Chenxia Zhang 1 , Lianlian Wu 2 *
Correspondence: wu_leanne@whu.edu.cn
DOI: https://doi.org/10.55976/jdh.120221423-18
Show More
[1]Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021; 71(3):209-249. doi: 10.3322/caac.21660.
[2]Cai Q, Zhu C, Yuan Y, Feng Q, Feng Y, Hao Y, et al. Development and validation of a prediction rule for estimating gastric cancer risk in the Chinese high-risk population: a nationwide multicentre study. Gut. 2019; 68(9):1576-1587. doi: 10.1136/gutjnl-2018-317556.
[3]Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020; 396(10251):635-648. doi: 10.1016/S0140-6736(20)31288-5.
[4]Ladabaum U, Dominitz JA, Kahi C, Schoen RE. Strategies for Colorectal Cancer Screening. Gastroenterology. 2020; 158(2):418-432. doi: 10.1053/j.gastro.2019.06.043.
[5]Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016; 388(10060):2654-2664. doi: 10.1016/S0140-6736(16)30354-3.
[6]Yoshida N, Doyama H, Yano T, Horimatsu T, Uedo N, Yamamoto Y, et al. Early gastric cancer detection in high-risk patients: a multicentre randomised controlled trial on the effect of second-generation narrow band imaging. Gut. 2021; 70(1):67-75. doi: 10.1136/gutjnl-2019-319631.
[7]Emura F, Rodriguez-Reyes C, Giraldo-Cadavid L. Early Gastric Cancer: Current Limitations and What Can Be Done to Address Them. The American Journal of Gastroenterology. 2019; 114(6):841-5. doi: 10.14309/ajg.0000000000000220.
[8]Zhang X, Li M, Chen S, Hu J, Guo Q, Liu R, et al. Endoscopic Screening in Asian Countries Is Associated With Reduced Gastric Cancer Mortality: A Meta-analysis and Systematic Review. Gastroenterology. 2018; 155(2):347-54.e9. doi: 10.1053/j.gastro.2018.04.026.
[9]Shah SC, Canakis A, Peek RM, Jr., Saumoy M. Endoscopy for Gastric Cancer Screening Is Cost Effective for Asian Americans in the United States. Clinical Gastroenterology Hepatology. 2020; 18(13):3026-39. doi: 10.1016/j.cgh.2020.07.031.
[10]Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018; 2(10):719-731. doi: 10.1038/s41551-018-0305-z.
[11]Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016; 529(7587):484-9. doi: 10.1038/nature16961.
[12]Krittanawong C, Kaplin S. Artificial Intelligence in Global Health. European Heart Journal. 2021; 42(24):2321-2322. doi: 10.1093/eurheartj/ehab036.
[13]Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nature reviews. Cancer. 2018; 18(8):500-510. doi: 10.1038/s41568-018-0016-5.
[14]Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. The Lancet. Oncology. 2019; 20(5):e253-e61. doi: 10.1016/S1470-2045(19)30154-8.
[15]Lee EY, Maloney NJ, Cheng K, Bach DQ. Machine learning for precision dermatology: Advances, opportunities, and outlook. Journal of the American Academy Dermatology. 2021; 84(5):1458-1459. doi: 10.1016/j.jaad.2020.06.1019.
[16]Chahal D, Byrne MF. A primer on artificial intelligence and its application to endoscopy. Gastrointestinal Endoscopy. 2020; 92(4):813-20.e4. doi: 10.1016/j.gie.2020.04.074.
[17]LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436-44. doi: 10.1038/nature14539.
[18]Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of Deep Learning and Reinforcement Learning to Biological Data. IEEE Transactions on Neural Networks and Learning System. 2018; 29(6):2063-2079. doi: 10.1109/TNNLS.2018.2790388.
[19]Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986; 323(6088):533-536. doi: 10.1038/323533a0.
[20]LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation. 1989; 1(4):541-551. doi: 10.1162/neco.1989.1.4.541.
[21]Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computation. 2006; 18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527.
[22]L. Deng, G. Hinton and B. Kingsbury. New types of deep neural network learning for speech recognition and related applications: an overview. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada: IEEE; 2013. pp. 8599-8603. doi: 10.1109/ICASSP.2013.6639344.
[23]Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. 1998; 86(11):2278-324. doi: 10.1109/5.726791.
[24]Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM. 2017; 60(6):84-90. doi: 10.1145/3065386.
[25]Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, et al. Deep learning-enabled medical computer vision. NPJ Digital Medicine. 2021; 4(1):5. doi: 10.1038/s41746-020-00376-2.
[26]Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2018; 154(2):360-373. doi: 10.1053/j.gastro.2017.08.023.
[27]Coleman HG, Xie SH, Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology. 2018; 154(2):390-405. doi: 10.1053/j.gastro.2017.07.046.
[28]Yang XX, Li Z, Shao XJ, Ji R, Qu JY, Zheng MQ, et al. Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Digestive Endoscopy. 2021; 33(7):1075-1084. doi: 10.1111/den.13908.
[29]Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointestinal Endoscopy. 2020; 91(1):41-51. Doi: 10.1016/j.gie.2019.08.018.
[30]Everson MA, Garcia-Peraza-Herrera L, Wang HP, Lee CT, Chung CS, Hsieh PH, et al. A clinically interpretable convolutional neural network for the real-time prediction of early squamous cell cancer of the esophagus: comparing diagnostic performance with a panel of expert European and Asian endoscopists. Gastrointestinal Endoscopy. 2021; 94(2):273-281. doi: 10.1016/j.gie.2021.01.043.
[31]Oyama T, Inoue H, Arima M, Momma K, Omori T, Ishihara R, et al. Prediction of the invasion depth of superficial squamous cell carcinoma based on microvessel morphology: magnifying endoscopic classification of the Japan Esophageal Society. Esophagus. 2017; 14(2):105-112. doi: 10.1007/s10388-016-0527-7.
[32]Sharma P, Shaheen NJ, Katzka D, Bergman J. AGA Clinical Practice Update on Endoscopic Treatment of Barrett's Esophagus With Dysplasia and/or Early Cancer: Expert Review. Gastroenterology. 2020; 158(3):760-769. doi: 10.1053/j.gastro.2019.09.051.
[33]Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointestinal Endoscopy. 2019; 90(3):407-414. doi: 10.1016/j.gie.2019.04.245.
[34]Geboes K, Hoorens A. The cell of origin for Barrett's esophagus. Science. 2021; 373(6556):737-738. doi: 10.1126/science.abj9797.
[35]Kamboj AK, Leggett CL. Barrett's esophagus indefinite for dysplasia carries a definite risk of neoplasia. Gastrointestinal Endoscopy. 2021; 94(2):271-272. doi: 10.1016/j.gie.2021.03.019.
[36]Hashimoto R, Requa J, Dao T, Ninh A, Tran E, Mai D, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video). Gastrointestinal Endoscopy. 2020; 91(6):1264-71.e1. doi: 10.1016/j.gie.2019.12.049.
[37]Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza LA, Jr., et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut. 2020; 69(4):615-616. doi: 10.1136/gutjnl-2019-319460.
[38]Frei NF, Stachler MD, Bergman J. Risk stratification in Barrett's esophagus patients with diagnoses of indefinite for dysplasia: the definite silver bullet has not (yet) been found. Gastrointestinal Endoscopy. 2020; 91(1):11-3. doi: 10.1016/j.gie.2019.09.020.
[39]Ebigbo A, Mendel R, Rückert T, Schuster L, Probst A, Manzeneder J, et al. Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot study. Endoscopy. 2021; 53(9):878-883. doi: 10.1055/a-1311-8570.
[40]Hoda KM, Rodriguez SA, Faigel DO. EUS-guided sampling of suspected GI stromal tumors. Gastrointestinal Endoscopy. 2009; 69(7):1218-23. doi: 10.1016/j.gie.2008.09.045.
[41]Kuroki K, Oka S, Tanaka S, Yorita N, Hata K, Kotachi T, et al. Clinical significance of endoscopic ultrasonography in diagnosing invasion depth of early gastric cancer prior to endoscopic submucosal dissection. Gastric Cancer. 2021; 24(1):145-155. doi: 10.1007/s10120-020-01100-5.
[42]Cassani L, Aihara H, Anand GS, Chahal P, Dacha S, Duloy A, et al. Core curriculum for EUS. Gastrointestinal Endoscopy. 2020; 92(3):469-473. doi: 10.1016/j.gie.2020.04.026.
[43]Zhang M, Zhu C, Wang Y, Kong Z, Hua Y, Zhang W, et al. Differential diagnosis for esophageal protruded lesions using a deep convolution neural network in endoscopic images. Gastrointestinal Endoscopy. 2021; 93(6):1261-1272.e2. doi: 10.1016/j.gie.2020.10.005.
[44]Dong TS, Kalani A, Aby ES, Le L, Luu K, Hauer M, et al. Machine Learning-based Development and Validation of a Scoring System for Screening High-Risk Esophageal Varices. Clinical Gastroenterology Hepatol. 2019; 17(9):1894-1901.e1. doi: 10.1016/j.cgh.2019.01.025.
[45]Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017; 65(1):310-335. doi: 10.1002/hep.28906.
[46]Chen M, Wang J, Xiao Y, Wu L, Hu S, Chen S, et al. Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video). Gastrointestinal Endoscopy. 2021; 93(2):422-32.e3. doi: 10.1016/j.gie.2020.06.058.
[47]Agarwal S, Sharma S, Kumar M, Venishetty S, Bhardwaj A, Kaushal K, et al. Development of a machine learning model to predict bleed in esophageal varices in compensated advanced chronic liver disease: A proof of concept. Journal of Gastroenterology Hepatol. 2021; 36(10):2935-2942. doi: 10.1111/jgh.15560.
[48]Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, et al. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy. 2019; 51(6):522-531. doi: 10.1055/a-0855-3532.
[49]Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer. 2020; 23(1):126-132. doi: 10.1007/s10120-019-00992-2.
[50]Tang D, Zhou J, Wang L, Ni M, Chen M, Hassan S, et al. A Novel Model Based on Deep Convolutional Neural Network Improves Diagnostic Accuracy of Intramucosal Gastric Cancer (With Video). Frontiers in Oncology. 2021; 11:622827. doi: 10.3389/fonc.2021.622827.
[51]Hanada Y, Wang KK. Safety and feasibility of same-day discharge after esophageal endoscopic submucosal dissection. Gastrointestinal Endoscopy. 2021; 93(4):853-860. doi: 10.1016/j.gie.2020.07.037.
[52]Draganov PV, Wang AY, Othman MO, Fukami N. AGA Institute Clinical Practice Update: Endoscopic Submucosal Dissection in the United States. Clinical Gastroenterologgy Hepatology. 2019; 17(1):16-25.e1. doi: 10.1016/j.cgh.2018.07.041.
[53]Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021; 24(1):1-21. doi: 10.1007/s10120-020-01042-y.
[54]Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointestinal Endoscopy. 2019; 89(4):806-15.e1. doi: 10.1016/j.gie.2018.11.011.
[55]Ling T, Wu L, Fu Y, Xu Q, An P, Zhang J, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy. Endoscopy. 2021; 53(5):469-477. doi: 10.1055/a-1229-0920.
[56]Wu L, Wang J, He X, Zhu Y, Jiang X, Chen Y, et al. Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with videos). Gastrointestinal Endoscopy. 2022; 95(1):92-104.e3. doi: 10.1016/j.gie.2021.06.033.
[57]den Hollander WJ, Holster IL, den Hoed CM, Capelle LG, Tang TJ, Anten MP, et al. Surveillance of premalignant gastric lesions: a multicentre prospective cohort study from low incidence regions. Gut. 2019; 68(4):585-593. doi: 10.1136/gutjnl-2017-314498.
[58]Shichijo S, Hirata Y, Niikura R, Hayakawa Y, Yamada A, Ushiku T, et al. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointestinal Endoscopy. 2016; 84(4):618-24. doi: 10.1016/j.gie.2016.03.791.
[59]Zhang Y, Li F, Yuan F, Zhang K, Huo L, Dong Z, et al. Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Digestive and Liver Disease. 2020; 52(5):566-572. doi: 10.1016/j.dld.2019.12.146.
[60]Xu M, Zhou W, Wu L, Zhang J, Wang J, Mu G, et al. Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video). Gastrointestinal Endoscopy. 2021; 94(3):540-548.e4. doi: 10.1016/j.gie.2021.03.013.
[61]Leja M, Grinberga-Derica I, Bilgilier C, Steininger C. Review: Epidemiology of Helicobacter pylori infection. Helicobacter. 2019; 24 Suppl 1:e12635. doi: 10.1111/hel.12635.
[62]Samet JM, Chiu WA, Cogliano V, Jinot J, Kriebel D, Lunn RM, et al. The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification. Journal of National Cancer Institute. 2020; 112(1):30-37. doi: 10.1093/jnci/djz169.
[63]Yoshii S, Mabe K, Watano K, Ohno M, Matsumoto M, Ono S, et al. Validity of endoscopic features for the diagnosis of Helicobacter pylori infection status based on the Kyoto classification of gastritis. Digestive Endoscopy. 2020; 32(1):74-83. doi: 10.1111/den.13486.
[64]Okamura T, Iwaya Y, Kitahara K, Suga T, Tanaka E. Accuracy of Endoscopic Diagnosis for Mild Atrophic Gastritis Infected with Helicobacter pylori. Clinical Endoscopy. 2018; 51(4):362-367. doi: 10.5946/ce.2017.177.
[65]Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T, et al. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine. 2017; 25:106-11. doi: 10.1016/j.ebiom.2017.10.014.
[66]Zheng W, Zhang X, Kim JJ, Zhu X, Ye G, Ye B, et al. High Accuracy of Convolutional Neural Network for Evaluation of Helicobacter pylori Infection Based on Endoscopic Images: Preliminary Experience. Clinical and Translational Gastroenterology. 2019; 10(12):e00109. doi: 10.14309/ctg.0000000000000109.
[67]Bisschops R, Areia M, Coron E, Dobru D, Kaskas B, Kuvaev R, et al. Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2016; 48(9):843-64. doi: 10.1055/s-0042-113128.
[68]Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019; 68(12):2161-2169. doi: 10.1136/gutjnl-2018-317366.
[69]Wu L, He X, Liu M, Xie H, An P, Zhang J, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy. 2021; 53(12):1199-1207. doi: 10.1055/a-1350-5583.
[70]Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature. 2000; 405(6785):417. doi: 10.1038/35013140.
[71]Flemming J, Cameron S. Small bowel capsule endoscopy: Indications, results, and clinical benefit in a University environment. Medicine (Baltimore). 2018; 97(14):e0148. doi: 10.1097/MD.0000000000010148.
[72]Costamagna G, Shah SK, Riccioni ME, Foschia F, Mutignani M, Perri V, et al. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology. 2002;123(4):999-1005. doi: 10.1053/gast.2002.35988.
[73]Aoki T, Yamada A, Aoyama K, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy. 2019; 89(2):357-363.e2. doi: 10.1016/j.gie.2018.10.027.
[74]Ding Z, Shi H, Zhang H, Meng L, Fan M, Han C, et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology. 2019; 157(4):1044-1054.e5. doi: 10.1053/j.gastro.2019.06.025.
[75]Yamada A, Niikura R, Otani K, Aoki T, Koike K. Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy. 2021; 53(8):832-836. doi: 10.1055/a-1266-1066.
[76]Leenhardt R, Souchaud M, Houist G, Le Mouel JP, Saurin JC, Cholet F, et al. A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy. Endoscopy. 2021; 53(9):932-936. doi: 10.1055/a-1301-3841.
[77]Saraiva MM, Ferreira JPS, Cardoso H, Afonso J, Ribeiro T, Andrade P, et al. Artificial intelligence and colon capsule endoscopy: development of an automated diagnostic system of protruding lesions in colon capsule endoscopy. Techniques Coloproctology. 2021; 25(11):1243-1248. doi: 10.1007/s10151-021-02517-5.
[78]Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F, et al. Global trends in colorectal cancer mortality: projections to the year 2035. International Journal of Cancer. 2019; 144(12):2992-3000. doi: 10.1002/ijc.32055.
[79]Chen H, Li N, Ren J, Feng X, Lyu Z, Wei L, et al. Participation and yield of a population-based colorectal cancer screening programme in China. Gut. 2019; 68(8):1450-1457. doi: 10.1136/gutjnl-2018-317124.
[80]Hassan C, Spadaccini M, Iannone A, Maselli R, Jovani M, Chandrasekar VT, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointestinal Endoscopy. 2021; 93(1):77-85.e6. doi: 10.1016/j.gie.2020.06.059.
[81]Barua I, Vinsard DG, Jodal HC, Løberg M, Kalager M, Holme Ø, et al. Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy. 2021; 53(3):277-284.doi: 10.1055/a-1201-7165.
[82]Luo X, Wang J, Han Z, Yu Y, Chen Z, Huang F, et al. Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointestinal Endoscopy. 2021; 94(3):627-638.e1. doi: 10.1016/j.gie.2021.03.936.
[83]Ichimasa K, Kudo SE, Mori Y, Misawa M, Matsudaira S, Kouyama Y, et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy. 2018; 50(3):230-240. doi: 10.1055/s-0043-122385.
[84]Click B, Pinsky PF, Hickey T, Doroudi M, Schoen RE. Association of Colonoscopy Adenoma Findings With Long-term Colorectal Cancer Incidence. JAMA. 2018; 319(19):2021-2031. doi: 10.1001/jama.2018.5809.
[85]Waldmann E, Kammerlander AA, Gessl I, Penz D, Majcher B, Hinterberger A, et al. Association of Adenoma Detection Rate and Adenoma Characteristics With Colorectal Cancer Mortality After Screening Colonoscopy. Clinical Gastroenterology and Hepatology. 2021; 19(9):1890-1898. doi: 10.1016/j.cgh.2021.04.023.
[86]Kaminski MF, Wieszczy P, Rupinski M, Wojciechowska U, Didkowska J, Kraszewska E, et al. Increased Rate of Adenoma Detection Associates With Reduced Risk of Colorectal Cancer and Death. Gastroenterology. 2017; 153(1):98-105. doi: 10.1053/j.gastro.2017.04.006.
[87]Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, et al. Magnitude, Risk Factors, and Factors Associated With Adenoma Miss Rate of Tandem Colonoscopy: A Systematic Review and Meta-analysis. Gastroenterology. 2019; 156(6):1661-1674.e11. doi: 10.1053/j.gastro.2019.01.260.
[88]Kaminski MF, Thomas-Gibson S, Bugajski M, Bretthauer M, Rees CJ, Dekker E, et al. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2017; 49(4):378-397. doi: 10.1055/s-0043-103411.
[89]Kudo SE, Misawa M, Mori Y, Hotta K, Ohtsuka K, Ikematsu H, et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clinical Gastroenterology and Hepatology. 2020; 18(8):1874-1881.e2. doi: 10.1016/j.cgh.2019.09.009.
[90]Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nature Biomedical Engineering. 2018; 2(10):741-748. doi: 10.1038/s41551-018-0301-3.
[91]Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019; 68(10):1813-1819. doi: 10.1136/gutjnl-2018-317500.
[92]Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. The lancet. Gastroenterology & hepatology. 2020; 5(4):343-351. doi: 10.1016/S2468-1253(19)30411-X.
[93]Sinonquel P, Eelbode T, Hassan C, Antonelli G, Filosofi F, Neumann H, et al. Real-time unblinding for validation of a new CADe tool for colorectal polyp detection. Gut. 2021; 70(4):641-643. doi: 10.1136/gutjnl-2020-322491.
[94]Kaplan GG. The global burden of IBD: from 2015 to 2025. Nature reviews. Gastroenterology & Hepatology. 2015; 12(12):720-7. doi: 10.1038/nrgastro.2015.150.
[95]Lee DW, Koo JS, Choe JW, Suh SJ, Kim SY, Hyun JJ, et al. Diagnostic delay in inflammatory bowel disease increases the risk of intestinal surgery. World Journal of Gastroenterology. 2017; 23(35):6474-6481. doi: 10.3748/wjg.v23.i35.6474.
[96]Moon CM, Jung SA, Kim SE, Song HJ, Jung Y, Ye BD, et al. Clinical Factors and Disease Course Related to Diagnostic Delay in Korean Crohn's Disease Patients: Results from the Connect Study. PLoS One. 2015; 10(12):e0144390. doi: 10.1371/journal.pone.0144390.
[97]Frøslie KF, Jahnsen J, Moum BA, Vatn MH. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology. 2007; 133(2):412-22. doi: 10.1053/j.gastro.2007.05.051.
[98]Osada T, Ohkusa T, Yokoyama T, Shibuya T, Sakamoto N, Beppu K, et al. Comparison of several activity indices for the evaluation of endoscopic activity in UC: inter- and intraobserver consistency. Inflammatory Bowel Diseases. 2010; 16(2):192-7. doi: 10.1002/ibd.21000.
[99]Takenaka K, Ohtsuka K, Fujii T, Negi M, Suzuki K, Shimizu H, et al. Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images From Patients With Ulcerative Colitis. Gastroenterology. 2020; 158(8):2150-2157. doi: 10.1053/j.gastro.2020.02.012.
[100]Bossuyt P, Nakase H, Vermeire S, de Hertogh G, Eelbode T, Ferrante M, et al. Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut. 2020; 69(10):1778-1786. doi: 10.1136/gutjnl-2019-320056.
[101]Gottlieb K, Requa J, Karnes W, Chandra Gudivada R, Shen J, Rael E, et al. Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks. Gastroenterology. 2021; 160(3):710-719.e2. doi: 10.1053/j.gastro.2020.10.024.
[102]Soffer S, Kopylov U, Klang E. Artificial Intelligence for the Evaluation of Mucosal Healing in IBD: The Future is Here. Gastroenterology. 2021; 161(3):1073-1074. doi: 10.1053/j.gastro.2020.12.052.
[103]Zhou J, Wu L, Wan X, Shen L, Liu J, Zhang J, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video). Gastrointestinal Endoscopy. 2020; 91(2):428-435.e2. doi: 10.1016/j.gie.2019.11.026.
[104]Zhou W, Yao L, Wu H, Zheng B, Hu S, Zhang L, et al. Multi-step validation of a deep learning-based system for the quantification of bowel preparation: a prospective, observational study. The Lancet. Digital Health. 2021; 3(11):e697-e706. doi: 10.1016/S2589-7500(21)00109-6.
[105]Shaukat A, Rector TS, Church TR, Lederle FA, Kim AS, Rank JM, et al. Longer Withdrawal Time Is Associated With a Reduced Incidence of Interval Cancer After Screening Colonoscopy. Gastroenterology. 2015; 149(4):952-7. doi: 10.1053/j.gastro.2015.06.044.
[106]Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. The Lancet. Gastroenterology & Hepatology. 2020; 5(4):352-61. doi: 10.1016/S2468-1253(19)30413-3.
Copyright © 2022 Chenxia Zhang, Lianlian Wu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn