Sabeen Khaliq 1 * , Konstantin Koshechkin 2
Correspondence: sabeenkhaliq430@gmail.com
DOI: https://doi.org/10.55976/jdh.42025141429-38
Show More
[1]Ibraheem Ali, Koshechkin K. Advancing drug discovery: the role of AI and machine learning in accelerating therapeutic. Journal of Sciences. 2025; 4(2 (83)), 587-597.
[2]Arlen Meyers. Bioentrepreneurship: opportunities and challenges. In: Satish Nambisan (ed) Embracing Entrepreneurship Across Disciplines. 2015; 73-85. doi: 10.4337/9781782549963.00013.
[3]Bonnie Clipper, Tami H. Wyatt, Michael Ackerman, Tim Raderstorf. Emerging Trends in Healthcare Innovation. In: Bernadette Mazurek Melnyk, Tim Raderstorf (eds) Evidence-Based Leadership, Innovation and Entrepreneurship in Nursing and Healthcare: A Practical Guide to Success. 2019; doi: 10.1891/9780826160720.0018.
[4]Attila A. Seyhan, Claudio Carini. Are innovation and new technologies in precision medicine paving a new era in patient-centric care? Journal of translational medicine. 2019; 17(1). doi: 10.1186/s12967-019-1864-9.
[5]Whende M. Carroll. Emerging technologies and healthcare innovation. In: Emerging technologies for nurses–Implications for practice. 2021; 13-16.
[6]Raghav Awasthi, Sai Prasad Ramachandran, Shreya Mishra, Dwarikanath Mahapatra, Hajra Arshad, Aarit Atreja, et al. Artificial Intelligence in Healthcare: 2024 Year in Review. medRxiv. 2025-02. doi: 10.1101/2025.02.26.25322978.
[7]Chen Fu, Qiuchen Chen. The future of pharmaceuticals: Artificial intelligence in drug discovery and development. Journal of Pharmaceutical Analysis. 2025; 101248. doi: 10.1016/j.jpha.2025.101248.
[8]Suriyaamporn P, Pamornpathomkul B, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Opanasopit P. The artificial intelligence-powered new era in pharmaceutical research and development: a review. AAPS PharmSciTech. 2024; 25(6), 188. doi: 10.1208/s12249-024-02901-y.
[9]Fan Zhang, Daniel Kreuter, Yichen Chen, Sören Dittmer, Samuel Tull, et al. Recent methodological advances in federated learning for healthcare. Patterns. 2024; 5(6). doi: 10.1016/j.patter.2024.101006.
[10]Rushikesh Dhudum, Ankit Ganeshpurkar, Atmaram Pawar. Revolutionizing drug discovery: A comprehensive review of AI applications. Drugs and Drug Candidates. 2024; 3(1), 148-171. doi: 10.3390/ddc3010009.
[11]Yadi Zhou, Fei Wang, Jian Tang, Ruth Nussinov, Feixiong Cheng. Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health. 2020; 2(12): e667-e676. doi: 10.1016/S2589-7500(20)30192-8.
[12]Ai Amin, Iffat Quaes Chowdhury, Rodshi Abyaz, et al. Artificial Intelligence in Pharmacy: Innovations, Applications, and Future Emerging Challenges. International Journal of Scientific Research in Engineering and Management. 2024; 08(12): 1-18. doi: 10.55041/IJSREM40335.
[13]Stefan Harrer, Jeffrey Menard, Michael Rivers, Darren V.S. Green, Joel Karpiak, et. al. Artificial intelligence drives the digital transformation of pharma. In: Artificial Intelligence in clinical practice. 2024: 345-372. doi: 10.1016/B978-0-443-15688-5.00049-8.
[14]Naomi Haefner, Joakim Wincent, Vinit Parida, Oliver Gassmann. Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change. 2021; 162: 120392. doi: 10.1016/j.techfore.2020.120392.
[15]Khoroshevsky, V. F., Efimenko, V. F., Efimenko, I. V. Artificial intelligence, biotechnology and medicine: Reality, myths and trends. In: Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds) Artificial Intelligence. RCAI 2020. Lecture Notes in Computer Science. 2020; 12412. Springer, Cham. doi: 10.1007/978-3-030-59535-7_31
[16]Hassan, M., Borycki, E. M., Kushniruk, A. W. Artificial intelligence governance framework for healthcare. Healthcare Management Forum. 2024; 38(2), 125-130. doi: 10.1177/08404704241291226.
[17]Singh, B. Artificial Intelligence (AI) in the Digital Healthcare and Medical Industry: Projecting Vision for Governance and Regulations. In: B. Soufiene, C. Chakraborty (Eds.) Responsible AI for Digital Health and Medical Analytics. 2025; pp. 161-188. doi: 10.4018/979-8-3693-6294-5.ch007.
[18]Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth et, al. The future of digital health with federated learning. NPJ digital medicine. 2020; 3(1). doi: 10.1038/s41746-020-00323-1.
[19]Paul-Philipp Jacobs, Constantin Ehrengut, Andreas Michael Bucher, Tobias Penzkofer, et al. Challenges in Implementing the Local Node Infrastructure for a National Federated Machine Learning Network in Radiology. Healthcare. 2023; 11(17): 2377. doi: 10.3390/healthcare11172377.
[20]Adegoke, K.; Adegoke, A.; Dawodu, D.; Bayowa, A.; Adekoya, A. Interoperability in Digital Healthcare: Enhancing Consumer Health and Transforming Care Systems. Preprints. 2025; 2025021774. doi: 10.20944/preprints202502.1774.v1.
[21]Minnie Jacob, Andreas L. Lopata, Majed Dasouki, Anas M. Abdel Rahman. Metabolomics toward personalized medicine. Mass Spectrometry Reviews. 2019; 38(3): 221-238. doi: 10.1002/mas.21548.
[22]Sunil Mathur, Joseph Sutton. Personalized medicine could transform healthcare. Biomedical Reports. 2017; 7(1), 3-5. doi: 10.3892/br.2017.922.
[23]Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Viale, G., Trapani, D., Curigliano, G. Role of next-generation sequencing technologies in personalized medicine. In: Pravettoni, G., Triberti, S. (eds) P5 eHealth: An Agenda for the Health Technologies of the Future. Springer, Cham. doi: 10.1007/978-3-030-27994-3_8.
[24]Dean Ho, Stephen R. Quake, Edward R. B. McCabe, Wee Joo Chng, et, al. Enabling technologies for personalized medicine. Trends in Biotechnology. 2020; 38(5), 497-518. doi: 10.1016/j.tibtech.2019.12.021.
[25]Kayser, C., Dutra, L. A., dos Reis-Neto, E. T., Castro, C. H. D. M., Fritzler, M. J., Andrade, L. E. C. The role of autoantibody testing in modern personalized medicine. Clinical Reviews in Allergy & Immunology. 2022; 63(2), 251-288. doi: 10.1007/s12016-021-08918-6.
[26]Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., Müller, H. AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology. 2023; 74, 16-24. doi: 10.1016/j.nbt.2023.02.001.
[27]Khan, S., Majdalawieh, M., Kharadi, D., Verma, T., Farhin, T., Kumar, A. From Digital Disruption to AI Revolution: The Evolution of Healthcare Transformation. Artificial Intelligence in Medicine and Healthcare. 2025; 31.
[28]Bohr, A., Memarzadeh, K. Current healthcare, big data, and machine learning. In: Artificial Intelligence in Healthcare. 2020; 1-24. doi: 10.1016/B978-0-12-818438-7.00001-0.
[29]Koshechkin, K. A., Lebedev, G. S., Fartushnyi, E. N., Orlov, Y. L. Holistic approach for artificial intelligence implementation in pharmaceutical products lifecycle: a meta-analysis. Applied Sciences. 2022; 12(16): 8373. doi: 10.3390/app12168373.
[30]Apell, P., Eriksson, H. Artificial intelligence (AI) healthcare technology innovations: the current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management. 2023; 35(2), 179-193. doi: 10.1080/09537325.2021.1971188 .
[31]Kemppainen, L., Pikkarainen, M., Hurmelinna-Laukkanen, P., Reponen, J. Connected health innovation: data access challenges in the interface of AI companies and hospitals. Technology Innovation Management Review. 2019; 9(12): 43-55. doi: 10.22215/timreview/1291.
[32]Disha Gupta. How AI is Reshaping Pharma: Use Cases and Challenges. 2025. Available from: https://whatfix.com/blog/ai-in-pharma/. [Accessed 9th July 2025].
[33]Bio-IT World. Trendspotting: Predictions for Bio-IT World in 2025. Available from: https://www.bio-itworld.com/news/2025/01/07/trendspotting-predictions-for-bio-it-world-in-2025. [Accessed 9th July 2025].
[34]Broekhuizen, T., Dekker, H., de Faria, P., Firk, S., Nguyen, D. K., Sofka, W. AI for managing open innovation: Opportunities, challenges, and a research agenda. Journal of Business Research. 2023; 167, 114196. doi: 10.1016/j.jbusres.2023.114196.
[35]Koshechkin, K., Lebedev, G., Radzievsky, G., Seepold, R., Martinez, N. M. Blockchain technology projects to provide telemedical services: Systematic review. Journal of Medical Internet Research. 2021; 23(8), e17475. doi: 10.2196/17475.
[36]Oborotov, G. A., Koshechkin, K. A., Orlov, Y. L. Application of Artificial Intelligence or machine learning in risk-sharing agreements for pharmacotherapy risk management. Journal of Integrative Bioinformatics. 2023; 20(3), 20230014. doi: 10.1515/jib-2023-0014.
[37]Lea-Smith, D. J., Hassard, F., Coulon, F., Partridge, N., Horsfall, L., Parker, K. D., Krasnogor, N. Engineering biology applications for environmental solutions: potential and challenges. Nature Communications. 2025; 16(1), 3538. doi: 10.1038/s41467-025-58492-0.
[38]Mohanan, P. V. Artificial Intelligence and Biological Sciences. Boca Raton: Taylor & Francis Group; 2025. doi: 10.1201/9781003492726.
[39]Chandak, T., Jayashree, J., Vijayashree, J. Trends and Advancements of AI and XAI in Drug Discovery. In: Explainable AI (XAI) for Sustainable Development. 2024; pp. 233-255. Chapman and Hall/CRC.
[40]Wray, J., Whitmore, A. Network-driven drug discovery. In: Artificial Intelligence in Drug Design. 2021; pp. 177-190. New York, NY: Springer US.
[41]Aritra, S., Indu, S. Harnessing the Power of Artificial Intelligence in Pharmaceuticals: Current Trends and Future Prospects. Intelligent Pharmacy. 2025; 3(3): 181-192. doi: 10.1016/j.ipha.2024.12.001.
[42]Baumgartner, R., Arora, P., Bath, C., Burljaev, D., Ciereszko, K., Custers, B., Williams, R. Fair and equitable AI in biomedical research and healthcare: Social science perspectives. Artificial Intelligence in Medicine. 2023; 144: 102658. doi: 10.1016/j.artmed.2023.102658.
Copyright © 2025 Sabeen Khaliq, Konstantin Koshechkin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn