Shiying Zhou 1 , Shihua Cao 2 * , Xule Zhu 3 , Yuyang Jia 4 , Xinyu Zhang 5 , Han Shi 6 , Qiurong Peng 7
Correspondence: csh@hznu.edu.cn
DOI: https://doi.org/10.55976/jdh.42025141970-87
Show More
[1]Keefe RS, Fenton WS. How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr Bull. 2007; 33(4):912-20. doi:10.1093/schbul/sbm046.
[2]Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric Disease and Treatment. 2006; 2(4):531-6. doi: 10.2147/nedt.2006.2.4.531.
[3]GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022; 7(2):e105-e25. doi:10.1016/S2468-2667(21)00249-8.
[4]Naghavi M, Ong KL, Aali A, Ababneh HS, Abate YH, Abbafati C, et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2100-2132. doi: 10.1016/S0140-6736(24)00367-2.
[5]Lanctôt KL, Hahn-Pedersen JH, Eichinger C, Freeman C, Clark A, Rafael L, et al. Burden of illness in people with Alzheimer's disease: a systematic review of epidemiology, comorbidities and mortality. The Journal of Prevention of Alzheimer's Disease. 2024;11(1):97-107. doi: 10.14283/jpad.2023.61.
[6]Office of Science and Technology Policy. Emerging technologies to support an aging population: a report by the Task Force on Research and Development for Technology to Support Aging Adults. Washington, DC: Committee on Technology of the National Science & Technology Council; 2019.
[7]Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discovery. 2021;11(4):900-15. doi: 10.1158/2159-8290.CD-21-0090.
[8]Oliveira AM, Radanovic M, Mello PCH, Buchain PC, Vizzotto ADB, Celestino DL, et al. Nonpharmacological interventions to reduce behavioral and psychological symptoms of dementia: a systematic review. Biomed Research International. 2015; 2015:218980. doi: 10.1155/2015/218980.
[9]Scales K, Zimmerman S, Miller SJ. Evidence-based nonpharmacological practices to address behavioral and psychological symptoms of dementia. The Gerontologist. 2018; 58(suppl_1):S88-S102. doi: 10.1093/geront/gnx167.
[10]Kameyama M, Umeda-Kameyama Y. Applications of artificial intelligence in dementia. Geriatrics & Gerontology International. 2024; 24 Suppl 1(Suppl 1):25-30. doi: 10.1111/ggi.14709.
[11]Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research. 2021;133:285-96. doi: /10.1016/j.jbusres.2021.04.070.
[12]Wu CC, Su CH, Islam MM, Liao MH. Artificial intelligence in dementia: a bibliometric study. Diagnostics (Basel). 2023;13(12): 2109. doi: 10.3390/diagnostics13122109.
[13]Aijing L, Shuangcheng Y, Lu M. Medical Literature Information Retrieval. Third Edition. Beijing, China. People's MedicalPublishing House; 2005.
[14]Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial intelligence in health care: bibliometric analysis. Journal of Medical Internet Research. 2020; 22(7):e18228. doi:10.2196/18228.
[15]Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 1960; 20(1):37-46. doi: 10.1177/001316446002000104.
[16]Nam S, Kim D, Jung W, Zhu Y. Understanding the research landscape of deep learning in biomedical science: scientometric analysis. Journal of Medical of Internet Research. 2022; 24(4): e28114. doi: 10.2196/28114.
[17]Ma S, Zhang L. Price's law for spin fields on a Schwarzschild background. Annals of PDE. 2022; 8(2):1-42. doi: 10.1007/s40818-022-00139-0.
[18]Stavropoulos TG, Papastergiou A, Mpaltadoros L, Nikolopoulos S, Kompatsiaris I. IoT wearable sensors and devices in elderly care: a literature review. Sensors (Basel). 2020; 20(10):2826. doi: 10.3390/s20102826.
[19]Bailey JD, Baker JC, Rzeszutek MJ, Lanovaz MJ. Machine learning for supplementing behavioral assessment. Perspectives on Behavior Science. 2021;44(4):605-19. doi: 10.1007/s40614-020-00273-9.
[20]Tacchino A, Pedullà L, Bonzano L, Vassallo C, Battaglia MA, Mancardi G, et al. A new app for at-home cognitive training: description and pilot testing on patients with multiple sclerosis. JMIR Mhealth Uhealth. 2015;3(3):e85. doi: 10.2196/mhealth.4269.
[21]Baldimtsi E, Mouzakidis C, Karathanasi EM, Verykouki E, Hassandra M, Galanis E, et al. Effects of virtual reality physical and cognitive training intervention on cognitive abilities of elders with mild cognitive impairment. Journal of Alzheimer's Disease Report. 2023;7(1):1475-90. doi: 10.3233/ADR-230099.
[22]Rouaix N, Retru-Chavastel L, Rigaud AS, Monnet C, Lenoir H, Pino M. Affective and engagement issues in the conception and assessment of a robot-assisted psychomotor therapy for persons with dementia. Frontiers in Psychology. 2017;8:1067. doi: 10.3389/fpsyg.2017.00950.
[23]Abdollahi H, Mahoor M, Zandie R, Sewierski J, Qualls S. Artificial emotional intelligence in socially assistive robots for older adults: a pilot study. IEEE Transactions on Affective Computing. 2022; 14(3):1-1. doi: 10.1109/taffc.2022.3143803.
[24]Menne F, Dörr F, Schräder J, Tröger J, Habel U, König A, et al. The voice of depression: speech features as biomarkers for major depressive disorder. BMC Psychiatry. 2024;24(1):1-12. doi: 10.1186/s12888-024-06253-6.
[25]Ostergaard KJ, Summers JD. Development of a systematic classification and taxonomy of collaborative design activities. Journal of Engineering Design. 2009; 20(1):57-81. doi: 10.1080/09544820701499654.
[26]Ali O, Amini A, Al-Ahmad A. Intersecting AI and medicine for improved care and administrative efficiency. Hershey, PA: IGI Global; 2025.
[27]J.F. Avila-Tomás, M.A. Mayer-Pujadas, V.J. Quesada-Varela. Artificial intelligence and its applications in medicine I: introductory background to AI and robotics. (La inteligencia artificial y sus aplicaciones en medicina I: introducción antecedentes a la IA y robótica). Atención Primaria. 2020; 52(8):778-784. doi: 10.1016/j.aprim.2020.04.013.
[28]Streib FE, Harja OY, Dehmer M. Artificial intelligence: a clarification of misconceptions, myths and desired status. Frontiers in Artificial Intelligence. 2020;3:524339. doi: 10.3389/frai.2020.524339.
[29]Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, et al. Artificial intelligence and machine learning for medical imaging: a technology review. Physica Medica. 2021;83:242-56. doi: 10.1016/j.ejmp.2021.04.016.
[30]Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, et al. Deep learning-enabled medical computer vision. NPJ Digital Medicine. 2021;4(1):1-9. doi: 10.1038/s41746-020-00376-2.
[31]Albarqouni S, Bakas S, Bano S, Cardoso MJ, Khanal B, Landman B, et al. Distributed, collaborative, and federated learning, and affordable AI and healthcare for resource diverse global health. In: Lecture Notes in Computer Science. Cham: Springer Nature; 2022.
[32]Qiu Z, Yang P, Xiao C, Wang S, Xiao X, Qin J, et al. 3D multimodal fusion network with disease-induced joint learning for early Alzheimer's disease diagnosis. IEEE Transactions on Medical Imaging. 2024;43(9):3161-3175. doi: 10.1109/TMI.2024.3386937.
[33]Islam MZ, Sagar ASMS, Kim HS. Enabling pandemic-resilient healthcare: edge-computing-assisted real-time elderly caring monitoring system. Applied Science. 2024;14(18):8486. doi: 10.3390/app14188486.
[34]Hassan A, Prasad VK, Bhattacharya P, Dutta P, Damaševičius R. Federated learning and AI for healthcare 5.0. Hershey, PA: IGI Global; 2023.
[35]Birkenbihl C, Emon MA, Vrooman HA, Westwood S, Lovestone S, Hofmann-Apitius M, et al. Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice. The EPMA Journal. 2020;11(3):367-76. doi: 10.1007/s13167-020-00216-z.
[36]Adam M, Albaseer A, Baroudi U, Abdallah M. Survey of multimodal federated learning: exploring data integration, challenges, and future directions. IEEE Open Journal of the Communications Society. 2025;6:2510-38. doi: 10.1109/OJCOMS.2025.3554537.
[37]Yelne S, Chaudhary M, Dod K, Sayyad A, Sharma R. Harnessing the power of AI: a comprehensive review of its impact and challenges in nursing science and healthcare. Cureus. 2023;15(11):e49252. doi: 10.7759/cureus.49252.
[38]Abadir P, Oh E, Chellappa R, Choudhry N, Demiris G, Ganesan D, et al. Artificial intelligence and technology collaboratories: innovating aging research and Alzheimer's care. Alzheimer's Dementia. 2024;20(2):1-12. doi: 10.1002/alz.13710.
[39]Rambach T, Gleim P, Mandelartz S, Heizmann C, Kunze C, Kellmeyer P. Challenges and facilitation approaches for the participatory design of AI-based clinical decision support systems - protocol for a scoping review. JMIR Research Protocols. 2024;13:e58185. doi: 10.2196/58185.
[40]Mennella C, Maniscalco U, Di Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon. 2024;10(4):e26297. doi: 10.1016/j.heliyon.2024.e26297.
[41]Feng C, Feng D, Huang G, Liu Z, Wang Z, Xia XG. Robust privacy-preserving recommendation systems driven by multimodal federated learning. IEEE Transactions on Neural Networks and Learning Systems. 2025;36(5):8896-8910. doi: 10.1109/TNNLS.2024.3411402.
[42]Inglada Galiana L, Corral Gudino L, Miramontes González P. Ethics and Artificial Intelligence. Revista Clinica Espanola. 2024;224(3):178-186. doi: 10.1016/j.rceng.2024.02.003.
[43]Cho S, Ensari I, Weng C, Kahn MG, Natarajan K. Factors affecting the quality of person-generated wearable device data and associated challenges: rapid systematic review. JMIR Mhealth Uhealth. 2021;9(3):e20738. doi: 10.2196/20738.
[44]Chen MC, Cheng YT, Chen RW. Improve the accuracy of fall detection based on artificial intelligence algorithm. Comput Modeling in Engineering and Sciences. 2021;128(3):1103-19. doi: 10.32604/cmes.2021.015589.
[45]Ma Z, Nur, Zhang M, Musa KI, Hanis TM, Xiao T, et al. A review of federated learning technology and its research progress in healthcare applications. Applied Intelligence. 2025;55(10):1-25. doi: 10.1007/s10489-025-06627-7.
[46]Siriwardhana Y, Porambage P, Liyanage M, Ylianttila M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Communications Surveys & Tutorials. 2021;23(2):1160-92. doi: 10.1109/COMST.2021.3061981.
Copyright © 2025 Shiying Zhou, Shihua Cao, Xule Zhu, Yuyang Jia, Xinyu Zhang, Han Shi, Qiurong Peng
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn