Make Knowledge Veritable, Visible and Valuable.

The effect of data diversity on the performance of deep learning models for predicting early gastric cancer under endoscopy

Conghui Shi 1 , Jia Li 2 , Lianlian Wu 3 *

  • 1. Department of Gastroenterology; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision; Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
  • 2. Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
  • 3. Department of Gastroenterology, Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China

Correspondence: wu_leanne@whu.edu.cn

DOI: https://doi.org/10.55976/jdh.1202214319-24

  • Received

    01 December 2021

  • Revised

    14 February 2022

  • Accepted

    21 February 2022

  • Published

    21 February 2022

Deep learning Early gastric cancer Data diversity

Show More

Abstract


References
V

[1]Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published correction appears in CA Cancer J Clin. 2020 Jul;70(4):313]. CA: A Cancer Journal for Clinicians 2018; 68(6):394-424. doi:10.3322/caac.21492.

[2]de Vries AC, Kuipers EJ. Epidemiology of premalignant gastric lesions: implications for the development of screening and surveillance strategies. Helicobacter. 2007; 12 Suppl 2:22-31. doi:10.1111/j.1523-5378. 2007. 00562. x.

[3]Panteris V, Nikolopoulou S, Lountou A, Triantafillidis JK. Diagnostic capabilities of high-definition white light endoscopy for the diagnosis of gastric intestinal metaplasia and correlation with histologic and clinical data. European Journal of Gastroenterology & Hepatology. 2014; 26(6):594-601. doi:10.1097/MEG.0000000000000097.

[4]Quénéhervé L, Neunlist M, Bruley des Varannes S, Tearney G, Coron E. Nouvelles stratégies d'analyse endoscopique des maladies digestives [Novel endoscopic techniques to image the upper gastrointestinal tract]. Medecine Sciences: M/S. 2015; 31(8-9):777-783. doi:10.1051/medsci/20153108017.

[5]Ling T, Wu L, Fu Y, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy. Endoscopy. 2021; 53(5):469-477. doi:10.1055/a-1229-0920.

[6]Muto M, Yao K, Kaise M, et al. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G) [published correction appears in Dig Endosc. 2016 Jul;28(5):630]. Digestive Endoscopy. 2016; 28(4):379-393. doi:10.1111/den.12638.

[7]Sivanathan V, Tontini GE, Möhler M, Galle PR, Neumann H. Advanced endoscopic imaging for diagnosis of inflammatory bowel diseases: Present and future perspectives. Digestive Endoscopy. 2018; 30(4):441-448. doi:10.1111/den.13023.

[8]Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer. 2020; 23(1):126-132. doi:10.1007/s10120-019-00992-2.

[9]Lau JYW, Yu Y, Tang RSY, et al. Timing of Endoscopy for Acute Upper Gastrointestinal Bleeding. New England Journal of Medicine. 2020; 382(14):1299-1308. doi:10.1056/NEJMoa1912484.

[10]Min JK, Kwak MS, Cha JM. Overview of Deep Learning in Gastrointestinal Endoscopy. Gut and Liver. 2019; 13(4):388-393. doi:10.5009/gnl18384.

[11]Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy. 2021; 53(12):1199-1207. doi:10.1055/a-1350-5583.

[12]Fatoum H, Hanna S, Halamka JD, Sicker DC, Spangenberg P, Hashmi SK. Blockchain Integration With Digital Technology and the Future of Health Care Ecosystems: Systematic Review. Journal of Medical Internet Research. 2021; 23(11): e19846. Published 2021 Nov 2. doi:10.2196/19846.

[13]Tao GL, Liu YK, Tang JJ, et al. Zhonghua Shao Shang Za Zhi. 2021; 37(8):747-751. doi:10.3760/cma.j.cn501120-20200318-00179.

[14]He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 2016; 770 - 778. doi:10.1109/ CVPR. 2016. 90.

[15]Baldi P, Sadowski P. The Dropout Learning Algorithm. Artificial Intelligence. 2014; 210:78-122. doi: 10.1016/j.artint.2014.02.004.

[16]Tanner MA,Wong WH. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association,1987; 82(398):528 - 540. doi: 10.2307/2289457

[17]Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks. 1998; 11(4):761-767. doi: 10. 1016 / s0893 - 6080(98)00010 - 0.

[18]Tauriello DV, Calon A, Lonardo E, Batlle E. Determinants of metastatic competency in colorectal cancer. Molecular Oncology. 2017; 11(1):97-119. doi:10.1002/1878-0261.12018.

[19]Clark RD. Boosted leave-many-out cross-validation: the effect of training and test set diversity on PLS statistics. Journal of Computer-Aided Molecular Design. 2003; 17(2-4):265-275. doi:10.1023/a:1025366721142.

How to Cite

Shi, C., J. Li, and L. Wu. “The Effect of Data Diversity on the Performance of Deep Learning Models for Predicting Early Gastric Cancer under Endoscopy”. Journal of Digital Health, vol. 1, no. 1, Feb. 2022, pp. 19-24, doi:10.55976/jdh.1202214319-24.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.