Rahbar A, Cederarv M, Wolmer-Solberg N, et al. Enhanced neutrophil activity is associated with shorter time to tumor progression in glioblastoma patients. Oncoimmunology2016; 5(2): e1075693. doi: 10.1080/2162402X.2015.1075693.

[59]Amankulor NM, Kim Y, Arora S, et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes & Development. 2017;31(8): 774-786. doi: 10.1101/gad.294991.116.

[60]Wang Q, Hu B, Hu X, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell. 2017;32(1): 42-56. e6. doi: 10.1016/j.ccell.2017.06.003.

[61]Liang J, Piao Y, Holmes L, et al. Neutrophils Promote the Malignant Glioma Phenotype through S100A4. Clinical Cancer Research. 2014; 20(1): 187-198. doi: 10.1158/1078-0432.CCR-13-1279.

[62]Sippel T R, White J, Nag K, et al. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clinical Cancer Research. 2011;17(22): 6992-7002. doi: 10.1158/1078-0432.CCR-11-1107.

[63]Zhang H, Li Z, Gao C, et al. Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics. 2021;6(52): eaaz9519. doi: 10.1126/scirobotics.aaz9519.

[64]Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials. 2021;273: 120784. doi: 10.1016/j.biomaterials.2021.120784.

[65]Wang J, Liu P, Xin S, et al. Nrf2 suppresses the function of dendritic cells to facilitate the immune escape of glioma cells. Experimental Cell Research. 2017;360(2): 66-73. doi: 10.1016/j.yexcr.2017.07.031.

[66]Yan J, Zhao Q, Gabrusiewicz K, et al. FGL2 promotes tumor progression in the CNS by suppressing CD103(+) dendritic cell differentiation. Nature Communications. 2019;10(1): 1-15. doi: 10.1038/s41467-018-08271-x.

[67]Yan J, Kong LY, Hu J, et al. FGL2 as a Multimodality Regulator of Tumor-Mediated Immune Suppression and Therapeutic Target in Gliomas. JNCI: Journal of the National Cancer Institute. 2015;107(8). doi: 10.1093/jnci/djv137.

[68]Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. Journal Of Translational Medicine. 2018; 16(1): 1-9. doi: 10.1186/s12967-018-1507-6.

[69]Yao Y, Luo F, Tang C, et al. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunology, Immunotherapy. 2018;67(11):1777-1788. doi: 10.1007/s00262-018-2232-y.

[70]Liu H, Chen L, Liu J, et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Letters. 2017, 411: 182-190. doi: 10.1016/j.canlet.2017.09.022.

[71]Mitchell DA, Batich KA, Gunn MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015; 519(7543): 366-369. doi: 10.1038/nature14320.

[72]Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clinical Reviews in Allergy & Immunology. 2020; 58(3): 313-325. doi: 10.1007/s12016-019-08753-w.

[73]Polajeva J, Sjosten AM, Lager N, et al. Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. Plos One. 2011; 6(9): e25222. doi: 10.1371/journal.pone.0025222.

[74]Roy A, Coum A, Marinescu VD, et al. Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells. Oncotarget. 2015; 6(27): 23647. doi: 10.18632/oncotarget.4640.

[75]Roy A, Attarha S, Weishaupt H, et al. Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression. Oncotarget. 2017; 8(15): 24815. doi: 10.18632/oncotarget.15820.

[76]Põlajeva J, Bergström T, Edqvist PH, et al. Glioma-derived macrophage migration inhibitory factor (MIF) promotes mast cell recruitment in a STAT5-dependent manner. Molecular Oncology. 2014;8(1): 50-58. doi: 10.1016/j.molonc.2013.09.002.

[77]Attarha S, Roy A, Westermark B, et al. Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3β expression and inhibition of STAT3 activation. Cellular Signalling.2017;37: 81-92. doi: 10.1016/j.cellsig.2017.06.004.

[78]Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010; 330(6005): 774-778. doi: 10.1126/science.1190928.

[79]Sofroniew MV. Astrogliosis. Cold Spring Harbor Perspectives in Biology. 2015;7(2): a020420.

[80]Nieland L, Morsett LM, Broekman MLD, et al. Extracellular Vesicle-Mediated Bilateral Communication between Glioblastoma and Astrocytes. Trends in Neurosciences. 2021; 44(3): 215-226. doi: 10.1016/j.tins.2020.10.014.

[81]Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry. 2006;98(3): 641-653. doi: 10.1111/j.1471-4159.2006.03913.x.

[82]Grimaldi A, D'Alessandro G, Di Castro MA, et al. Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Scientific Reports. 2018; 8(1): 1-14. doi: 10.1038/s41598-018-25940-5.

[83]Henrik Heiland D, Ravi VM, Behringer SP, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nature Communications. 2019; 10(1): 1-12. doi: 10.1038/s41467-019-10493-6.

[84]Colangelo NW, Azzam EI. Extracellular vesicles originating from glioblastoma cells increase metalloproteinase release by astrocytes: the role of CD147 (EMMPRIN) and ionizing radiation. Cell Communication and Signaling.2020; 18(1): 1-14. doi: 10.1186/s12964-019-0494-4.

[85]Berg TJ, Marques C, Pantazopoulou V, et al. The irradiated brain microenvironment supports glioma stemness and survival via astrocyte-derived Transglutaminase 2. Cancer Research. 2021;81(8): 2101-2115. doi: 10.1158/0008-5472.CAN-20-1785.

[86]Yin J, Oh YT, Kim JY, et al. Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling. Cancer Research. 2017;77(18): 4973-4984. doi: 10.1158/0008-5472.CAN-17-0388.

[87]Rajappa P, Cobb WS, Vartanian E, et al. Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clinical Cancer Research. 2017; 23(12): 3109-3119. doi: 10.1158/1078-0432.CCR-16-1508.

[88]Monje M, Borniger JC, D'Silva NJ, et al. Roadmap for the Emerging Field of Cancer Neuroscience. Cell. 2020;181(2): 219-222. doi: 10.1016/j.cell.2020.03.034.

[89]Venkatesh HS, Johung TB, Caretti V, et al. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell. 2015; 161(4): 803-816. doi: 10.1016/j.cell.2015.04.012.

[90]Venkatesh HS, Tam LT, Woo PJ, et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 2017;549(7673): 533-537. doi: 10.1038/nature24014.

[91]Pan Y, Hysinger JD, Barron T, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 2021; 594(7862): 277-282. doi: 10.1038/s41586-021-03580-6.

[92]Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019; 573(7775): 532-538. doi: 10.1038/s41586-019-1564-x.

[93]Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775): 539-545. doi: 10.1038/s41586-019-1563-y.

[94]Yu K, Lin CJ, Hatcher A, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature.2020;578(7793): 166-171. doi: 10.1038/s41586-020-1952-2.

[95]Chen P, Wang W, Liu R, et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature. 2022; 1-7. doi: 10.1038/s41586-022-04719-9.

[96]Daneman R, Prat A. The Blood-Brain Barrier. Cold Spring Harbor Perspectives in Biology. 2015; 7(1): a020412. doi: 10.1101/cshperspect.a020412.

[97]Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nature Reviews Cancer. 2020; 20(1): 26-41. doi: 10.1038/s41568-019-0205-x.

[98]Sarkaria JN, Hu LS, Parney IF, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-oncology. 2018; 20(2): 184-191. doi: 10.1093/neuonc/nox175.

[99]Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016; 29(4): 508-522. doi: 10.1016/j.ccell.2016.03.002.

[100]Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Advanced Drug Delivery Reviews. 2022; 114115. doi: 10.1016/j.addr.2022.114115.

[101]van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates. 2015; 19: 1-12. doi: 10.1016/j.drup.2015.02.002.

[102]Zhou W, Chen C, Shi Y, et al. Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy. Cell Stem Cell. 2017; 21(5): 591-603. e4. doi: 10.1016/j.stem.2017.10.002.

[103]Argaw AT, Gurfein BT, Zhang Y, et al. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proceedings of the National Academy of Sciences. 2009;106(6): 1977-1982. doi: 10.1073/pnas.0808698106.

[104]Argaw AT, Asp L, Zhang J, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. The Journal of Clinical Investigation. 2012; 122(7): 2454-2468. doi: 10.1172/JCI60842.

[105]Steeg PS. The blood-tumour barrier in cancer biology and therapy. Nature Reviews Clinical Oncology. 2021;18(11): 696-714. doi: 10.1038/s41571-021-00529-6.

[106]Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Molecular Neurobiology. 2020;57(5): 2461-2478. doi: 10.1007/s12035-020-01892-8.

[107]Chen X, Yang F, Zhang T, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. Journal of Experimental & Clinical Cancer Research. 2019;38(1): 1-16. doi: 10.1186/s13046-019-1078-2.

[108]Wang ZF, Liao F, Wu H, et al. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. Journal of Experimental & Clinical Cancer Research. 2019; 38(1): 1-15. doi: 10.1186/s13046-019-1181-4.

[109]Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1): 139-152. doi: 10.1016/j.cell.2013.02.021.

[110]Perus LJM, Walsh LA. Microenvironmental Heterogeneity in Brain Malignancies. Frontiers in Immunology. 2019;10: 2294. doi: 10.3389/fimmu.2019.02294.

[111]Polivka J, Jr., Pesta M, Pitule P, et al. IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget. 2018; 9(23): 16462-16476. doi: 10.18632/oncotarget.24536.

[112]Gargini R, Segura-Collar B, Herránz B, et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Science Translational Medicine. 2020;12(527): eaax1501. doi: 10.1126/scitranslmed.aax1501.

[113]Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience. 2006;7(1): 41-53. doi: 10.1038/nrn1824.

[114]Trédan O, Galmarini CM, Patel K, et al. Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute. 2007; 99(19): 1441-1454. doi: 10.1093/jnci/djm135.

[115]Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology. 2009;27(28): 4733-4740. doi: 10.1200/JCO.2008.19.8721.

[116]Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. New England Journal of Medicine. 2014; 370(8): 709-722. doi: 10.1056/NEJMoa1308345.

[117]Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. New England Journal of Medicine. 2014; 370(8): 699-708. doi: 10.1056/NEJMoa1308573.

[118]Bentolila LA, Prakash R, Mihic-Probst D, et al. Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways. Scientific Reports. 2016; 6(1): 1-11. doi: 10.1038/srep23834.

[119]Lorger M, Felding-Habermann B. Capturing Changes in the Brain Microenvironment during Initial Steps of Breast Cancer Brain Metastasis. The American Journal of Pathology. 2010; 176(6): 2958-2971. doi: 10.2353/ajpath.2010.090838.

[120]Kienast Y, von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine. 2010; 16(1): 116-122. doi: 10.1038/nm.2072.

[121]Nguyen DX, Chiang AC, Zhang XHF, et al. WNT/TCF Signaling through LEF1 and HOXB9 Mediates Lung Adenocarcinoma Metastasis. Cell. 2009;138(1): 51-62. doi: 10.1016/j.cell.2009.04.030.

[122]Seano G, Jain RK. Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis. 2020; 23(1): 9-16. doi: 10.1007/s10456-019-09691-z.

[123]Zhang C, Chen WL, Zhang X, et al. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes. Scientific Reports. 2016; 6(1): 1-11. doi: 10.1038/srep23056.

[124]Rupp T, Langlois B, Koczorowska MM, et al. Tenascin-C Orchestrates Glioblastoma Angiogenesis by Modulation of Pro- and Anti-angiogenic Signaling. Cell Reports. 2016;17(10): 2607-2619. doi: 10.1016/j.celrep.2016.11.012.

[125]Angel I, Pilo Kerman O, Rousso-Noori L, et al. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene. 2020; 39(46): 6990-7004. doi: 10.1038/s41388-020-01506-6.

[126]Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010; 468(7325): 824-828. doi: 10.1038/nature09557.

[127]Wang R, Chadalavada K, Wilshire J, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010; 468(7325): 829-833. doi: 10.1038/nature09624.

[128]Zhang X, Zhang J, Zhou H, et al. Molecular Mechanisms and Anticancer Therapeutic Strategies in Vasculogenic Mimicry. Journal of Cancer. 2019; 10(25): 6327 -6340. doi: 10.7150/jca.34171. .

[129]Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi: 10.1038/nature14432.

[130]Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine. 2015; 212(7): 991-999. doi: 10.1084/jem.20142290.

[131]Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels. Journal of Experimental Medicine. 2017; 214(12): 3645-3667. doi: 10.1084/jem.20170391.

[132]Absinta M, Ha SK, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017; 6: e29738. doi: 10.7554/eLife.29738.

[133]Yağmurlu K, Sokolowski JD, Çırak M, et al. Anatomical Features of the Deep Cervical Lymphatic System and Intrajugular Lymphatic Vessels in Humans. Brain Sciences. 2020;10(12): 953. doi: 10.3390/brainsci10120953.

[134]Hu X, Deng Q, Ma L, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Research. 2020; 30(3): 229-243. doi: 10.1038/s41422-020-0287-8.

[135]Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020; 577(7792): 689-694. doi: 10.1038/s41586-019-1912-x.

[136]Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia. 2018; 66(8): 1542-1565. doi: 10.1002/glia.23309.

[137]Mohiuddin E, Wakimoto H. Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. American Journal of Cancer Research. 2021; 11(8): 3742 -3754.

[138]Cox TR. The matrix in cancer. Nature Reviews Cancer. 2021; 21(4): 217-238.

[139]Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. Heparanase. 2020; 365-403. doi: 10.1007/978-3-030-34521-1_14.

[140]Khoonkari M, Liang D, Kamperman M, et al. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics. 2022; 14(5): 1031. doi: 10.3390/pharmaceutics14051031.

[141]Miroshnikova YA, Mouw JK, Barnes JM, et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nature Cell Biology. 2016; 18(12): 1336-1345. doi: 10.1038/ncb3429. Epub 2016 Nov 7.

[142]Chen X, Wanggou S, Bodalia A, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018; 100(4): 799-815. e7. doi: 10.1016/j.neuron.2018.09.046.

[143]So JS, Kim H, Han KS. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca(2+) Signaling, and Glutamate. Frontiers in Cellular Neuroscience. 2021; 190. doi: 10.3389/fncel.2021.663092.

[144]Zhou P, Erfani S, Liu Z, et al. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget. 2015; 6(30): 29675. doi: 10.18632/oncotarget.4896.

[145]Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012; 483(7390): 479-483. doi: 10.1038/nature10866.

[146]Miller JJ, Loebel F, Juratli TA, et al. Accelerated progression of IDH mutant glioma after first recurrence. Neuro-oncology. 2019; 21(5): 669-677. doi: 10.1093/neuonc/noz016.

[147]Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009; 462(7274): 739-744. doi: 10.1038/nature08617.

[148]Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011; 19(1): 17-30. doi: 10.1016/j.ccr.2010.12.014.

[149]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009; 324(5924): 261-265. doi: 10.1126/science.1170944.

[150]Tang F, Pan Z, Wang Y, et al. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neuroscience Bulletin. 2022;1-16. doi: 10.1007/s12264-022-00866-1.

[151]Poon CC, Gordon PMK, Liu K, et al. Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget. 2019;10(33): 3129 -3143. doi: 10.18632/oncotarget.26863.

[152]Friedrich M, Sankowski R, Bunse L, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nature Cancer. 2021; 2(7): 723-740. doi: 10.1038/s43018-021-00201-z.

[153]Richardson LG, Nieman LT, Stemmer-Rachamimov AO, et al. IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncoimmunology. 2020; 9(1): 1806662. doi: 10.1080/2162402X.2020.1806662.

[154]Ren F, Zhao Q, Huang L, et al. The R132H mutation in IDH1 promotes the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis and is correlated with a better prognosis in gliomas. Immunology and Cell Biology. 2019; 97(5): 457-469. doi: 10.1111/imcb.12225.

[155]Kohanbash G, Carrera DA, Shrivastav S, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. The Journal of Clinical Investigation. 2017; 127(4): 1425-1437. doi: 10.1172/JCI90644.

[156]Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nature Medicine. 2018; 24(8): 1192-1203. doi: 10.1038/s41591-018-0095-6.

[157]Bi J, Chowdhry S, Wu S, et al. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer. 2020; 20(1): 57-70. doi: 10.1038/s41568-019-0226-5.

[158]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-674.. doi: 10.1016/j.cell.2011.02.013.

[159]Scharping NE, Menk AV, Moreci RS, et al. The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity. 2016; 45(2): 374-388. doi: 10.1016/j.immuni.2016.07.009.

[160]Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. Journal of Experimental Medicine. 2011; 208(2): 313-326. doi: 10.1084/jem.20101470.

[161]Lee JH, Liu R, Li J, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nature Communications. 2017; 8(1): 1-14. doi: 10.1038/s41467-017-00906-9.

[162]Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021; 591(7851): 645-651. doi: 10.1038/s41586-020-03045-2.

[163]Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014; 513(7519): 559-563. doi: 10.1038/nature13490. Epub 2014 Jul 13.

[164]Proescholdt MA, Merrill MJ, Stoerr EM, et al. Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro-oncology. 2012; 14(11): 1357-1366. doi: 10.1093/neuonc/nos216.

[165]Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle. 2004; 3(2): 159-162.

[166]Cui J, Zhang Q, Song Q, et al. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro-oncology. 2019;21(11): 1436-1446. doi: 10.1093/neuonc/noz117.

[167]Lin H, Patel S, Affleck VS, et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncology. 2017;19(1): 43-54. doi: 10.1093/neuonc/now128.

[168]Juraszek B, Czarnecka-Herok J, Nałęcz KA. Glioma cells survival depends both on fatty acid oxidation and on functional carnitine transport by SLC22A5. Journal of Neurochemistry. 2021;156(5): 642-657. doi: 10.1111/jnc.15124.

[169]Reinfeld BI, Madden MZ, Wolf MM, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021; 593(7858): 282-288. doi: 10.1038/s41586-021-03442-1.

[170]Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019; 366(6468): 1013-1021. doi: 10.1126/science.aav2588.

[171]Sadik A, Somarribas Patterson LF, Öztürk S, et al. IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell. 2020; 182(5): 1252-1270. e34. doi: 10.1016/j.cell.2020.07.038.

[172]Takenaka MC, Gabriely G, Rothhammer V, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nature Neuroscience. 2019; 22(5): 729-740. doi: 10.1038/s41593-019-0370-y.

[173]Visweswaran M, Arfuso F, Warrier S, et al. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Stem Cells. 2020; 38(1): 6-14. doi: 10.1002/stem.3101.

[174]Boya P, Codogno P, Rodriguez-Muela N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development. 2018; 145(4): dev146506. doi: 10.1242/dev.146506.

[175]Viale A, Pettazzoni P, Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014; 514(7524): 628-632. doi: 10.1038/nature13611.

[176]Bugge A, Feng D, Everett LJ, et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes & Development. 2012;26(7): 657-667. doi: 10.1101/gad.186858.112.

[177]Sulli G, Rommel A, Wang X, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018; 553(7688): 351-355. doi: 10.1038/nature25170.

[178]Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190): 1396-1401. doi: 10.1126/science.1254257.

[179]Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. Jama. 2017; 318(23): 2306-2316. doi: 10.1001/jama.2017.18718.

[180]Lombardi G, De Salvo GL, Brandes AA, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. The Lancet Oncology. 2019; 20(1): 110-119. doi: 10.1016/S1470-2045(18)30675-2.

[181]Narita Y, Arakawa Y, Yamasaki F, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro-oncology. 2019; 21(3): 348-359. doi: 10.1093/neuonc/noy200.

How to Cite

Tang, A., J. . Liang, Y. . Mai, and H. Sun. “Advances in Research on Glioma Microenvironment and Immunotherapeutic Targets”. Journal of Cancer Discovery, vol. 1, no. 1, Aug. 2022, pp. 14-29, doi:10.55976/jcd.1202218514-29.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.