Minal R. Narkhede 1 * , Nilesh I. Wankhede 2 , Akanksha M. Kamble 3
Correspondence: smbt_pharmaceutics@rediffmail.com
DOI: https://doi.org/10.55976/jdh.4202513361-23
Show More
[1]Bansal H. Negligence and Drugs in Medical Law. Cambridge Open Engage. 2023. doi:10.33774/coe-2023-cvw6c.
[2]Williamson L. Patient and Citizen Participation in Health : The Need for Improved Ethical Support. The American Journal of Bioethics. 2014; 14(6): 4-16. doi: 10.1080/15265161.2014.900139.
[3]Brall C, Schröder-Bäck P, Maeckelberghe E. Ethical aspects of digital health from a justice point of view. The European Journal of Public Health. 2019; 29:18-22. doi: 10.1093/eurpub/ckz167.
[4]Pal A, Saxena R, Saxena S. Artificial Intelligence Revolution in Healthcare : Transforming Diagnosis , Treatment , and Patient Care. Asian Journal of Advances in Research. 2024; 7(1): 241-263.
[5]Favaretto M, Shaw D, Clercq E De, Joda T, Elger BS. Big Data and Digitalization in Dentistry : A Systematic Review of the Ethical Issues. International Journal of Environmental Research and Publich Health. 2020; 17(7): 2495. doi: 10.3390/ijerph17072495.
[6]Lastrucci A, Pirrera A, Lepri G, Giansanti D. Algorethics in Healthcare : Balancing Innovation and Integrity in AI Development. Algorithms. 2024; 17(10): 342. doi: 10.3390/a17100432.
[7]Piasecki J, Cheah PY. Ownership of individual-level health data, data sharing, and data governance. BMC Med Ethics. 2022; 23(1):104. doi: 10.1186/s12910-022-00848-y.
[8]Prasun Kumar, Aparna Kumari (ed.). Blockchain for Biomedical Research and Healthcare Concept, Trends, and Future Implications. Interdisciplinary Biotechnological Advances (IBA). Singapore; Springer Nature, 2024. doi: 10.1007/978-981-97-4268-4.
[9]Campbell K, Parsi K. A New Age of Patient Transparency: An Organizational Framework for Informed Consent. Journal of Law, Medicine & Ethics. 2017; 45(1): 60-65. doi:10.1177/1073110517703100.
[10]Anurogo, D., Hardin La Ramba, Nabila Diyana Putri, & Ulfah Mahardika Pramono Putri. Digital Literacy 5.0 to Enhance Multicultural Education. Multicultural Islamic Education Review. 2023; 1(2): 109-179. doi: 10.23917/mier.v1i2.3414.
[11]Guidance WHO. Ethics and Governance of Artificial Intelligence for Health. In: Ethics and Governance of Artificial Intelligence for Health. 2021. p. 3-22.
[12]Mccarthy RL. Ethics and patient privacy. Journal of the American Pharmacists Association. 2008; 48(6): e144-155. doi:10.1331/JAPhA.2008.07144.
[13]Chiruvella V, Guddati AK. Ethical Issues in Patient Data Ownership. Interactive Journal of Medical Research. 2021;10(2): e22269. doi: 10.2196/22269.
[14]Scheibner J, Ienca M, Kechagia S, Troncoso-pastoriza R, Raisaro JL, Fellay J, Vayena E. Data protection and ethics requirements for multisite research with health data : a comparative examination of legislative governance frameworks and the role of data protection technologies. Journal of Law and Biosciences. 2020; 7(1): lsaa010. doi: 10.1093/jlb/lsaa010.
[15]Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare : management, analysis and future prospects. Journal of Big Data. 2019; 54(6). doi: 10.1186/s40537-019-0217-0.
[16]Kiseleva A, Kotzinos D, De Hert P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Frontiers in Artificial Intelligence. 2022; 5: 879603. doi: 10.3389/frai.2022.879603.
[17]Sutter E De, Meszaros J, Borry P, Huys I. Digitizing the Informed Consent Process : A Review of the Regulatory Landscape in the European Union. Frontiers in Medicine. 2022; 9: 906448. doi: 10.3389/fmed.2022.906448.
[18]Verreydt S, Yskout K, Joosen W, Leuven KU. Security and Privacy Requirements for Electronic Consent : A Systematic Literature Review. ACM Transactions on Computing for Healthcare. 2021; 2(2): 1-24. doi: 10.1145/3433995.
[19]Asswad J, Marx Gómez J. Data Ownership: A Survey. Information. 2021; 12(11): 465. doi: 10.3390/info12110465.
[20]Lopez LJR, Millan Mayorga D, Martinez Poveda LH, Amaya AFC, Rojas Reales W. Hybrid Architectures Used in the Protection of Large Healthcare Records Based on Cloud and Blockchain Integration: A Review. Computers. 2024; 13(6):152. doi: 10.3390/computers13060152.
[21]Burton LC, Anderson GF, Kues IW. Using electronic health records to help coordinate care. Milbank Quarterly. 2004; 82(3): 457-81. doi: 10.1111/j.0887-378X.2004.00318.x.
[22]Mello MM, Adler-Milstein J, Ding KL, Savage L. Legal Barriers to the Growth of Health Information Exchange—Boulders or Pebbles? Milbank Quarterly. 2018; 96(1):110-43. doi: 10.1111/1468-0009.12313.
[23]Pablo RGJ, Roberto DP, Victor SU, Isabel GR, Paul C, Elizabeth OR. Big data in the healthcare system: a synergy with artificial intelligence and blockchain technology. Journal of Integrative Bioinformatics. 2021;19(1): 20200035. doi: 10.1515/jib-2020-0035.
[24]Haleem A, Javaid M, Singh RP, Suman R, Rab S. Blockchain technology applications in healthcare: An overview. International Journal of Intelligent Networks. 2021; 2:130-139. doi: 10.1016/j.ijin.2021.09.005.
[25]Kashyap A, Yadav A, Bajaj V, Khan Y, Arora S, Maini L. Blockchain Technology in Healthcare: The Idea and What Lies Byond. MAMC Journal of Medical Sciences. 2022; 8(3):187-192. doi: 10.4103/mamcjms.mamcjms_26_22.
[26]Modi KJ, Kapadia N. Securing Healthcare Information over Cloud Using Hybrid Approach. In: Panigrahi CR, Pujari AK, Misra S, Pati B, Li KC (eds). Progress in Advanced Computing and Intelligent Engineering. Singapore: Springer Singapore; 2019. p. 63-74.
[27]Wang X, Garg S, Lin H, Hu J, Kaddoum G, Member S, et al. Toward Accurate Anomaly Detection in Industrial Internet of Things Using Hierarchical Federated Learning. IEEE Internet of Things Journal. 2022; 9(10):7110-7119. doi: 10.1109/JIOT.2021.3074382.
[28]Hoofnagle CJ, Sloot B van der, Borgesius FZ. The European Union general data protection regulation: What it is and what it means. Information & Communications Technology Law. 2019; 28(1): 65-98. doi: 10.1080/13600834.2019.1573501.
[29]Rosenbloom ST, Smith JRL, Bowen R, Burns J, Riplinger L, Payne TH. Updating HIPAA for the electronic medical record era. Journal of the American Medical Informatics Association. 2019; 26(10):1115-1119. doi: 10.1093/jamia/ocz090.
[30]Thorogood A. Canada: will privacy rules continue to favour open science? Hum Genet. 2018; 137(8): 595-602. doi: 10.1007/s00439-018-1905-0.
[31]Ali M, Naeem F, Tariq M, Member S. Federated Learning for Privacy Preservation in Smart Healthcare Systems : A Comprehensive Survey. IEEE Journal of Biomedical and Health Informatics. 2022; 27(2): 778-789. doi: 10.1109/JBHI.2022.3181823.
[32]Gliklich RE, Leavy MB DN. Principles of Registry Ethics, Data Ownership, and Privacy. In: Registries for Evaluating Patient Outcomes: A User’s Guide. 4th edition [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562583/.
[33]Nandimath O. Consent and medical treatment: The legal paradigm in India. Indian Journal of Urology. 2009; 25(3): 343-347. doi: 10.4103/0970-1591.56202.
[34]Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024;14(2): 675. doi: 10.3390/app14020675.
[35]Voigt P, Bussche A. Annex I : Juxtaposition of the Provisions and Respective Recitals of the GDPR. 2017. doi:10.1007/978-3-319-57959-7.
[36]Kang M Chow, Chi C Hung, Lam K Yan. Baseline Technical Measures for Data Privacy IN the Cloud ( Updated ). 2023:1-86. doi: 10.13140/RG.2.2.34833.65121.
[37]Bareh CK. Reviewing the Privacy Implications of India's Digital Personal Data Protection Act ( 2023 ) from Library Contexts. Journal of Library & Information Technology. 2024; 44(1): 50-58. doi: 10.14429/djlit.44.1.18410.
[38]Institute of Medicine (US) Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy Rule. Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research. Nass SJ, Levit LA, Gostin LO, editors. Washington (DC): National Academies Press (US); 2009.
[39]Bakare SS, Adeniyi AO, Akpuokwe CU. Data Privacy Laws and Compliance: A Comparative Review of the EU GDPR and USA Regulations. Computer Science & IT Research Journal. 2024; 5(3): 528-543. doi: 10.51594/csitrj.v5i3.859.
[40]Cohen IG, Mello MM. HIPAA and Protecting Health Information in the 21st Century. JAMA. 2018; 320(3): 231-232. doi: 10.1001/jama.2018.5630.
[41]Yaqoob I, Salah K, Jayaraman R, Al-Hammadi Y. Blockchain for healthcare data management: opportunities, challenges, and future recommendations. Neural Computing and Applications. 2022; 34(14):11475-90. doi: 10.1007/s00521-020-05519-w.
[42]Privacy D. Enhancing Data Protection in Dynamic Consent Management Systems: Formalizing Privacy and Security Definitions Zero-Knowledge Proofs. Sensors. 2023; 23(17): 7604. doi: 10.3390/s23177604.
[43]Albahri AS, Duhaim AM, Fadhel MA, Alnoor A, Baqer NS, Alzubaidi L, et al. A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare : Assessment of Quality, Bias Risk , and Data Fusion. Information Fusion. 2023; 96: 156-191. doi: 10.1016/j.inffus.2023.03.008.
[44]Kaye J, Whitley EA, Lund D, Morrison M, Teare H, Melham K. Dynamic consent : a patient interface for twenty-first century research networks. European Journal of Human Genetics. 2015; 23(2):141-146. doi: 10.1038/ejhg.2014.71.
[45]Lee AR, Koo D, Kim IK, Lee E, Yoo S, Lee HY. Opportunities and challenges of a dynamic consent ‑ based application : personalized options for personal health data sharing and utilization. BMC Med Ethics. 2024; 25. doi: 10.1186/s12910-024-01091-3.
[46]Aziza Chakir, Rohit Bansal, Mohamed Azzouazi (eds). Industry 5.0 and Emerging Technologies Transformation Through Technology and Innovations. Studies in Systems, Decision and Control. Switzerland: Springer Nature, 2024.
[47]Soni H, Grando A, Murcko A, Diaz S, Mukundan M, Idouraine N, et al. State of the art and a mixed-method personalized approach to assess patient perceptions on medical record sharing and sensitivity. Journal of Biomedical Informatics. 2020; 101:103338. doi: 10.1016/j.jbi.2019.103338.
[48]Tierney WM, Schwartz PH. Giving patients granular control of personal health information : Using an ethics ‘ Points to Consider ’ to inform informatics system designers. International Journal of Medical Informatics. 2013; 82(12): 1136-43. doi: 10.1016/j.ijmedinf.2013.08.010.
[49]Etheredge HR. Assessing Global Organ Donation Policies : Opt-In vs Opt-Out. Risk Management and Healthcare Policy. 2021; 14: 1985-1998. doi: 10.2147/RMHP.S270234.
[50]Kaufman D, Bollinger J, Dvoskin R, Scott J. Preferences for opt-in and opt-out enrollment and consent models in biobank research : a national survey of Veterans Administration patients. Genetics in Medicine. 2012; 14(9): 787-794. doi: 10.1038/gim.2012.45.
[51]Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI. Revolutionizing healthcare : the role of artificial intelligence in clinical practice. BMC Medical Education. 2023; 689: 1-15. doi: 10.1186/s12909-023-04698-z.
[52]Rahman A, Hossain S, Muhammad G, Kundu D, Muhammad G. Federated learning-based AI approaches in smart healthcare : concepts, taxonomies, challenges and open issues Data management. Cluster Computing. 2023; 26: 2271-2311. doi: 10.1007/s10586-022-03658-4.
[53]Dankar FK, Gergely M, Malin B, Badji R, Dankar SK, Shuaib K. Dynamic-informed consent : A potential solution for ethical dilemmas in population sequencing initiatives. Computational and Structural Biotechnology Journal. 2020; 18: 913-921. doi: 10.1016/j.csbj.2020.03.027.
[54]Teare HJA, Prictor M, Kaye J. Reflections on dynamic consent in biomedical research : the story so far. European Journal of Human Genetics. 2021; 29: 649-656. doi: 10.1038/s41431-020-00771-z.
[55]Alabdulatif A, Khalil I, Rahman MS. Security of Blockchain and AI-Empowered Smart Healthcare : Application-Based Analysis. Applied Sciences. 2022; 12(21): 11039. doi: 10.3390/app122111039.
[56]Alblas M, Schermer M, Vergouwe Y, Bolt I. Autonomy Challenges in Epigenetic Risk-Stratified Cancer Screening : How Can Patient Decision Aids Support Informed Consent ? Journal of Personalized Medicine. 2019; 9(1): 14. doi: 10.3390/jpm9010014.
[57]Wang X, Peng M, Lin H, Wu Y, Fan X. A privacy-enhanced multiarea task allocation strategy for healthcare 4.0. IEEE Transactions on Industrial Informatics. 2022;19(3): 2740-2748. doi: 10.1109/TII.2022.3189439.
[58]Tortorella GL, Fogliatto FS, Mac Cawley Vergara A, Vassolo R, Sawhney R. Healthcare 4.0: trends, challenges and research directions. Production Planning & Control. 2020; 31(15):1245-1260. doi: 10.1080/09537287.2019.1702226.
[59]Wang X, Hu J, Lin H, Liu W, Moon H, Piran J. Federated Learning-Empowered Disease Diagnosis Mechanism in the Internet of Medical Things : From the Privacy-Preservation Perspective. IEEE Transactions on Industrial Informatics. 2024;19(7): 7905-7913. doi: 10.1109/TII.2022.3210597.
[60]Khan D, Jung LT, Hashmani MA. Systematic Literature Review of Challenges in Blockchain Scalability. Applied. Sciences. 2021; 11(20): 9372. doi: 10.3390/app11209372.
[61]Tariq MU. Revolutionizing health data management with blockchain technology: Enhancing security and efficiency in a digital era. In: Emerging Technologies for Health Literacy and Medical Practice. IGI Global; 2024. p. 153-175.
[62]Homoliak I, Venugopalan S, Reijsbergen D, Hum Q, Schumi R, Szalachowski P. The Security Reference Architecture for Blockchains : Toward a Standardized Model for Studying Vulnerabilities, Threats, and Defenses. IEEE Communications Surveys & Tutorials. 2021; 23(1): 341-390. doi: 10.1109/COMST.2020.3033665.
[63]Bala I, Pindoo IA, Mijwil MM, Abotaleb M, Yundong W. Ensuring Security and Privacy in Healthcare Systems : A Review Exploring Challenges, Solutions, Future Trends, and the Practical Applications of Artificial Intelligence. Jordan Medical Journal. 2024; 58(3).
[64]Hanna M, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J, et al. Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning. Modern Pathology. 2024; 38(3): 100686. doi: 10.1016/j.modpat.2024.100686.
[65]Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting black-box models: a review on explainable artificial intelligence. Cognitive Compution. 2024; 16(1): 45-74. doi: 10.1007/s12559-023-10179-8.
[66]Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. In: Artificial intelligence in healthcare. Artificial Intelligence in Healthcare. 2020: 295-336. doi: 10.1016/B978-0-12-818438-7.00012-5.
[67]Zhang J, Zhu H, Wang F, Zhao J, Xu Q, Li H. Security and privacy threats to federated learning: Issues, methods, and challenges. Security Communication Networks. 2022; 2022(1): 2886795. doi: 10.1155/2022/2886795.
[68]Yazdinejad A, Dehghantanha A, Karimipour H, Srivastava G, Parizi RM. A robust privacy-preserving federated learning model against model poisoning attacks. IEEE Transactions on Information Forensics and Security. 2024; 19: 6693-6708. doi: 10.1109/TIFS.2024.3420126.
[69]Bouacida N, Mohapatra P. Vulnerabilities in federated learning. IEEE Access. 2021; 9: 63229-63249. doi: 10.1109/ACCESS.2021.3075203.
[70]Zhu T, Ye D, Wang W, Zhou W, Philip SY. More than privacy: Applying differential privacy in key areas of artificial intelligence. IEEE Transactions on Knowledge and Data Engineering. 2020; 34(6): 2824-2843. doi: 10.1109/TKDE.2020.3014246.
[71]Alvim M, Chatzikokolakis K, Palamidessi C, Pazii A. Local differential privacy on metric spaces: optimizing the trade-off with utility. 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford, UK. 2018: 262-267, doi: 10.1109/CSF.2018.00026.
[72]Hu H, Salcic Z, Sun L, Dobbie G, Yu PS, Zhang X. Membership inference attacks on machine learning: A survey. ACM Computer Survey. 2022; 54(11s):1-37. doi: 10.1145/3523273.
[73]Stock P, Shilov I, Mironov I, Sablayrolles A. Defending against reconstruction attacks with rényi differential privacy. 2022. doi: 10.48550/arXiv.2202.07623.
[74]Ebadi H, Sands D, Schneider G. Differential privacy: Now it’s getting personal. ACM Sigplan Notice. 2015; 50(1): 69-81. doi: 10.1145/2775051.2677005.
[75]Antunes RS, André da Costa C, Küderle A, Yari IA, Eskofier B. Federated learning for healthcare: Systematic review and architecture proposal. ACM Transaction on Intelligent Systems and Technology. 2022;13(4):1-23. doi: 10.1145/3501813.
[76]Abbas SR, Abbas Z, Zahir A, Lee SW. Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration. Healthcare. 2024; 12(24): 2587. doi: 10.3390/healthcare12242587.
[77]Hassan MU, Rehmani MH, Chen J. Differential privacy techniques for cyber physical systems: A survey. IEEE Communications Surveys & Tutorials. 2019; 22(1):746-789. doi: 10.1109/COMST.2019.2944748.
[78]Tang J, Korolova A, Bai X, Wang X, Wang X. Privacy loss in apple’s implementation of differential privacy on macos 10.12. doi: 10.48550/arXiv.1709.02753.
[79]Shahnaz A, Qamar U, Khalid A. Using blockchain for electronic health records. IEEE access. 2019; 7:147782-95. doi: 10.1109/ACCESS.2019.2946373.
[80]Ekblaw AC. MedRec: blockchain for medical data access, permission management and trend analysis. Massachusetts Institute of Technology; 2017.
[81]Musamih A, Salah K, Jayaraman R, Arshad J, Debe M, Al-Hammadi Y, et al. A blockchain-based approach for drug traceability in healthcare supply chain. IEEE access. 2021; 9:9728-43. doi: 10.1109/ACCESS.2021.3049920.
[82]Omar IA, Jayaraman R, Salah K, Yaqoob I, Ellahham S. Applications of blockchain technology in clinical trials: review and open challenges. Arabian Journal for Science and Engineering. 2021; 46(4):3001-3015. doi: 10.1007/s13369-020-04989-3.
[83]Hang L, Chen C, Zhang L, Yang J. Blockchain for applications of clinical trials: Taxonomy, challenges, and future directions. IET Communications. 2022; 16(20): 2371-93. doi: 10.1049/cmu2.12488.
[84]Hollo Z, Martin DE. An equitable approach to enhancing the privacy of consumer information on my health record in Australia. Health Information Management Journal. 2023; 52(1): 37-40. doi: 10.1177/18333583211019764.
[85]Pang PCI, McKay D, Chang S, Chen Q, Zhang X, Cui L. Privacy concerns of the Australian My Health Record: Implications for other large-scale opt-out personal health records. Information Processing & Management. 2020; 57(6): 102364. doi: 10.1016/j.ipm.2020.102364.
[86]Yu P, Zhang Y, Gong Y, Zhang J. Unintended adverse consequences of introducing electronic health records in residential aged care homes. International Journal of Medical Informatics. 2013; 82(9):772-88. doi: 10.1016/j.ijmedinf.2013.05.008.
[87]Soares B, Ferreira A, Veiga PM. The Benefits and Challenges of Blockchain Technology and eHealth Implementation in Estonia-A Literature Review. Applied Medical Informatics. 2023; 45(4).
[88]Menachemi N, Rahurkar S, Harle CA, Vest JR. Review The benefits of health information exchange : an updated systematic review. Journal of the American Medical Informatics Association. 2018; 25(9):1259-1265. doi: 10.1093/jamia/ocy035.
[89]Wu H, LaRue EM. Linking the health data system in the US: Challenges to the benefits. International Journal of Nursing Sciences. 2017; 4(4): 410-417. doi: 10.1016/j.ijnss.2017.09.006.
[90]Velan D, Mohandoss H, Valarmathi S, Sundar JS, Kalpana S, Srinivas G. Digital health in your hands: A narrative review of exploring Ayushman Bharat’s digital revolution. World Journal of Advanced Research and Reviews. 2024; 23(3):1630-1641. doi: 10.30574/wjarr.2024.23.3.2762.
[91]Paliwal S, Parveen S, Singh O, Alam MA, Ahmed J. The Role of Ayushman Bharat Health Account (ABHA) in Telehealth: A New Frontier of Smart Healthcare Delivery in India. In: Arai, K (eds) Proceedings of the Future Technologies Conference (FTC) 2023. 2023; 2: 388-406. doi: 10.1007/978-3-031-47451-4_28.
[92]Matthan R. The Privacy Implications of Using Data REVIEW. Journal of the Indian Institute of Science. 2020; 100(4): 611-621. doi: 10.1007/s41745-020-00198-x.
[93]Bajpai N, Wadhwa M. National Teleconsultation Service in India: eSanjeevani OPD. ICT India Working Paper; 2021.
[94]Rau E, Tischendorf T, Mitzscherlich B. Implementation of the electronic health record in the German healthcare system: an assessment stakeholder groups. Frontiers in Health Service. 2024; 4: 1370759. doi: 10.3389/frhs.2024.1370759.
[95]Alsamhi SH, Myrzashova R, Hawbani A, Kumar S, Srivastava S, Zhao L, et al. Federated Learning Meets Blockchain in Decentralized Data Sharing : Healthcare Use Case. IEEE Internet of Things Journal. 2024;11(11): 19602-19615. doi: 10.1109/JIOT.2024.3367249.
Copyright © 2025 Minal R. Narkhede, Nilesh I. Wankhede, Akanksha M. Kamble
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn