Qingwen Xie 1# , Qi Yao 2# , Qingqing Wu 3 *
# Qingwen Xie, and Qi Yao contributed equally to this work
*Correspondence: qingwu20130@whu.edu.cn
DOI: https://doi.org/10.55976/cds.1202216617-23
Show More
[1]Braunwald E. The war against heart failure: the Lancet lecture. The Lancet. 2015;385(9970):812-824. doi:10.1016/S0140-6736(14)61889-4.
[2]DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology. 2017;13(1):11-26. doi:10.1038/nrneph.2016.170.
[3]Furtado RHM, Bonaca MP, Raz I, et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation. 2019;139(22):2516-2527. doi: 10.1161/CIRCULATIONAHA.119.039996.
[4]McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine. 2019;381(21):1995-2008. doi:10.1056/NEJMoa1911303.
[5]Adamson C, Jhund PS, Docherty KF, et al. Efficacy of dapagliflozin in heart failure with reduced ejection fraction according to body mass index. European Journal of Heart Failure. 2021;23(10):1662-1672. doi:10.1002/ejhf.2308.
[6]Rossing P, Inzucchi SE, Vart P, et al. Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: pooled analysis of the DAPA-CKD and DAPA-HF trials. The Lancet Diabetes & Endocrinology. 2022;10(1):24-34. doi:10.1016/S2213-8587(21)00295-3.
[7]Docherty KF, Jhund PS, Claggett B, et al. Extrapolating Long-term Event-Free and Overall Survival With Dapagliflozin in Patients With Heart Failure and Reduced Ejection Fraction: An Exploratory Analysis of a Phase 3 Randomized Clinical Trial. JAMA Cardiology. 2021;6(11):1298-1305. doi:10.1001/jamacardio.2021.2632.
[8]Kosiborod MN, Jhund PS, Docherty KF, et al. Effects of Dapagliflozin on Symptoms, Function, and Quality of Life in Patients With Heart Failure and Reduced Ejection Fraction: Results From the DAPA-HF Trial. Circulation. 2020;141(2):90-99. doi:10.1161/CIRCULATIONAHA.119.044138.
[9]Docherty KF, Jhund PS, Anand I, et al. Effect of Dapagliflozin on Outpatient Worsening of Patients With Heart Failure and Reduced Ejection Fraction: A Prespecified Analysis of DAPA-HF. Circulation. 2020;142(17):1623-1632. doi:10.1161/CIRCULATIONAHA.120.047480.
[10]Kato ET, Silverman MG, Mosenzon O, et al. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation. 2019;139(22):2528-2536. doi:10.1161/CIRCULATIONAHA.119.040130.
[11]Solomon SD, de Boer RA, DeMets D, et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. European Journal of Heart Failure. 2021;23(7):1217-1225. doi:10.1002/ejhf.2249.
[12]Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nature Medicine. 2021;27(11):1954-1960. doi:10.1038/s41591-021-01536-x.
[13]Butt JH, Adamson C, Docherty KF, et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to N-Terminal Pro-B-Type Natriuretic Peptide: Insights From the DAPA-HF Trial. Circulation: Heart Failure. 2021;14(12):e008837. doi:10.1161/CIRCHEARTFAILURE.121.008837.
[14]Nassif ME, Windsor SL, Tang F, et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation. 2019;140(18):1463-1476. doi:10.1161/CIRCULATIONAHA.119.042929.
[15]Jackson AM, Dewan P, Anand IS, et al. Dapagliflozin and Diuretic Use in Patients With Heart Failure and Reduced Ejection Fraction in DAPA-HF. Circulation. 2020;142(11):1040-1054. doi:10.1161/CIRCULATIONAHA.120.047077.
[16]Solomon SD, Jhund PS, Claggett BL, et al. Effect of Dapagliflozin in Patients With HFrEF Treated With Sacubitril/Valsartan: The DAPA-HF Trial. JACC Heart Failure. 2020;8(10):811-818. doi:10.1016/j.jchf.2020.04.008.
[17]Docherty KF, Jhund PS, Inzucchi SE, et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. European Journal of Heart Failure. 2020;41(25):2379-2392. doi:10.1093/eurheartj/ehaa183.
[18]Martinez FA, Serenelli M, Nicolau JC, et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age: Insights From DAPA-HF. Circulation. 2020;141(2):100-111. doi:10.1161/CIRCULATIONAHA.119.044133.
[19]Butt JH, Docherty KF, Petrie MC, et al. Efficacy and Safety of Dapagliflozin in Men and Women With Heart Failure With Reduced Ejection Fraction: A Prespecified Analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure Trial. JAMA Cardiology. 2021;6(6):678-689. doi:10.1001/jamacardio.2021.0379.
[20]Dewan P, Docherty KF, Bengtsson O, et al. Effects of dapagliflozin in heart failure with reduced ejection fraction and chronic obstructive pulmonary disease: an analysis of DAPA-HF. European Journal of Heart Failure. 2021;23(4):632-643. doi:10.1002/ejhf.2083.
[21]Butt JH, Docherty KF, Jhund PS, et al. Dapagliflozin and atrial fibrillation in heart failure with reduced ejection fraction: insights from DAPA-HF. European Journal of Heart Failure. 2022;24(3):513-525. doi:10.1002/ejhf.2381.
[22]McEwan P, Morgan AR, Boyce R, et al. The cost-effectiveness of dapagliflozin in treating high-risk patients with type 2 diabetes mellitus: An economic evaluation using data from the DECLARE-TIMI 58 trial. Diabetes, Obesity and Metabolism. 2021;23(4):1020-1029. doi:10.1111/dom.14308.
[23]Isaza N, Calvachi P, Raber I, et al. Abstract 15981: Cost-effectiveness of Dapagliflozin in Heart Failure With Reduced Ejection Fraction. Circulation. 2020;142(Suppl_3). doi:10.1161/circ.142.suppl_3.15981.
[24]Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215-225. doi:10.1007/s00125-016-4157-3.
[25]Kaplan A, Abidi E, El-Yazbi A, et al. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Failure Reviews. 2018;23(3):419-437. doi:10.1007/s10741-017-9665-9.
[26]Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovascular Diabetology. 2018;17(1):6 doi:10.1186/s12933-017-0658-8.
[27]Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nature Medicine. 2015;21(5):512-517. doi:10.1038/nm.3828.
[28]Scheen AJ. Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Current Cardiology Reports. 2019;21(8):70. doi:10.1007/s11886-019-1165-1.
[29]Rahman A, Hitomi H, Nishiyama A. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure. Hypertension Research. 2017;40(6):535-540. doi:10.1038/hr.2016.193.
[30]Karg MV, Bosch A, Kannenkeril D, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovascular Diabetology. 2018;17(1):5. doi:10.1186/s12933-017-0654-z.
[31]Schneider MP, Raff U, Kopp C, et al. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD. Journal of the American Society of Nephrology. 2017;28(6):1867-1876. doi:10.1681/ASN.2016060662.
[32]Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. The New England Journal of Medicine. 2020;383(15):1436-1446. doi:10.1056/NEJMoa2024816.
[33]Heerspink HJL, Furtado RHM, Berwanger O, et al. Dapagliflozin and Kidney Outcomes in Hospitalized Patients with COVID-19 Infection: An Analysis of the DARE-19 Randomized Controlled Trial. Clinical Journal of the American Society of Nephrology. 2022;Apr28:CJN.14231021. doi:10.2215/CJN.14231021.
[34]Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation. 2017;136(17):1643-1658. doi:10.1161/CIRCULATIONAHA.117.030012.
[35]Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes, Obesity and Metabolism. 2013;15(9):853-862. doi:10.1111/dom.12127.
[36]Zelniker TA, Braunwald E. Cardiac and Renal Effects of Sodium-Glucose Co-Transporter 2 Inhibitors in Diabetes: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2018;72(15):1845-1855. doi:10.1016/j.jacc.2018.06.040.
[37]Koutroumpakis E, Jozwik B, Aguilar D, et al. Strategies of Unloading the Failing Heart from Metabolic Stress. The American Journal of Medicine. 2020;133(3):290-296. doi:10.1016/j.amjmed.2019.08.035.
[38]Tian J, Zhang M, Suo M, et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKalpha/TGF-beta/Smad signalling in type 2 diabetic rats. Journal of Cellular and Molecular Medicine. 2021;25(16):7642-7659. doi:10.1111/jcmm.16601.
[39]Chen H, Tran D, Yang HC, et al. Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovascular Drugs and Therapy. 2020;34(4):443-461. doi:10.1007/s10557-020-06978-y.
[40]Gong L, Wang X, Pan J, et al. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats. Open medicine (Warsaw, Poland). 2021;15(1): 47-57.
[41]Packer M, Anker SD, Butler J, et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiology. 2017;2(9):1025-1029. doi:10.1001/jamacardio.2017.2275.
[42]Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2017;61(3):722-726. doi:10.1007/s00125-017-4509-7.
[43]Lin K, Yang N, Luo W, et al. Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling. Acta Pharmacologica Sinica. 2022;Feb25. doi:10.1038/s41401-022-00885-8.
[44]Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFbeta1/Smad signaling. Cardiovascular Diabetology. 2021;20(1):121. doi:10.1186/s12933-021-01312-8.
[45]Shi L, Zhu D, Wang S, et al. Dapagliflozin Attenuates Cardiac Remodeling in Mice Model of Cardiac Pressure Overload. American Journal of Hypertension. 2019;32(5):452-459. doi:10.1093/ajh/hpz016.
[46]Ren FF, Xie ZY, Jiang YN, et al. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. Acta Pharmacologica Sinica. 2021;Dec1. doi:10.1038/s41401-021-00805-2.
[47]Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biology and Medicine. 2017;104:298-310. doi:10.1016/j.freeradbiomed.2017.01.035.
[48]Zhang N, Feng B, Ma X, et al. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovascular Diabetology. 2019;18(1):107. doi:10.1186/s12933-019-0914-1.
[49]Connelly KA, Zhang Y, Desjardins JF, et al. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovascular Diabetology. 2018;17(1):99. doi:10.1186/s12933-018-0741-9.
Copyright © 2022 Qingwen Xie, Qi Yao, Qingqing Wu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn