Make Knowledge Veritable, Visible and Valuable.

Application of artificial intelligence in respiratory medicine

Chunxi Zhang 1 , Weijin Wu 2 , Jia Yang 3 , Jiayuan Sun 4 *

  • 1. Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University; Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai 200030, China
  • 2. Shanghai Jingying Information Technology Co., Ltd., Shanghai 200336, China
  • 3. Shanghai Jingying Information Technology Co., Ltd., Shanghai 200336, China
  • 4. Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai 200030, China

Correspondence: xkyyjysun@163.com

DOI: https://doi.org/10.55976/jdh.1202215330-39

  • Received

    17 February 2022

  • Revised

    01 April 2022

  • Accepted

    06 April 2022

  • Published

    12 April 2022

artificial intelligence computer-aided diagnosis lung cancer pulmonary nodule respiratory disease

Show More

Abstract


References
V

[1]Li X, Wu L, Yu H. Application of artificial intelligence gastroscope in blind area monitoring and independent image acquisition. Chinese Journal of Digestive Endoscopy. 2019;36(4):240-245. Available from: doi:10.3760/cma.j.issn.1007-5232.2019.04.004.

[2]Kong M, He Q, Li L. AI assisted clinical diagnosis & treatment, and development strategy. Strategic Study of CAE. 2018;20(2):86-91. Available from: doi:10.15302/J-SSCAE-2018.02.013.

[3]Liu Q. Artificial intelligence and drug discovery. Academic Journal of Second Military Medical University. 2018;39(8):869-872. Available from: doi:10.16781/j.0258-879x.2018.08.0869.

[4]Yang R, Yang Y, Wang T, et al. Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial. Chinese Journal of Pediatrics. 2021;59(4):286-293. Available from: doi:10.3760/cma.j.cn112140-20201209-01089.

[5]Meng Y, Sun X, Wang X, et al. Research and thinking on the application of artificial intelligence technology in quality control of electronic medical records. Chinese Health Quality Management. 2021;28(12):63-65. Available from: doi:10.13912/j.cnki.chqm.2021.28.12.17.

[6]Cai C, Jia W. Application and challenge of artificial intelligence in continuous diabetes management.Bulletin of National Natural Science Foundation of China. 2021;35(1),104-109. Available from: doi:10.16262/j.cnki.1000-8217.2021.01.021.

[7]Gao S, He Y. Study on the application of artificial intelligence in hospital management. Chongqing Medicine. 2020;49(13):2220-2222. Available from: doi:10.3969/j.issn.1671-8348.2020.13.035.

[8]Li X, Guo F, Zhou Z, et al. Performance of deep-learning-based artificial intelligence on detection of pulmonary nodules in chest CT. Chinese Journal of Lung Cancer. 2019;22(6):336-340. Available from: doi:10.3779/j.issn.1009-3419.2019.06.02.

[9]Li M, Wang G, Xia H, et al. Clinical evaluation of artificial intelligence system based on fundus photograph in diabetic retinopathy screening. Chinese Journal of Experimental Ophthalmology. 2019;37(8):663-668. Available from: doi:10.3760/cma.j.issn.2095-0160.2019.08.015.

[10]Shang L, Guo Y, Ye W, et al. Research progress of artificial intelligence in diagnosis of breast cancer. Journal of Modern Oncology. 2021;29(1):155-158. Available from: doi:10.3969/j.issn.1672-4992.2021.01.035.

[11]Wang J, Xue P, Jiang Y. Research progress in the application of artificial intelligence in cervical cancer screening. Chinese Journal of Clinical Oncology. 2021;48(9):468-471. Available from: doi:10.3969/j.issn.1000-8179.2021.09.056.

[12]Zheng R, Sun K, Zhang S, et al. Report of cancer epidemiology in China, 2015. Chinese Journal of Oncology. 2019;41(1):19-28. Available from: doi:10.3760/cma.j.issn.0253-3766.2019.01.008.

[13]Chinese Medical Association, Oncology Society of Chinese Medical Association, Chinese Medical Association Publishing House. Chinese Medical Association guidelines for clinical diagnosis and treatment of lung cancer (Edition 2018). Zhonghua Zhong Liu Za Zhi. 2018;40(12):935-964. Available from: doi:10.3760/cma.j.issn.0253-3766.2018.12.012.

[14]Zhang Q, Chen M, Qin Y, et al. Lung nodule segmentation based on 3D ResUnet network. Chinese Journal of Medical Physics. 2019;36(11):1356-1361. Available from: doi:10.3969/j.issn.1005-202X.2019.11.021.

[15]Ni Y, Xie Z, Zheng D, et al. Two-stage multitask U-Net construction for pulmonary nodule segmentation and malignancy risk prediction. Quantitative Imaging in Medicine and Surgery. 2022;12(1):292-309. Available from: doi:10.21037/qims-21-19.

[16]Ren H, Zhou L, Liu G, et al. An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quantitative Imaging in Medicine and Surgery. 2020;10(1):233-242. Available from: doi:10.21037/qims.2019.12.02.

[17]Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Scientific Reports. 2017;7:46479. Available from: doi:10.1038/srep46479.

[18]Cui S, Ming S, Lin Y, et al. Development and clinical application of deep learning model for lung nodules screening on CT images. Scientific Reports. 2020;10(1):13657. Available from: doi: 10.1038/s41598-020-70629-3.

[19]Trajanovski S, Mavroeidis D, Swisher CL, et al. Towards radiologist-level cancer risk assessment in CT lung screening using deep learning. Computerized Medical Imaging and Graphics. 2021;90:101883. Available from: doi:10.1016/j.compmedimag.2021.101883.

[20]Zheng S, Guo J, Cui X, et al. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection. IEEE Transactions on Medical Imaging. 2020;39(3):797-805. Available from: doi:10.1109/TMI.2019.2935553.

[21]Tan M, Wu F, Yang B, et al. Pulmonary nodule detection using hybrid two-stage 3D CNNs. Medical Physics. 2020;47(8):3376-3388. Available from: doi:10.1002/mp.14161.

[22]Tang S, Yang M, Bai J. Lung nodules detection and recognition based on deep convolutional neural networks. Science Technology and Engineering. 2019;19(22):241-248. Available from: doi: 10.3969/j.issn.1671-1815.2019.22.035.

[23]Li X, Jin W, Li G, et al. YOLO V2 network with asymmetric convolution kernel for lung nodule detection of CT image. Chinese Journal of Biomedical Engineering. 2019;38(4):401-408. Available from: doi:10.3969/j.issn.0258-8021.2019.04.003.

[24]S RS, Rajaguru H. Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pacific Journal of Cancer Prevention. 2019;20(7):2159-2166. Available from: doi: 10.31557/APJCP.2019.20.7.2159.

[25]Massion PP, Antic S, Ather S, et al. Assessing the accuracy of a deep learning method to risk stratify indeterminate pulmonary nodules. American Journal of Respiratory and Critical Care Medicine. 2020;202(2):241-249. Available from: doi:10.1164/rccm.201903-0505OC.

[26]Wang Y, Guan J, Wang L. Study on the classification of benign and malignant pulmonary nodules based on Gabor wavelet and deep belief network. Beijing Biomedical Engineering. 2019;38(3):263-270. Available from: doi:10.3969/j.issn.1002-3208.2019.03.008.

[27]Xu X, Wang C, Guo J, et al. MSCS-DeepLN: Evaluating lung nodule malignancy using multi-scale cost-sensitive neural networks. Medical Image Analysis. 2020;65:101772. Available from: doi: 10.1016/j.media.2020.101772.

[28]Guo F, Huang M, Liu L, et al. Multi-model fusion classification method for benign and malignant lung nodules with embedded attention mechanism. Journal of Optoelectronics·Laser. 2021;32(4):389-394. Available from: doi:10.16136/j.joel.2021.04.0361.

[29]Wang H, Chen Z, Zhou Z, et al. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images. Journal of Zhejiang University (Engineering Science). 2018;52(4):788-797. Available from: doi:10.3785/j.issn.1008-973X.2018.04.024.

[30]Li J, Zhi X, Chen J, et al. Deep learning with convex probe endobronchial ultrasound multimodal imaging: A validated tool for automated intrathoracic lymph nodes diagnosis. Endoscopic Ultrasound. 2021;10(5):361-371. Available from: doi:10.4103/EUS-D-20-00207.

[31]Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine. 2018;24(10):1559-1567. Available from: doi:10.1038/s41591-018-0177-5.

[32]Ning J, Yu C, Cheng N, et al. Classification of lung cancer pathological images based on convolutional neural network. Software Guide. 2019;18(2):141-144. Available from: doi: 10.11907/rjdk.181868.

[33]Bi K, Wang Y, Zhang T, et al. An artificial intelligence pathological diagnosis model for lung cancer based on deep learning algorithm: development and application. Academic Journal of Second Military Medical University. 2020;41(11):1229-1235. Available from: doi:10.16781/j.0258-879x.2020.11.1229.

[34]Chaunzwa TL, Hosny A, Xu Y, et al. Deep learning classification of lung cancer histology using CT images. Scientific Reports. 2021;11(1):5471. Available from: doi:10.1038/s41598-021-84630-x.

[35]Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clinical Cancer Research. 2019;25(11):3266-3275. Available from: doi:10.1158/1078-0432.CCR-18-2495.

[36]Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Medicine. 2018;15(11):e1002711. Available from: doi: 10.1371/journal.pmed.1002711.

[37]Pan H, Wang Z, Yao J. Research on approach for robust lung cancer survival prediction based on deep learning. Computer Engineering and Applications. 2018;54(14):138-142. Available from: doi: 10.3778/j.issn.1002-8331.1702-0110.

[38]WHO. Weekly epidemiological update on COVID-19 -15 March 2022. Available from: http://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---15-march-2022 [Accessed 20th March 2022].

[39]Zoabi Y, Deri-Rozov S, Shomron N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digital Medicine. 2021;4(1):3. Available from: doi:10.1038/s41746-020-00372-6.

[40]Ardakani AA, Kanafi AR, Acharya UR, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine. 2020;121:103795. Available from: doi:10.1016/j.compbiomed.2020.103795.

[41]Nayak SR, Nayak DR, Sinha U, et al. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomedical Signal Processing and Control. 2021;64:102365. Available from: doi:10.1016/j.bspc.2020.102365.

[42]Fang C, Bai S, Chen Q, Zhou Y, Xia L, Qin L, et al. Deep learning for predicting COVID-19 malignant progression. Medical Image Analysis. 2021;72:102096. Available from: doi: 10.1016/j.media.2021.102096.

[43]Chen J, Wu L, Zhang J, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Scientifics Reports. 2020;10(1):19196. Available from: doi: 10.1038/s41598-020-76282-0.

[44]Pan F, Li L, Liu B, et al. A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Scientific Reports. 2021;11(1):417. Available from: doi: 10.1038/s41598-020-80261-w.

[45]Han Y, Mu SC, Zhang HD, et al. Artificial intelligence computed tomography helps evaluate the severity of COVID-19 patients: A retrospective study. World Journal of Emergency Medicine. 2022;13(2):91-97. Available from: doi:10.5847/wjem.j.1920-8642.2022.026.

[46]Wang C, Huang P, Wang L, et al. Temporal changes of COVID-19 pneumonia by mass evaluation using CT: a retrospective multi-center study. Annals of Translational Medicine. 2020;8(15):935. Available from: doi: 10.21037/atm-20-4004.

[47]Adams SJ, Henderson RDE, Yi X, et al. Artificial intelligence solutions for analysis of X-ray images. Canadian Association of Radiologists Journal. 2021;72(1):60-72. Available from: doi:10.1177/0846537120941671.

[48]Spathis D, Vlamos P. Diagnosing asthma and chronic obstructive pulmonary disease with machine learning. Health Informatics Journal. 2019;25(3):811-827. Available from: doi:10.1177/1460458217723169.

How to Cite

Zhang, C., . W. Wu, J. Yang, and J. Sun. “Application of Artificial Intelligence in Respiratory Medicine”. Journal of Digital Health, vol. 1, no. 1, Apr. 2022, pp. 30-39, doi:10.55976/jdh.1202215330-39.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.