Haixia Li 1 , Jinghui Liang 2 , Kai Huang 3 *
Correspondence: kaih91sdu@gmail.com
DOI: https://doi.org/10.55976/jcd.120221311-12
Show More
[1]Shetty S. Regulation of urokinase receptor mRNA stability by hnRNP C in lung epithelial cells. Molecular and cellular biochemistry. 2005; 272(1-2): 107-118. doi: 10.1007/s11010-005-7644-2.
[2]Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. Wiley Interdisciplinary Reviews: RNA. 2021; 12(2): e1612. doi: 10.1002/wrna.1612.
[3]Wan L, Kim JK, Pollard VW et al. Mutational definition of RNA-binding and protein-protein interaction domains of heterogeneous nuclear RNP C1. The Journal of biological chemistry. 2001; 276(10): 7681-7688. doi: 10.1074/jbc.M010207200.
[4]Gruber AJ, Schmidt R, Gruber AR et al. A comprehensive analysis of 3' end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome research. 2016; 26(8): 1145-1159. doi: 10.1101/gr.202432.115.
[5]Shetty S. Protein synthesis and urokinase mRNA metabolism. Molecular and Cellular Biochemistry. 2005; 271(1-2): 13-22. doi: 10.1007/s11010-005-3453-x.
[6]Christian KJ, Lang MA, Raffalli-Mathieu F. Interaction of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment. Molecular pharmacology. 2008; 73(5): 1558-1567. doi: 10.1124/mol.107.042507.
[7]Shen Y, Liu S, Fan J et al. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO reports. 2017; 18(4): 536-548. doi: 10.15252/embr.201643139.
[8]Williamson DJ, Banik-Maiti S, DeGregori J et al. hnRNP C is required for postimplantation mouse development but Is dispensable for cell viability. Molecular and cellular biology. 2000; 20(11): 4094-4105. doi: 10.1128/MCB.20.11.4094-4105.2000.
[9]McAfee JG, Shahied-Milam L, Soltaninassab SR et al. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. Rna. 1996; 2(11): 1139-1152.
[10]Gorlach M, Wittekind M, Beckman RA et al. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. The EMBO journal. 1992; 11(9): 3289-3295. doi: 10.1002/j.1460-2075.1992.tb05407.x.
[11]Mahajan MC, Narlikar GJ, Boyapaty G et al. Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(42): 15012-15017. doi: 10.1073/pnas.0507596102.
[12]Chen H, Hewison M, Adams JS. Functional characterization of heterogeneous nuclear ribonuclear protein C1/C2 in vitamin D resistance: a novel response element-binding protein. The Journal of biological chemistry. 2006; 281(51): 39114-39120. doi: 10.1074/jbc.M608006200.
[13]Chen H, Hu B, Allegretto EA et al. The vitamin D response element-binding protein. A novel dominant-negative regulator of vitamin D-directed transactivation. The Journal of biological chemistry. 2000; 275(45): 35557-35564. doi: 10.1074/jbc.M007117200.
[14]Chen H, Hewison M, Hu B et al. Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(10): 6109-6114. doi: 10.1073/pnas.1031395100.
[15]Mallory MJ, McClory SP, Chatrikhi R et al. Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic acids research. 2020; 48(10): 5710-5719. doi: 10.1093/nar/gkaa295.
[16]Choi YD, Grabowski PJ, Sharp PA et al. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science. 1986; 231(4745): 1534-1539. doi: 10.1126/science.3952495.
[17]Sierakowska H, Szer W, Furdon PJ et al. Antibodiesto hnRNP core proteins inhibit in vitro splicing of human beta-globin pre-mRNA. Nucleic acids research. 1986; 14(13): 5241-5254. doi: 10.1093/nar/14.13.5241.
[18]Zhang R, Lin P, Yang X et al. Survival associated alternative splicing events in diffuse large B-cell lymphoma. American journal of translational research. 2018; 10(8): 2636-2647.
[19]Venables JP, Koh CS, Froehlich U et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Molecular and cellular biology. 2008; 28(19): 6033-6043. doi: 10.1128/MCB.00726-08.
[20]Izquierdo JM. Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. The Journal of biological chemistry. 2008; 283(27): 19077-19084. doi: 10.1074/jbc.M800017200.
[21]Zarnack K, Konig J, Tajnik M et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 2013; 152(3): 453-466. doi: 10.1016/j.cell.2012.12.023.
[22]Konig J, Zarnack K, Rot G et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature structural & molecular biology. 2010; 17(7): 909-915. doi: 10.1038/nsmb.1838.
[23]Zhang Z, Xing Y. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome. Nucleic acids research. 2017; 45(16): 9260-9271. doi: 10.1093/nar/gkx646.
[24]Izquierdo JM. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R. Nucleic acids research. 2010; 38(22): 8001-8014. doi: 10.1093/nar/gkq698.
[25]Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PloS one. 2014; 9(4): e95210. doi: 10.1371/journal.pone.0095210.
[26]Wu Y, Zhao W, Liu Y et al. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. The EMBO journal. 2018, 37(23): e99017. doi: 10.15252/embj.201899017.
[27]Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature communications. 2013; 4(1): 1-10. doi: 10.1038/ncomms3980.
[28]Balaguer N, Moreno I, Herrero M et al. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation. Molecular human reproduction. 2018, 24(8): 411-425. doi: 10.1093/molehr/gay026.
[29]Park YM, Hwang SJ, Masuda K et al. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Molecular and cellular biology. 2012; 32(20): 4237-4244. doi: 10.1128/MCB.00443-12.
[30]Liu N, Dai Q, Zheng G et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015; 518(7540): 560-564. doi: 10.1038/nature14234.
[31]Chen LL. The biogenesis and emerging roles of circular RNAs. Nature reviews molecular cell biology. 2016; 17(4): 205-211. doi: 10.1038/nrm.2015.32.
[32]Jeck WR, Sorrentino JA, Wang K et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna. 2013; 19(2): 141-157. doi: 10.1261/rna.035667.112.
[33]Zhang XO, Wang HB, Zhang Y et al. Complementary sequence-mediated exon circularization. Cell. 2014, 159(1): 134-147. doi: 10.1016/j.cell.2014.09.001.
[34]Attig J, Ruiz de Los Mozos I, Haberman N et al. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. Elife. 2016; 5: e19545. doi: 10.7554/eLife.19545.
[35]Dolcino M, Tinazzi E, Puccetti A et al. In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. Journal of clinical medicine. 2019, 8(3): 320. doi: org/10.3390/jcm8030320.
[36]Kleemann M, Schneider H, Unger K et al. MiR-744-5p inducing cell death by directly targeting HNRNPC and NFIX in ovarian cancer cells. Scientific reports. 2018; (1): 1-15. doi: 10.1038/s41598-018-27438-6.
[37]Wang X, Lu Z, Gomez A et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014; 505(7481): 117-120. doi: 10.1038/nature12730.
[38]Zhou KI, Parisien M, Dai Q et al. N(6)-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding. Journal of molecular biology. 2016; 428(5): 822-833. doi: 10.1016/j.jmb.2015.08.021.
[39]Velusamy T, Shetty P, Bhandary YP et al. Posttranscriptional regulation of urokinase receptor expression by heterogeneous nuclear ribonuclear protein C. Biochemistry. 2008, 47(24): 6508-6517. doi: 10.1021/bi702338y.
[40]Liu X, Liu L, Dong Z et al. Expression patterns and prognostic value of m(6)A-related genes in colorectal cancer. American journal of translational research. 2019, 11(7): 3972-3991.
[41]Fischl H, Neve J, Wang Z et al. HNRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic acids research. 2019; 47(14): 7580-7591. doi: 10.1093/nar/gkz461.
[42]Kim JH, Paek KY, Choi K et al. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Molecular and cellular biology. 2003, 23(2):708-720. doi: 10.1128/MCB.23.2.708-720.2003.
[43]Evans JR, Mitchell SA, Spriggs KA et al. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene. 2003; 22(39): 8012-8020. doi: 10.1038/sj.onc.1206645.
[44]Sun DQ, Wang Y, Liu DG et al. Overexpression of hnRNPC2 induces multinucleation by repression of Aurora B in hepatocellular carcinoma cells. Oncology letters. 2013, 5(4): 1243-1249. doi: 10.3892/ol.2013.1167.
[45]Fang X, Yoon JG, Li L et al. Landscape of the SOX2 protein-protein interactome. Proteomics. 2011; 11(5): 921-934. doi: 10.1002/pmic.201000419.
[46]Yan M, Sun L, Li J et al. RNA-binding protein KHSRP promotes tumor growth and metastasis in non-small cell lung cancer. Journal of experimental & clinical cancer research. 2019; 38(1): 1-17. doi: 10.1186/s13046-019-1479-2.
[47]Wu Q, Fu C, Li M et al. CINP is a novel cofactor of KLF5 required for its role in the promotion of cell proliferation, survival and tumor growth. International journal of cancer. 2019, 144(3): 582-594. doi: 10.1002/ijc.31908.
[48]Zhang S, Schlott B, Gorlach M et al. DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic acids research. 2004; 32(1): 1-10. doi: 10.1093/nar/gkg933.
[49]Mayrand SH, Dwen P, Pederson T. Serine/threonine phosphorylation regulates binding of C hnRNP proteins to pre-mRNA. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(16): 7764-7768. doi: 10.1073/pnas.90.16.7764.
[50]Stone JR, Collins T. Rapid phosphorylation of heterogeneous nuclear ribonucleoprotein C1/C2 in response to physiologic levels of hydrogen peroxide in human endothelial cells. The Journal of biological chemistry. 2002; 277(18): 15621-15628. doi: 10.1074/jbc.M112153200.
[51]Xu M, Zhou J, Zhang Q et al. MiR-3121-3p promotes tumor invasion and metastasis by suppressing Rap1GAP in papillary thyroid cancer. Annals of translational medicine. 2020; 8(19): 1229. doi: 10.21037/atm-20-4469.
[52]Rao GK, Wong A, Collinge M et al. T cell LFA-1-induced proinflammatory mRNA stabilization is mediated by the p38 pathway kinase MK2 in a process regulated by hnRNPs C, H1 and K. PloS one. 2018; 13(7): e0201103. doi: 10.1371/journal.pone.0201103.
[53]Mukherjee S, Singh N, Sengupta N et al. Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell death & disease. 2017; 8(1): e2556-e2556. doi: 10.1038/cddis.2016.394.
[54]Zhang Y, Liu X, Liu L et al. Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. Medical science monitor : international medical journal of experimental and clinical research. 2020; 26: e919644-1–e919644-13. doi: 10.12659/MSM.919644.
[55]Zhuang Z, Chen L, Mao Y et al. Diagnostic, progressive and prognostic performance of m(6)A methylation RNA regulators in lung adenocarcinoma. International journal of biological sciences. 2020; 16(11): 1785-1797. doi: 10.7150/ijbs.39046.
[56]Zhu J, Wang M, Hu D. Deciphering N(6)-Methyladenosine-Related Genes Signature to Predict Survival in Lung Adenocarcinoma. BioMed research international. 2020; 2020. doi: 10.1155/2020/2514230.
[57]Li N, Zhan X. Identification of pathology-specific regulators of m(6)A RNA modification to optimize lung cancer management in the context of predictive, preventive, and personalized medicine. The EPMA journal. 2020; 11(3): 485-504. doi: 10.1007/s13167-020-00220-3.
[58]Xu F, Zhang H, Chen J et al. Immune signature of T follicular helper cells predicts clinical prognostic and therapeutic impact in lung squamous cell carcinoma. International immunopharmacology. 2020; 81: 105932. doi: 10.1016/j.intimp.2019.105932.
[59]Hwang SJ, Seol HJ, Park YM et al. MicroRNA-146a suppresses metastatic activity in brain metastasis. Molecules and cells. 2012; 34(3): 329-334. doi: 10.1007/s10059-012-0171-6.
[60]Krismer K, Bird MA, Varmeh S et al. Transite: A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression. Cell reports. 2020; 32(8): 108064. doi: 10.1016/j.celrep.2020.108064.
[61]Wen J, Toomer KH, Chen Z et al. Genome-wide analysis of alternative transcripts in human breast cancer. Breast cancer research and treatment. 2015; 151(2): 295-307. doi: 10.1007/s10549-015-3395-2.
[62]Xu LC, Pan JX, Pan HD. Construction and Validation of an m6A RNA Methylation Regulators-Based Prognostic Signature for Esophageal Cancer. Cancer management and research. 2020; 12: 5385-5394. doi: 10.2147/CMAR.S254870.
[63]Zhang Y, Chen W, Pan T et al. LBX2-AS1 is activated by ZEB1 and promotes the development of esophageal squamous cell carcinoma by interacting with HNRNPC to enhance the stability of ZEB1 and ZEB2 mRNAs. Biochemical and biophysical research communications. 2019; 511(3): 566-572. doi: 10.1016/j.bbrc.2019.02.079.
[64]Liu J, Sun G, Pan S et al. The Cancer Genome Atlas (TCGA) based m(6)A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered. 2020; 11(1): 759-768. doi: 10.1080/21655979.2020.1787764.
[65]Tremblay MP, Armero VE, Allaire A et al. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC genomics. 2016; 17(1): 1-16. doi: 10.1186/s12864-016-3029-z.
[66]Khosla R, Hemati H, Rastogi A et al. MiR-26b-5p helps in EpCAM+cancer stem cells maintenance via HSC71/HSPA8 and augments malignant features in HCC. Liver international: official journal of the International Association for the Study of the Liver. 2019; 39(9): 1692-1703. doi: 10.1111/liv.14188.
[67]Huang GZ, Wu QQ, Zheng ZN et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging. 2020; 12(12): 11667-11684. doi: 10.18632/aging.103333.
[68]Zhang S, Wu X, Diao P et al. Identification of a prognostic alternative splicing signature in oral squamous cell carcinoma. Journal of cellular physiology. 2020, 235(5): 4804-4813. doi: 10.1002/jcp.29357.
[69]Chen Y, Bao C, Zhang X et al. Knockdown of LINC00662 represses AK4 and attenuates radioresistance of oral squamous cell carcinoma. Cancer cell international. 2020; 20(1): 1-15. doi: 10.1186/s12935-020-01286-9.
[70]Zhou YJ, Zhu GQ, Zhang QW et al. Survival-Associated Alternative Messenger RNA Splicing Signatures in Pancreatic Ductal Adenocarcinoma: A Study Based on RNA-Sequencing Data. DNA and cell biology. 2019; 38(11): 1207-1222. doi: 10.1089/dna.2019.4862.
[71]Nettersheim D, Berger D, Jostes S et al. N6-Methyladenosine detected in RNA of testicular germ cell tumors is controlled by METTL3, ALKBH5, YTHDC1/F1/F2, and HNRNPC as writers, erasers, and readers. Andrology. 2019; 7(4): 498-506. doi: 10.1111/andr.12612.
[72]Hou J, Shan H, Zhang Y et al. M(6)A RNA methylation regulators have prognostic value in papillary thyroid carcinoma. American journal of otolaryngology. 2020; 41(4): 102547. doi: 10.1016/j.amjoto.2020.102547.
[73]Zhao X, Cui L. Development and validation of a m(6)A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. American journal of cancer research. 2019; 9(10): 2156-2169.
[74]Huang H, Han Y, Zhang C et al. HNRNPC as a candidate biomarker for chemoresistance in gastric cancer. Tumour biology. 2016; 37(3): 3527-3534. doi: 10.1007/s13277-015-4144-1.
[75]Argilés G, Tabernero J, Labianca R et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2020; 31(10): 1291-1305. doi: 10.1016/j.annonc.2020.06.022.
[76]Liu T, Li C, Jin L et al. The Prognostic Value of m6A RNA Methylation Regulators in Colon Adenocarcinoma. Medical science monitor: international medical journal of experimental and clinical research. 2019; 25: 9435-9445. doi: 10.12659/MSM.920381.
[77]Wang Z, Cheng H, Xu H et al. A five-gene signature derived from m6A regulators to improve prognosis prediction of neuroblastoma. Cancer biomarkers: section A of Disease markers. 2020; 28(3): 275-284.doi: 10.3233/CBM-191196.
[78]Su Z, Liu X, Xu Y et al: Novel reciprocal fusion genes involving HNRNPC and RARG in acute promyelocytic leukemia lacking RARA rearrangement. Haematologica. 2020; 105(7): e376-e378. doi: 10.3324/haematol.2019.244715.
[79]Makokha GN, Abe-Chayama H, Chowdhury S et al. Regulation of the Hepatitis B virus replication and gene expression by the multi-functional protein TARDBP. Scientific reports. 2019; 9(1): 1-18. doi: 10.1038/s41598-019-44934-5.
[80]Gontarek RR, Gutshall LL, Herold KM et al. HNRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic acids research. 1999; 27(6): 1457-1463. doi: 10.1093/nar/27.6.1457.
[81]Casaca A, Fardilha M, da Cruz e Silva E et al. The heterogeneous ribonuclear protein C interacts with the hepatitis delta virus small antigen. Virology journal. 2011; 8(1): 1-13. doi: 10.1186/1743-422X-8-358.
[82]Brunner JE, Nguyen JH, Roehl HH et al. Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes. Journal of virology. 2005; 79(6): 3254-3266. doi: 10.1128/JVI.79.6.3254-3266.2005.
[83]Dechtawewat T, Songprakhon P, Limjindaporn T et al. Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virology journal. 2015, 12(1): 1-14. doi: 10.1186/s12985-014-0219-7.
[84]Sokolowski M, Schwartz S. Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element. Virus research. 2001; 73(2): 163-175. doi: 10.1016/S0168-1702(00)00238-0.
[85]Zhai J, Li S, Sen S et al. M(6)A RNA Methylation Regulators Contribute to Eutopic Endometrium and Myometrium Dysfunction in Adenomyosis. Frontiers in genetics. 2020; 11: 716. doi: 10.3389/fgene.2020.00716.
[86]Chen H, Arbelle JE, Gacad MA et al. Vitamin D and gonadal steroid-resistant New World primate cells express an intracellular protein which competes with the estrogen receptor for binding to the estrogen response element. The Journal of clinical investigation. 1997; 99(4): 669-675. doi: 10.1172/JCI119210.
[87]Lisse TS, Vadivel K, Bajaj SP et al. The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts. Bone Research. 2014; 2(1): 1-11. doi: 10.1038/boneres.2014.11.
[88]Liu W, Wang K, Lv X et al. Up-regulation of RNA Binding Proteins Contributes to Folate Deficiency-Induced Neural Crest Cells Dysfunction. International journal of biological sciences. 2020; 16(1): 85-98. doi:10.7150/ijbs.33976.
Copyright © 2022 Haixia Li, Jinghui Liang, Kai Huang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn