Make Knowledge Veritable, Visible and Valuable.

Cancer cell-derived exosomes as the delivery vehicle of paclitaxel to inhibit cancer cell growth

Rajashekhar Kanchanapally 1 * , Kristen D. Brown 2

  • 1. Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
  • 2. Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA

Correspondence: rajashekhar.a312@gmail.com

DOI: https://doi.org/10.55976/jcd.1202217549-58

  • Received

    22 May 2022

  • Revised

    03 August 2022

  • Accepted

    16 August 2022

  • Published

    31 August 2022

Exosomes Vesicles Breast cancer Cancer therapy Paclitaxel Drug delivery

Show More

Abstract


References
V

[1]Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.

[2]Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2021;71(3): 209-249. doi: 10.3322/caac.21660.

[3]Campos F C, Victorino V J, Martins-Pinge M C, et al. Systemic toxicity induced by paclitaxel in vivo is associated with the solvent cremophor EL through oxidative stress-driven mechanisms. Food and Chemical Toxicology. 2014;68: 78-86.doi: 10.1016/j.fct.2014.03.013.

[4]Huang S T, Wang Y P, Chen Y H, et al. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. International Journal of Oncology. 2018; 53(3): 1105-1117. doi: 10.3892/ijo.2018.4449.

[5]Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communication. 2018; 9(1): 1-12. doi: 10.1038/s41467-018-03705-y.

[6]Fahmy T M, Fong P M, Goyal A, et al. Targeted for drug delivery. Materials Today. 2005;8(8): 18-26.

[7]Yamaguchi J, Nishimura Y, Kanada A, et al. Cremophor EL, a non-ionic surfactant, promotes Ca2+-dependent process of cell death in rat thymocytes. Toxicology. 2005; 211(3): 179-186 .doi: 10.1016/j.tox.2004.10.019.

[8]Kiss L, Walter F R, Bocsik A, et al. Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells. Journal of Pharmaceutical Sciences. 2013;102(4): 1173-1181. doi: 10.1002/jps.23458.

[9]Gelderblom H, Verweij J, Nooter K, et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer. 2001; 37(13): 1590-1598. doi: 10.1016/s0959-8049(01)00171-x.

[10]Rizzo R, Spaggiari F, Indelli M, et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Research and Treatment. 2010;124(2): 593-598. doi: 10.1007/s10549-010-1034-5.

[11]Vader P, Fens M H A M, Sachini N, et al. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL. Nanomedicine. 2013; 8(7): 1127-1135. doi: 10.2217/nnm.12.163.

[12]Pham A Q, Berz D, Karwan P, et al. Cremophor-induced lupus erythematosus-like reaction with taxol administration: a case report and review of the literature. Case Reports in Oncology. 2011;4(3): 526-530. doi: 10.1159/000334233.

[13]Chen X, Green P G, Levine J D. Abnormal muscle afferent function in a model of Taxol chemotherapy-induced painful neuropathy. Journal of Neurophysiology. 2011;106(1): 274-279. doi: 10.1152/jn.00141.2011.

[14]Sinha S S, Paul D K, Kanchanapally R, et al. Long-range two-photon scattering spectroscopy ruler for screening prostate cancer cells. Chemical Science. 2015; 6(4): 2411-2418.doi: 10.1039/c4sc03843f.

[15]Kanchanapally R, Fan Z, Singh A K, et al. Multifunctional hybrid graphene oxide for label-free detection of malignant melanoma from infected blood. Journal of Materials Chemistry B. 2014; 2(14): 1934-1937.doi: 10.1039/c3tb21756f.

[16]Augustine R, Al Mamun A, Hasan A, et al. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Advances in Colloid and Interface Science. 2021; 294: 102457.doi: 10.1016/j.cis.2021.102457.

[17]Fan Y, Moon J J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines. 2015; 3(3): 662-685. doi: 10.3390/vaccines3030662.

[18]Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. Journal of Drug Targeting. 2016; 24(3): 179-191. doi: 10.3109/1061186X.2015.1051049.

[19]Li Z, Tan S, Li S, et al. Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports. 2017;38(2): 611-624. doi: 10.3892/or.2017.5718.

[20]Rizvi S A A, Saleh A M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal. 2018; 26(1): 64-70. doi: 10.1016/j.jsps.2017.10.012.

[21]Cho K, Wang X U, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research. 2008; 14(5): 1310-1316. doi: 10.1158/1078-0432.CCR-07-1441.

[22]Cabeza L, Ortiz R, Arias J L, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly (butylcyanoacrylate) nanoparticles. International Journal of Nanomedicine. 2015; 10: 1291-306. doi: 10.2147/IJN.S74378.

[23]Kanchanapally R, Deshmukh S K, Chavva S R, et al. Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: a comparative analysis. International Journal of Nanomedicine. 2019; 14: 531-541. doi: 10.2147/IJN.S191313.

[24]Kanchanapally R, Khan M A, Deshmukh S K, et al. Exosomal formulation escalates cellular uptake of honokiol leading to the enhancement of its antitumor efficacy. ACS Omega.2020; 5(36): 23299-23307. doi: 10.1021/acsomega.0c03136.

[25]Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(sup2): 295-305.doi: 10.1080/21691401.2018.1457039.

[26]Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C. 2019; 98: 1252-1276. doi: 10.1016/j.msec.2019.01.066.

[27]Hossen S, Hossain M K, Basher M K, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research. 2019;15: 1-18. doi: 10.1016/j.jare.2018.06.005.

[28]Patnaik S, Gorain B, Padhi S, et al. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2021; 161: 100-119. doi: 10.1016/j.ejpb.2021.02.010.

[29]Kim J E, Shin J Y, Cho M H. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Archives of Toxicology. 2012; 86(5): 685-700. doi: 10.1007/s00204-011-0773-3.

[30]Bartneck M, Keul H A, Zwadlo-Klarwasser G, et al. Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Letters. 2010; 10(1): 59-63. doi: 10.1021/nl902830x.

[31]Kai M P, Brighton H E, Fromen C A, et al. Tumor presence induces global immune changes and enhances nanoparticle clearance. ACS Nano. 2016; 10(1): 861-870. doi: 10.1021/acsnano.5b05999.

[32]Tsoi K M, MacParland S A, Ma X Z, et al. Mechanism of hard-nanomaterial clearance by the liver. Nature Materials. 2016; 15(11): 1212-1221. doi: 10.1038/nmat4718.

[33]Aryani A, Denecke B. Exosomes as a nanodelivery system: a key to the future of neuromedicine?. Molecular Neurobiology. 2016; 53(2): 818-834. doi: 10.1007/s12035-014-9054-5.

[34]Chen B Y, Sung C W H, Chen C, et al. Advances in exosomes technology. Clinica Chimica Acta. 2019; 493: 14-19. doi: 10.1016/j.cca.2019.02.021.

[35]Srivastava A, Filant J, M Moxley K, et al. Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Current Gene Therapy. 2015;15(2): 182-192. doi: 10.2174/1566523214666141224100612.

[36]Mathivanan S, Ji H, Simpson R J. Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics. 2010; 73(10): 1907-1920. doi: 10.1016/j.jprot.2010.06.006.

[37]Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, et al. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets and Therapy. 2014; 7: 1327 -38. doi: 10.2147/OTT.S61562.

[38]Gong C, Tian J, Wang Z, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. Journal of Nanobiotechnology. 2019; 17(1): 1-18. doi: 10.1186/s12951-019-0526-7.

[39]Yu M, Gai C, Li Z, et al. Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Science. 2019; 110(10): 3173-3182. doi: 10.1111/cas.14181.

[40]Guo M, Yin Z, Chen F, et al. Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease. Alzheimer's Research & Therapy. 2020; 12(1): 1-14.

[41]McNamara R P, Eason A B, Zhou Y, et al. Exosome-Encased Nucleic Acid Scaffold Chemotherapeutic Agents for Superior Anti-Tumor and Anti-Angiogenesis Activity. ACS bio & med chem Au. 2022; 2(2): 140-149. doi: 10.1021/acsbiomedchemau.1c00030.

[42]Kim M J, Jang D H, Lee Y I, et al. Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology. 2011;11(1): 889-893. doi: 10.1166/jnn.2011.3267.

[43]Khan M A, Srivastava S K, Zubair H, et al. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. Journal of Biological Chemistry. 2020;295(25): 8413-8424. doi: 10.1074/jbc.RA119.011748.

[44]Chen J, Xu Y, Lu Y, et al. Isolation and visible detection of tumor-derived exosomes from plasma. Analytical Chemistry. 2018; 90(24): 14207-14215. doi: 10.1021/acs.analchem.8b03031.

[45]Jung H H, Kim J Y, Lim J E, et al. Cytokine profiling in serum-derived exosomes isolated by different methods. Scientific Reports. 2020; 10(1): 1-11. doi: 10.1038/s41598-020-70584-z.

[46]Morshed R A, Muroski M E, Dai Q, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Molecular Pharmaceutics. 2016; 13(6): 1843-1854.

[47]Wang Z, Xue X, He Y, et al. Novel redox‐responsive polymeric magnetosomes with tunable magnetic resonance property for in vivo drug release visualization and dual‐modal cancer therapy. Advanced Functional Materials. 2018;28(33): 1802159. doi: 10.1002/adfm.201802159.

[48]Cinteza L O, Ohulchanskyy T Y, Sahoo Y, et al. Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Molecular Pharmaceutics.2006; 3(4): 415-423.doi: 10.1021/mp060015p.

[49]Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy. 2010; 18(9): 1606-1614. doi: 10.1038/mt.2010.105.

[50]Jella K K, Nasti T H, Li Z, et al. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines. 2018; 6(4): 69. doi: 10.3390/vaccines6040069.

[51]Shi Z Y, Yang X X, Malichewe C Y, et al. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. International Journal of Biological Macromolecules. 2020;158: 530-541. doi: 10.1016/j.ijbiomac.2020.04.228.

[52]Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. Journal of Controlled Release. 2014; 192: 262-270. doi: 10.1016/j.jconrel.2014.07.042.

[53]Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014; 35(7): 2383-2390. doi: 10.1016/j.biomaterials.2013.11.083.

[54]Pisano S, Pierini I, Gu J, et al. Immune (cell) derived exosome mimetics (IDEM) as a treatment for ovarian cancer. Frontiers in Cell and Developmental Biology. 2020; 8: 553576. doi: 10.3389/fcell.2020.553576.

[55]Kim S M, Yang Y, Oh S J, et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of Controlled Release. 2017; 266: 8-16. doi: 10.1016/j.jconrel.2017.09.013.

[56]Yang J, Bahreman A, Daudey G, et al. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Central Science. 2016; 2(9): 621-630. doi: 10.1021/acscentsci.6b00172.

[57]Hu Q, Su H, Li J, et al. Clinical applications of exosome membrane proteins. Precision Clinical Medicine. 2020; 3(1): 54-66. doi: 10.1093/pcmedi/pbaa007.

How to Cite

Kanchanapally, R., and K. Brown. “Cancer Cell-Derived Exosomes As the Delivery Vehicle of Paclitaxel to Inhibit Cancer Cell Growth”. Journal of Cancer Discovery, vol. 1, no. 1, Aug. 2022, pp. 49-58, doi:10.55976/jcd.1202217549-58.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.