Make Knowledge Veritable, Visible and Valuable.

The internet of medical things in healthcare management: a review

Chukwuebuka Joseph Ejiyi 1 , Zhen Qin 2 * , Makuachukwu Bennedith Ejiyi 3 , Grace Ugochi Nneji 4 , Happy Nkanta Monday 5 , Favour Amarachi Agu 6 , Thomas Ugochukwu Ejiyi 7 , Chidinma Diokpo 8 , Chiduzie Obed Orakwue 9

  • 1. School of Information and Software Engineering University of Electronic Science and Technology of China, China
  • 2. School of Information and Software Engineering University of Electronic Science and Technology of China;Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China
  • 3. Pharmacy Department University of Nigeria Nsukka, Nigeria
  • 4. Oxford Brookes Sino-British Collaborative Education Chengdu University of Technology China, China
  • 5. Oxford Brookes Sino-British Collaborative Education Chengdu University of Technology China, China
  • 6. Department of Public Health University of Nigeria Nsukka, Nigeria
  • 7. Department of Pure and Industrial Chemistry University of Nigeria Nsukka, Nigeria
  • 8. Department of Food Science Technology, Federal University of Technology Owerri, Nigeria
  • 9. Department of Agriculture and Bio-Resources Engineering, Federal University of Agriculture Abeokuta, Nigeria

Correspondence: qinzhen@uestc.edu.cn

DOI: https://doi.org/10.55976/jdh.22023116330-62

  • Received

    05 February 2023

  • Revised

    13 June 2023

  • Accepted

    25 June 2023

  • Published

    28 June 2023

Applications Healthcare devices Internet of Medical Things (IoMT) Management Security Wearables

Show More

Abstract


References
V

[1]S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, “The internet of things for health care: A comprehensive survey,” IEEE Access, 2015, doi: 10.1109/ACCESS.2015.2437951.

[2]J. T. Kelly, K. L. Campbell, E. Gong, and P. Scuffham, “The Internet of Things: Impact and Implications for Health Care Delivery,” Journal of Medical Internet Research. 2020. doi: 10.2196/20135.

[3]S. Vishnu, S. R. Jino Ramson, and R. Jegan, “Internet of Medical Things (IoMT)-An overview,” 2020. doi: 10.1109/ICDCS48716.2020.243558.

[4]S. Razdan and S. Sharma, “Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies,” IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India). 2021. doi: 10.1080/02564602.2021.1927863.

[5]L. J. Ramirez Lopez, G. P. Aponte, and A. R. Garcia, “Internet of things applied in healthcare based on open hardware with low-energy consumption,” Healthcare Informatics Research, 2019, doi: 10.4258/hir.2019.25.3.230.

[6]J. Torous, K. J. Myrick, N. Rauseo-Ricupero, and J. Firth, “Digital mental health and COVID-19: Using technology today to accelerate the curve on access and quality tomorrow,” JMIR Mental Health. 2020. doi: 10.2196/18848.

[7]M. Fisk, A. Livingstone, and S. W. Pit, “Telehealth in the context of COVID-19: Changing perspectives in Australia, the United Kingdom, and the United States,” Journal of Medical Internet Research, 2020, doi: 10.2196/19264.

[8]Q. Ye, J. Zhou, and H. Wu, “Using information technology to manage the COVID-19 Pandemic: Development of a technical framework based on practical experience in China,” JMIR Medical Informatics, 2020, doi: 10.2196/19515.

[9]L. Minh Dang, M. J. Piran, D. Han, K. Min, and H. Moon, “A survey on internet of things and cloud computing for healthcare,” Electronics (Switzerland), 2019, doi: 10.3390/electronics8070768.

[10]G. Aceto, V. Persico, and A. Pescapé, “Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0,” Journal of Industrial Information Integration. 2020. doi: 10.1016/j.jii.2020.100129.

[11]K. Ashton, “That Internet of Things Thing,” RFID Journal, 2009.

[12]D. L. Brock, “white paper The Compact Electronic Product Code A 64-bit Representation of the Electronic Product Code,” Mit Auto-Id Center Massachusetts, 2002.

[13]Y. YIN, Y. Zeng, X. Chen, and Y. Fan, “The internet of things in healthcare: An overview,” Journal of Industrial Information Integration. 2016. doi: 10.1016/j.jii.2016.03.004.

[14]N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of things,” Scientific American. 2004. doi: 10.1038/scientificamerican1004-76.

[15]M. C. Roco and W. S. Bainbridge, “Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science,” Research Technology Management. 2003.

[16]ITU, “ITU Internet report 2005: The internet of things,” ITU Internet Report 2005, 2005.

[17]L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010, doi: 10.1016/j.comnet.2010.05.010.

[18]Y. Ding, Y. Jin, L. Ren, and K. Hao, “An intelligent self-organization scheme for the internet of things,” IEEE Computational Intelligence Magazine, 2013, doi: 10.1109/MCI.2013.2264251.

[19]L. M. R. Tarouco et al., “Internet of Things in healthcare: Interoperatibility and security issues,” 2012. doi: 10.1109/ICC.2012.6364830.

[20]T. Sauter and M. Lobashov, “How to access factory floor information using internet technologies and gateways,” IEEE Transactions on Industrial Informatics, 2011, doi: 10.1109/TII.2011.2166788.

[21]F. Christian and F. Mattern, “‘From the Internet of Computers to the Internet of Things’ in From Active Data Management to Event-Based Systems and More,” in Springer-Verlag Berlin Heidelberg, 2010.

[22]J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, 2013, doi: 10.1016/j.future.2013.01.010.

[23]K. Mitchell-Box and K. L. Braun, “Fathers’ Thoughts on Breastfeeding and Implications for a Theory-Based Intervention,” JOGNN - Journal of Obstetric, Gynecologic, and Neonatal Nursing, 2012, doi: 10.1111/j.1552-6909.2012.01399.x.

[24]N. Dey, A. E. Hassanien, C. Bhatt, A. S. Ashour, and S. C. Satapathy, Internet of Things Next-Generation Analytics Toward and Big Data Intelligence. 1949.

[25]S. Nazir, Y. Ali, N. Ullah, and I. García-Magariño, “Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review,” Wireless Communications and Mobile Computing. 2019. doi: 10.1155/2019/5931315.

[26]M. Kalmeshwar and A. P. D. N. P. K S, “Internet Of Things: Architecture,Issues and Applications,” International Journal of Engineering Research and Applications, 2017, doi: 10.9790/9622-0706048588.

[27]B. Guo, B. Dong, X. Zhang, J. Yang, and Z. Wang, “Research on home healthcare management system based on the improved internet of things architecture,” International Journal of Smart Home, 2015, doi: 10.14257/ijsh.2015.9.9.06.

[28]J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, 2017, doi: 10.1109/JIOT.2017.2683200.

[29]H. Ning and Z. Wang, “Future internet of things architecture: Like mankind neural system or social organization framework?,” IEEE Communications Letters, 2011, doi: 10.1109/LCOMM.2011.022411.110120.

[30]R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” 2012. doi: 10.1109/FIT.2012.53.

[31]T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology, 2016, doi: 10.17485/ijst/2016/v9i45/106507.

[32]P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” Journal of Electrical and Computer Engineering. 2017. doi: 10.1155/2017/9324035.

[33]M. Lombardi, F. Pascale, and D. Santaniello, “Internet of things: A general overview between architectures, protocols and applications,” Information (Switzerland), 2021, doi: 10.3390/info12020087.

[34]W. Kassab and K. A. Darabkh, “A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations,” Journal of Network and Computer Applications, 2020, doi: 10.1016/j.jnca.2020.102663.

[35]S. Li, L. Da Xu, and S. Zhao, “5G Internet of Things: A survey,” Journal of Industrial Information Integration. 2018. doi: 10.1016/j.jii.2018.01.005.

[36]H. Ning and Z. Wang, “IoT-A Internet of Things Architecture,” Communications, 2011.

[37]B. Zhou, “A wireless internet of things architecture based on mobile internet,” International Journal of Online Engineering, 2017, doi: 10.3991/ijoe.v13i10.7745.

[38]V. Caballero, S. Valbuena, D. Vernet, and A. Zaballos, “Ontology-defined middleware for internet of things architectures,” Sensors (Switzerland), 2019, doi: 10.3390/s19051163.

[39]D. D. Miller and E. W. Brown, “Artificial Intelligence in Medical Practice: The Question to the Answer?,” American Journal of Medicine. 2018. doi: 10.1016/j.amjmed.2017.10.035.

[40]I. M. Al-Joboury and E. H. Hemiary, “Internet of Things Architecture Based Cloud for Healthcare,” Iraqi Journal of Information & Communications Technology, 2018, doi: 10.31987/ijict.1.1.7.

[41]P. P. Ray, “A survey on Internet of Things architectures,” Journal of King Saud University - Computer and Information Sciences. 2018. doi: 10.1016/j.jksuci.2016.10.003.

[42]T. Samizadeh Nikoui, A. M. Rahmani, A. Balador, and H. Haj Seyyed Javadi, “Internet of Things architecture challenges: A systematic review,” International Journal of Communication Systems, 2021, doi: 10.1002/dac.4678.

[43]T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges,” IEEE Communications Surveys and Tutorials, 2020, doi: 10.1109/COMST.2020.3009103.

[44]D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A resilient Internet of Things architecture for smart cities,” Annales des Telecommunications/Annals of Telecommunications, 2017, doi: 10.1007/s12243-016-0530-y.

[45]S. D. Verifier and A. H. Drive, “Simulink ® Verification and Validation TM Reference,” ReVision, 2015.

[46]C. Doukas and I. Maglogiannis, “Bringing IoT and cloud computing towards pervasive healthcare,” 2012. doi: 10.1109/IMIS.2012.26.

[47]A. J. Jara, M. A. Zamora, and A. F. Skarmeta, “Knowledge acquisition and management architecture for mobile and personal health environments based on the Internet of things,” 2012. doi: 10.1109/TrustCom.2012.194.

[48]S. Imadali, A. Karanasiou, A. Petrescu, I. Sifniadis, E. Vellidou, and P. Angelidis, “Integration of ehealth service in IPv6 vehicular networks,” 2013. doi: 10.1007/978-3-319-04102-5_7.

[49]A. Abane, M. Daoui, S. Bouzefrane, and P. Muhlethaler, “NDN-over-ZigBee: A ZigBee support for Named Data Networking,” Future Generation Computer Systems, 2019, doi: 10.1016/j.future.2017.09.053.

[50]Z. Alliance, “Zigbee Specification,” Zigbee Alliance website, 2008.

[51]Z. K. Hussein, H. J. Hadi, M. R. Abdul-Mutaleb, and Y. S. Mezaal, “Low cost smart weather station using Arduino and ZigBee,” Telkomnika (Telecommunication Computing Electronics and Control), 2020, doi: 10.12928/TELKOMNIKA.v18i1.12784.

[52]D. S. Pereira et al., “Zigbee Protocol-Based Communication Network for Multi-Unmanned Aerial Vehicle Networks,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2982402.

[53]E. Ronen, A. Shamir, A. O. Weingarten, and C. Oflynn, “IoT Goes Nuclear: Creating a Zigbee Chain Reaction,” IEEE Security and Privacy, 2018, doi: 10.1109/MSP.2018.1331033.

[54]X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen, “Ghost-in-ZigBee: Energy Depletion Attack on ZigBee-Based Wireless Networks,” IEEE Internet of Things Journal, 2016, doi: 10.1109/JIOT.2016.2516102.

[55]J. Xiao and J. T. Li, “Design and implementation of intelligent temperature and humidity monitoring system based on ZigBee and WiFi,” 2020. doi: 10.1016/j.procs.2020.02.072.

[56]M. Gao, P. Wang, Y. Wang, and L. Yao, “Self-Powered ZigBee Wireless Sensor Nodes for Railway Condition Monitoring,” IEEE Transactions on Intelligent Transportation Systems, 2018, doi: 10.1109/TITS.2017.2709346.

[57]I. G. M. N. Desnanjaya, I. M. A. Nugraha, I. W. D. Pranata, and W. Harianto, “Stability data Xbee S2b Zigbee communication on arduino based sumo robot,” Journal of Robotics and Control (JRC), 2021, doi: 10.18196/jrc.2370.

[58]X. Wang, “Analysis of thread schedulability in Huawei LiteOS,” MATEC Web of Conferences, 2021, doi: 10.1051/matecconf/202133605031.

[59]C. Gu, T. Yang, and Q. Chen, “Brief industry paper: Liteos: managing sleep for low-energy IoT,” 2021. doi: 10.1109/RTAS52030.2021.00054.

[60]V. Vanitha, V. Palanisamy, N. Johnson, and G. Aravindhbabu, “LiteOS based Extended Service Oriented Architecture for Wireless Sensor Networks,” International Journal of Computer and Electrical Engineering, 2010, doi: 10.7763/ijcee.2010.v2.173.

[61]T. B. Chandra, P. Verma, and A. K. Dwivedi, “Operating systems for internet of things: A comparative study,” 2016. doi: 10.1145/2905055.2905105.

[62]T. B. Chandra, P. Verma, and A. K. Dwivedi, “Operating Systems for Internet of Things,” 2016. doi: 10.1145/2905055.2905105.

[63]Q. Cao and T. Abdelzaher, “liteOS,” 2006. doi: 10.1145/1182807.1182855.

[64]H. Park, H. Kim, H. Joo, and J. S. Song, “Recent advancements in the Internet-of-Things related standards: A oneM2M perspective,” ICT Express, 2016, doi: 10.1016/j.icte.2016.08.009.

[65]J. Yun, I. Y. Ahn, J. Song, and J. Kim, “Implementation of sensing and actuation capabilities for IoT devices using oneM2M platforms,” Sensors (Switzerland), 2019, doi: 10.3390/s19204567.

[66]P. W. Widya, Y. Yustiawan, and J. Kwon, “A oneM2M-based query engine for internet of things (IoT) data streams,” Sensors (Switzerland), 2018, doi: 10.3390/s18103253.

[67]I. Y. Ahn, N. M. Sung, J. H. Lim, J. Seo, and I. D. Yun, “Development of an onem2m-compliant iot platform for wearable data collection,” KSII Transactions on Internet and Information Systems, 2019, doi: 10.3837/tiis.2019.01.001.

[68]J. Kim, S. C. Choi, J. Yun, and J. W. Lee, “Towards the oneM2M standards for building IoT ecosystem: Analysis, implementation and lessons,” Peer-to-Peer Networking and Applications, 2018, doi: 10.1007/s12083-016-0505-9.

[69]S. Cavalieri, “Semantic interoperability between iec 61850 and onem2m for iot‐enabled smart grids,” Sensors, 2021, doi: 10.3390/s21072571.

[70]S. S. D. Xu, C. H. Chen, and T. C. Chang, “Design of oneM2M-Based Fog Computing Architecture,” IEEE Internet of Things Journal, 2019, doi: 10.1109/JIOT.2019.2929118.

[71]S. Kang and K. Chung, “IoT framework for interoperability in the oneM2M architecture,” Advances in Electrical and Computer Engineering, 2020, doi: 10.4316/AECE.2020.02002.

[72]N. Chaabouni, M. Mosbah, A. Zemmari, and C. Sauvignac, “A OneM2M Intrusion Detection and Prevention System based on Edge Machine Learning,” 2020. doi: 10.1109/NOMS47738.2020.9110473.

[73]R. Zhao, L. Wang, X. Zhang, Y. Zhang, L. Wang, and H. Peng, “A OneM2M-Compliant Stacked Middleware Promoting IoT Research and Development,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2876197.

[74]A. Alaerjan, D. K. Kim, H. Ming, and H. Kim, “Configurable DDS as uniform middleware for data communication in smart grids,” Energies, 2020, doi: 10.3390/en13071839.

[75]R. J. Zygowicz et al., “AMQP is the Internet Protocol for Business Messaging,” 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003 Proceedings (ICASSP ’03), 2013.

[76]J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni, “Testing amqp protocol on unstable and mobile networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, doi: 10.1007/978-3-319-11692-1_22.

[77]D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting IoT platform requirements with open pub/sub solutions,” Annales des Telecommunications/Annals of Telecommunications, 2017, doi: 10.1007/s12243-016-0537-4.

[78]S. P. Jaikar and K. R. Iyer, “A Survey of Messaging Protocols for IoT Systems,” International Journal of Advanced in Management, Technology and Engineering Sciences, 2018.

[79]C. A. Garcia, J. E. Naranjo, and M. V. Garcia, “Analysis of AMQP for Industrial Internet of Things Based on Low-Cost Automation,” 2021. doi: 10.1007/978-3-030-57548-9_22.

[80]E. S. Llamuca, C. A. Garcia, J. E. Naranjo, and M. V. Garcia, “Cyber-physical production systems for industrial shop-floor integration based on AMQP,” 2019. doi: 10.1109/ICI2ST.2019.00014.

[81]N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP,” 2017. doi: 10.1109/SysEng.2017.8088251.

[82]G. Caiza, E. Alvarez-M, E. Remache, A. Ortiz, and M. V. Garcia, “Evaluation of AMQP and CoAP Protocols for Shopfloor communication integration,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020.

[83]A. Depari et al., “An IoT based architecture for enhancing the effectiveness of prototype medical instruments applied to neurodegenerative disease diagnosis,” Sensors (Switzerland), 2019, doi: 10.3390/s19071564.

[84]W. Montalvo, E. S. Llamuca, F. G. Benalcazar, C. A. Garcia, and M. V. Garcia, “Low-cost automation production systems for industrial shop-floor integration based on amqp,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020.

[85]N. Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT protocols for Internet of Things,” 2019. doi: 10.1109/NICS48868.2019.9023812.

[86]M. El Ouadghiri, B. Aghoutane, and N. El Farissi, “Communication model in the internet of things,” 2020. doi: 10.1016/j.procs.2020.10.013.

[87]G. Caiza, C. S. Leon, L. A. Campana, C. A. Garcia, and M. V. Garcia, “Performance Evaluation of AMQP and CoAP for Low-Cost Automation,” 2020. doi: 10.1007/978-3-030-42517-3_26.

[88]A. Prajapati, “AMQP and beyond,” 2021. doi: 10.1109/SmartNets50376.2021.9555419.

[89]M. A. Tariq, M. Khan, M. T. R. Khan, and D. Kim, “Enhancements and challenges in coap—a survey,” Sensors (Switzerland), 2020, doi: 10.3390/s20216391.

[90]R. Herrero, “Analytical model of IoT CoAP traffic,” Digital Communications and Networks, 2019, doi: 10.1016/j.dcan.2018.07.001.

[91]J. H. Jung, M. Gohar, and S. J. Koh, “Coap-based streaming control for IoT applications,” Electronics (Switzerland), 2020, doi: 10.3390/electronics9081320.

[92]A. Larmo, A. Ratilainen, and J. Saarinen, “Impact of coAP and MQTT on NB-IoT system performance,” Sensors (Switzerland), 2019, doi: 10.3390/s19010007.

[93]M. Iglesias-Urkia, A. Orive, A. Urbieta, and D. Casado-Mansilla, “Analysis of CoAP implementations for industrial Internet of Things: a survey,” Journal of Ambient Intelligence and Humanized Computing, 2019, doi: 10.1007/s12652-018-0729-z.

[94]Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” Rfc 7252, 2014.

[95]C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application protocol for billions of tiny internet nodes,” IEEE Internet Computing, 2012, doi: 10.1109/MIC.2012.29.

[96]O. Seller, “LoRaWAN security,” Journal of ICT Standardization, 2021, doi: 10.13052/jicts2245-800X.915.

[97]J. R. Cotrim and J. H. Kleinschmidt, “LoRaWAN Mesh networks: A review and classification of multihop communication,” Sensors (Switzerland). 2020. doi: 10.3390/s20154273.

[98]H. Noura, T. Hatoum, O. Salman, J. P. Yaacoub, and A. Chehab, “LoRaWAN security survey: Issues, threats and possible mitigation techniques,” Internet of Things (Netherlands). 2020. doi: 10.1016/j.iot.2020.100303.

[99]G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoraFarM: A LoRaWAN-based smart farming modular IoT architecture,” Sensors (Switzerland), 2020, doi: 10.3390/s20072028.

[100]P. J. Basford, F. M. J. Bulot, M. Apetroaie-Cristea, S. J. Cox, and S. J. J. Ossont, “LoRaWan for smart city IoT deployments: A long term evaluation,” Sensors (Switzerland), 2020, doi: 10.3390/s20030648.

[101]J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of LoRaWAN for IoT: From technology to application,” Sensors (Switzerland). 2018. doi: 10.3390/s18113995.

[102]R. K. Singh, M. Aernouts, M. De Meyer, M. Weyn, and R. Berkvens, “Leveraging LoRaWAN technology for precision agriculture in greenhouses,” Sensors (Switzerland). 2020. doi: 10.3390/s20071827.

[103]T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, “Slotted ALOHA on LoRaWAN-design, analysis, and deployment,” Sensors (Switzerland), 2019, doi: 10.3390/s19040838.

[104]X. Chen, M. Lech, and L. Wang, “A complete key management scheme for lorawan v1.1,” Sensors, 2021, doi: 10.3390/s21092962.

[105]E. Sisinni et al., “LoRaWAN Range Extender for Industrial IoT,” IEEE Transactions on Industrial Informatics, 2020, doi: 10.1109/TII.2019.2958620.

[106]N. Chinchilla-Romero, J. Navarro-Ortiz, P. Muñoz, and P. Ameigeiras, “Collision avoidance resource allocation for LoRaWAN,” Sensors (Switzerland), 2021, doi: 10.3390/s21041218.

[107]F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Communications Magazine, 2017, doi: 10.1109/MCOM.2017.1600613.

[108]L. Van Scheers, “Internet Web Marketing Challenges Of South African Smes,” Acta Universitatis Danubius: Oeconomica, 2018.

[109]W. J. Owen, “Modeling the Internet and the Web,” Technometrics, 2004, doi: 10.1198/tech.2004.s208.

[110]A. Darwish, A. E. Hassanien, M. Elhoseny, A. K. Sangaiah, and K. Muhammad, “The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems,” Journal of Ambient Intelligence and Humanized Computing, 2019, doi: 10.1007/s12652-017-0659-1.

[111]J. Pan and J. McElhannon, “Future Edge Cloud and Edge Computing for Internet of Things Applications,” IEEE Internet of Things Journal, 2018, doi: 10.1109/JIOT.2017.2767608.

[112]X. Huang, “Blockchain in Healthcare: A Patient-Centered Model,” Biomedical Journal of Scientific & Technical Research, 2019, doi: 10.26717/bjstr.2019.20.003448.

[113]Y. R. Park, E. Lee, W. Na, S. Park, Y. Lee, and J. H. Lee, “Is blockchain technology suitable for managing personal health records? Mixed-methods study to test feasibility,” Journal of Medical Internet Research, 2019, doi: 10.2196/12533.

[114]A. El murabet, A. Abtoy, A. Touhafi, and A. Tahiri, “Ambient Assisted living system’s models and architectures: A survey of the state of the art,” Journal of King Saud University - Computer and Information Sciences. 2020. doi: 10.1016/j.jksuci.2018.04.009.

[115]R. Maskeliunas, R. Damaševicius, and S. Segal, “A review of internet of things technologies for ambient assisted living environments,” Future Internet. 2019. doi: 10.3390/FI11120259.

[116]R. Blasco, Á. Marco, R. Casas, D. Cirujano, and R. Picking, “A Smart Kitchen for Ambient Assisted Living,” Sensors (Switzerland), 2014, doi: 10.3390/s140101629.

[117]B. Ganesan, T. Gowda, A. Al-Jumaily, K. N. K. Fong, S. K. Meena, and R. K. Y. Tong, “Ambient assisted living technologies for older adults with cognitive and physical impairments: A review,” European Review for Medical and Pharmacological Sciences. 2019. doi: 10.26355/eurrev_201912_19686.

[118]V. Vimarlund and S. Wass, “Big data, smart homes and ambient assisted living,” Yearbook of medical informatics. 2014. doi: 10.15265/IY-2014-0011.

[119]Ö. Yilmaz, “An ambient assisted living system for dementia patients,” Turkish Journal of Electrical Engineering and Computer Sciences, 2019, doi: 10.3906/elk-1806-124.

[120]N. Thakur and C. Y. Han, “Multimodal approaches for indoor localization for ambient assisted living in smart homes,” Information (Switzerland), 2021, doi: 10.3390/info12030114.

[121]W. Alosaimi et al., “Evaluating the impact of different symmetrical models of ambient assisted living systems,” Symmetry, 2021, doi: 10.3390/sym13030450.

[122]M. S. Shahamabadi, B. B. M. Ali, P. Varahram, and A. J. Jara, “A network mobility solution based on 6LoWPAN hospital wireless sensor network (NEMO-HWSN),” 2013. doi: 10.1109/IMIS.2013.157.

[123]A. Dohr, R. Modre-Osprian, M. Drobics, D. Hayn, and G. Schreier, “The internet of things for ambient assisted living,” 2010. doi: 10.1109/ITNG.2010.104.

[124]S. Sankar, P. Srinivasan, and R. Saravanakumar, “Internet of things based ambient assisted living for elderly people health monitoring,” Research Journal of Pharmacy and Technology, 2018, doi: 10.5958/0974-360X.2018.00715.1.

[125]J. Wan, X. Gu, L. Chen, and J. Wang, “Internet of Things for Ambient Assisted Living: Challenges and Future Opportunities,” 2017. doi: 10.1109/CyberC.2017.83.

[126]A. Vijayalakshmi and D. V. Jose, “Internet of Things for Ambient-Assisted Living—An Overview,” in Internet of Things Use Cases for the Healthcare Industry, 2020. doi: 10.1007/978-3-030-37526-3_10.

[127]W. T. Al-Sit, N. A. Al-Dmour, T. M. Ghazal, and G. F. Issa, “IoMT-Based Healthcare Framework for Ambient Assisted Living Using a Convolutional Neural Network,” Computers, Materials and Continua, 2023, doi: 10.32604/cmc.2023.034952.

[128]R. Istepanian, E. Jovanov, and Z. Y. T, “Guest Editorial Introduction to the Special Section on M-Health : Beyond Seamless Mobility and Global Wireless Health-Care Connectivity,” IEEE Transactions on Information Technology in Biomedicine, 2008.

[129]A. J. Jara, F. J. Belchi, A. F. Alcolea, J. Santa, M. A. Zamora-Izquierdo, and A. F. Gómez-Skarmeta, “A pharmaceutical intelligent information system to detect allergies and adverse drugs reactions based on internet of things,” 2010. doi: 10.1109/PERCOMW.2010.5470547.

[130]G. Yang et al., “A Health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box,” IEEE Transactions on Industrial Informatics, 2014, doi: 10.1109/TII.2014.2307795.

[131]P. A. Catherwood, D. Steele, M. Little, S. McComb, and J. McLaughlin, “A Community-Based IoT Personalized Wireless Healthcare Solution Trial,” IEEE Journal of Translational Engineering in Health and Medicine, 2018, doi: 10.1109/JTEHM.2018.2822302.

[132]S. Zahoor and R. N. Mir, “Resource management in pervasive Internet of Things: A survey,” Journal of King Saud University - Computer and Information Sciences. 2021. doi: 10.1016/j.jksuci.2018.08.014.

[133]P. Gope, Y. Gheraibia, S. Kabir, and B. Sikdar, “A Secure IoT-Based Modern Healthcare System with Fault-Tolerant Decision Making Process,” IEEE Journal of Biomedical and Health Informatics, 2021, doi: 10.1109/JBHI.2020.3007488.

[134]X. Yang, S. Nazir, H. U. Khan, M. Shafiq, and N. Mukhtar, “Parallel Computing for Efficient and Intelligent Industrial Internet of Health Things: An Overview,” Complexity. 2021. doi: 10.1155/2021/6636898.

[135]V. M. Rohokale, N. R. Prasad, and R. Prasad, “A cooperative Internet of Things (IoT) for rural healthcare monitoring and control,” 2011. doi: 10.1109/WIRELESSVITAE.2011.5940920.

[136]L. You, C. Liu, and S. Tong, “Community Medical Network (CMN): Architecture and implementation,” 2011. doi: 10.1109/GMC.2011.6103930.

[137]W. Wang, J. Li, L. Wang, and W. Zhao, “The internet of things for resident health information service platforp research,” 2012. doi: 10.1049/cp.2011.0745.

[138]S. Vicini, S. Bellini, A. Rosi, and A. Sanna, “An internet of things enabled interactive totem for children in a living lab setting,” 2012. doi: 10.1109/ICE.2012.6297713.

[139]E. Saepuddin, E. Rizal, and A. Rusmana, “Posyandu Roles as Mothers and Child Health Information Center,” Record and Library Journal, 2018, doi: 10.20473/rlj.v3-i2.2017.201-208.

[140]N. B. Ukachi and S. N. I. Anasi, “Information and communication technologies and access to maternal and child health information: Implications for sustainable development,” Information Development, 2019, doi: 10.1177/0266666918767482.

[141]R. Gale, “National Child Health Information Programme,” International Journal of Integrated Care, 2017, doi: 10.5334/ijic.3161.

[142]S. Ismail, M. Alshmari, K. Latif, and H. F. Ahmad, “A Granular Ontology Model for Maternal and Child Health Information System,” Journal of Healthcare Engineering, 2017, doi: 10.1155/2017/9519321.

[143]B. Pradhan, S. Bhattacharyya, and K. Pal, “IoT-Based Applications in Healthcare Devices,” Journal of Healthcare Engineering. 2021. doi: 10.1155/2021/6632599.

[144]A. Onasanya and M. Elshakankiri, “Smart integrated IoT healthcare system for cancer care,” Wireless Networks, 2021, doi: 10.1007/s11276-018-01932-1.

[145]O. S. Albahri, A. A. Zaidan, B. B. Zaidan, M. Hashim, A. S. Albahri, and M. A. Alsalem, “Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects,” Journal of Medical Systems. 2018. doi: 10.1007/s10916-018-1006-6.

[146]Á. Garai, I. Péntek, and A. Adamkó, “Revolutionizing healthcare with IoT and cognitive, cloud-based telemedicine,” Acta Polytechnica Hungarica, 2019, doi: 10.12700/APH.16.2.2019.2.10.

[147]M. Jones, F. Deruyter, and J. Morris, “The digital health revolution and people with disabilities: Perspective from the United States,” International Journal of Environmental Research and Public Health. 2020. doi: 10.3390/ijerph17020381.

[148]“IOT Framework for Heart Diseases Prediction Using Machine Learning,” International Journal of Advanced Trends in Computer Science and Engineering, 2021, doi: 10.30534/ijatcse/2021/781032021.

[149]A. B. Pawar and S. Ghumbre, “A survey on IoT applications, security challenges and counter measures,” 2017. doi: 10.1109/CAST.2016.7914983.

[150]S. Selvakanmani and M. Sumathi, “Fuzzy assisted fog and cloud computing with MIoT system for performance analysis of health surveillance system,” Journal of Ambient Intelligence and Humanized Computing, 2021, doi: 10.1007/s12652-020-02156-y.

[151]P. Mechael, “Case Study From Egypt: Mobile phones for mother and child care,” i4d The first monthly magazine on ICT4D, 2005.

[152]C. C. Cantarelli, B. Flybjerg, E. J. E. Molin, and B. van Wee, “Cost Overruns in Large-Scale Transport Infrastructure Projects,” Automation in Construction, 2018.

[153]A. A. P. A. P. Sheth et al., “Transforming Big Data into Smart Data: Deriving Value via Harnessing Volume, Variety & Velocity Using Semantics and Semantic Web,” 2007.

[154]K. J. Melanson, M. S. Westerterp-Plantenga, L. A. Campfield, and W. H. M. Saris, “Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception,” British Journal of Nutrition, 1999, doi: 10.1017/s0007114599001695.

[155]S. M. T. Wehrens et al., “Meal Timing Regulates the Human Circadian System,” Current Biology, 2017, doi: 10.1016/j.cub.2017.04.059.

[156]C. Hodges et al., “Method of food preparation influences blood glucose response to a high-carbohydrate meal: A randomised cross-over trial,” Foods, 2020, doi: 10.3390/foods9010023.

[157]R. S. H. Istepanian, S. Hu, N. Y. Philip, and A. Sungoor, “The potential of Internet of m-health Things m-IoT for non-invasive glucose level sensing,” 2011. doi: 10.1109/IEMBS.2011.6091302.

[158]N. Yusuf, A. Hamza, R. S. Muhammad, M. A. Suleiman, and Z. A. Abubakar, “Smart Health Internet of Thing for Continuous Glucose Monitoring: A Survey,” International Journal of Integrated Engineering, 2020, doi: 10.30880/ijie.2020.12.07.006.

[159]M. I. Hossain, A. F. Yusof, A. R. C. Hussin, N. A. lahad, and A. S. Sadiq, “Factors influencing adoption model of continuous glucose monitoring devices for internet of things healthcare,” Internet of Things (Netherlands), 2021, doi: 10.1016/j.iot.2020.100353.

[160]J. J. Rodrigues Barata, R. Munoz, R. D. De Carvalho Silva, J. J. P. C. Rodrigues, and V. H. C. De Albuquerque, “Internet of Things Based on Electronic and Mobile Health Systems for Blood Glucose Continuous Monitoring and Management,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2956745.

[161]A. Rghioui, J. Lloret, L. Parra, S. Sendra, and A. Oumnad, “Glucose data classification for diabetic patient monitoring,” Applied Sciences (Switzerland), 2019, doi: 10.3390/app9204459.

[162]T. M. Fernández-Caramés, I. Froiz-Míguez, O. Blanco-Novoa, and P. Fraga-Lamas, “Enabling the internet of mobile crowdsourcing health things: A mobile fog computing, blockchain and iot based continuous glucose monitoring system for diabetes mellitus research and care,” Sensors (Switzerland), 2019, doi: 10.3390/s19153319.

[163]X. Li, Y. Lu, X. Fu, and Y. Qi, “Building the Internet of Things platform for smart maternal healthcare services with wearable devices and cloud computing,” Future Generation Computer Systems, 2021, doi: 10.1016/j.future.2021.01.016.

[164]B. J. Drew et al., “Practice Standards for Electrocardiographic Monitoring in Hospital Settings,” Circulation, 2004, doi: 10.1161/01.cir.0000145144.56673.59.

[165]K. Bieganowska et al., “Usefulness of long-term telemetric electrocardiogram monitoring in the diagnosis of tachycardia in children with a medical history of palpitations,” Kardiologia Polska, 2021, doi: 10.33963/KP.15695.

[166]P. Castillejo, J. F. Martinez, J. Rodriguez-Molina, and A. Cuerva, “Integration of wearable devices in a wireless sensor network for an E-health application,” IEEE Wireless Communications, 2013, doi: 10.1109/MWC.2013.6590049.

[167]P. D. Sonawane and R. G. Sutar, “A schematic review on body area networks for E-health systems,” 2018. doi: 10.1109/I2C2.2017.8321822.

[168]F. E. Fajingbesi, R. F. Olanrewaju, B. Rasool Pampori, S. Khan, and M. Yacoob, “Real Time Telemedical Health Care Systems with Wearable Sensors,” Asian Journal of Pharmaceutical Research and Health Care, 2017, doi: 10.18311/ajprhc/2017/14971.

[169]R. K. Kher, “Mobile and E-Healthcare: Recent Trends and Future Directions,” Journal of Health & Medical Economics, 2016, doi: 10.21767/2471-9927.100010.

[170]C. J. Ejiyi et al., “Towards the Conservation of Endangered Mammals using Single-stage Deep Neural Network,” Official Publication of Direct Research Journal of Agriculture and Food Science, vol. 10, no. 11, pp. 254–261, 2022, doi: 10.26765/DRJAFS72902107.

[171]A. Almeida, R. Mulero, P. Rametta, V. Urošević, M. Andrić, and L. Patrono, “A critical analysis of an IoT—aware AAL system for elderly monitoring,” Future Generation Computer Systems, 2019, doi: 10.1016/j.future.2019.03.019.

[172]J. Puustjarvi and L. Puustjarvi, “Automating remote monitoring and information therapy: An opportunity to practice telemedicine in developing countries,” 2011 IST-Africa Conference Proceedings, IST 2011, 2011.

[173]L. Ru et al., “A Detailed Research on Human Health Monitoring System Based on Internet of Things,” Wireless Communications and Mobile Computing, 2021, doi: 10.1155/2021/5592454.

[174]A. El Attaoui, S. Largo, A. Jilbab, and A. Bourouhou, “Wireless medical sensor network for blood pressure monitoring based on machine learning for real-time data classification,” Journal of Ambient Intelligence and Humanized Computing, 2021, doi: 10.1007/s12652-020-02660-1.

[175]S. K. Sood and I. Mahajan, “IoT-fog-based healthcare framework to identify and control hypertension attack,” IEEE Internet of Things Journal, 2019, doi: 10.1109/JIOT.2018.2871630.

[176]F. Lamonaca et al., “An Overview on Internet of Medical Things in Blood Pressure Monitoring,” 2019. doi: 10.1109/MeMeA.2019.8802164.

[177]H. A. Khattak, M. Ruta, E. Eugenio, and D. Sciascio, “CoAP-based healthcare sensor networks: A survey,” 2014. doi: 10.1109/IBCAST.2014.6778196.

[178]S. Saminathan, K. Geetha, and P. G. Student, “a Survey on Health Care Monitoring System Using Iot,” International Journal of Pure and Applied Mathematics, 2017.

[179]A. J. Jara, M. A. Zamora-Izquierdo, and A. F. Skarmeta, “Interconnection framework for mHealth and remote monitoring based on the internet of things,” IEEE Journal on Selected Areas in Communications, 2013, doi: 10.1109/JSAC.2013.SUP.0513005.

[180]E. C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, and S. N. Patel, “SpiroSmart: Using a microphone to measure lung function on a mobile phone,” 2012. doi: 10.1145/2370216.2370261.

[181]E. C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, and S. N. Patel, “SpiroSmart,” 2012. doi: 10.1145/2370216.2370261.

[182]P. Reimpell, C. Fuchs, S. Junge, and T. Framke, “Levels of adherence in nebulization therapy for pediatric patients with cystic fibrosis and analysis of correlating factors,” Pediatric Pulmonology, 2018.

[183]E. C. Larson, M. Goel, M. Redfield, G. Boriello, M. Rosenfeld, and S. N. Patel, “Tracking lung function on any phone,” 2013. doi: 10.1145/2442882.2442917.

[184]E. C. Larson, T. Lee, S. Liu, M. Rosenfeld, and S. N. Patel, “Accurate and privacy preserving cough sensing using a low-cost microphone,” 2011. doi: 10.1145/2030112.2030163.

[185]T. J. Wang, B. Chau, M. Lui, G. T. Lam, N. Lin, and S. Humbert, “Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19,” American Journal of Physical Medicine and Rehabilitation. 2020. doi: 10.1097/PHM.0000000000001505.

[186]R. Crevenna, M. Mickel, O. Schuhfried, C. Gesslbauer, A. Zdravkovic, and M. Keilani, “Focused Extracorporeal Shockwave Therapy in Physical Medicine and Rehabilitation,” Current Physical Medicine and Rehabilitation Reports. 2021. doi: 10.1007/s40141-020-00306-z.

[187]K. Pils, “Aspects of physical medicine and rehabilitation in geriatrics,” Wiener Medizinische Wochenschrift, 2016, doi: 10.1007/s10354-015-0420-3.

[188]K. J. Ottenbacher, J. E. Graham, and S. R. Fisher, “Data Science in Physical Medicine and Rehabilitation: Opportunities and Challenges,” Physical Medicine and Rehabilitation Clinics of North America. 2019. doi: 10.1016/j.pmr.2018.12.003.

[189]J. L. Moore, J. A. Mbalilaki, and I. D. Graham, “Knowledge Translation in Physical Medicine and Rehabilitation: A Citation Analysis of the Knowledge-to-Action Literature,” Archives of Physical Medicine and Rehabilitation. 2021. doi: 10.1016/j.apmr.2020.12.031.

[190]Y. J. Fan, Y. H. Yin, L. Da Xu, Y. Zeng, and F. Wu, “IoT-based smart rehabilitation system,” IEEE Transactions on Industrial Informatics, 2014, doi: 10.1109/TII.2014.2302583.

[191]M. M. Nasralla, “Sustainable virtual reality patient rehabilitation systems with iot sensors using virtual smart cities,” Sustainability (Switzerland), 2021, doi: 10.3390/su13094716.

[192]S. Jacob et al., “AI and IoT-Enabled smart exoskeleton system for rehabilitation of paralyzed people in connected communities,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3083093.

[193]C. Nave and O. Postolache, “Smart Walker based IoT Physical Rehabilitation System,” 2018. doi: 10.1109/ISSI.2018.8538210.

[194]Y. Zhou and X. Chen, “Simulation of sports big data system based on Markov model and IoT system,” Microprocessors and Microsystems, 2021, doi: 10.1016/j.micpro.2020.103525.

[195]M. El Fezazi, M. Aqil, A. Jbari, and A. Jilbab, “IoT-based knee rehabilitation system for inclusive smart city,” 2019. doi: 10.1145/3368756.3369068.

[196]B. Tan and O. Tian, “Short paper: Using BSN for tele-health application in upper limb rehabilitation,” 2014. doi: 10.1109/WF-IoT.2014.6803143.

[197]Z. Pang, J. Tian, and Q. Chen, “Intelligent packaging and intelligent medicine box for medication management towards the Internet-of-Things,” 2014. doi: 10.1109/ICACT.2014.6779193.

[198]J. Huang, X. Wu, W. Huang, X. Wu, and S. Wang, “Internet of things in health management systems: A review,” International Journal of Communication Systems, 2021, doi: 10.1002/dac.4683.

[199]J. LI, W. W. GOH, and N. Z. JHANJHI, “A design of iot-based medicine case for the multi-user medication management using drone in elderly centre,” Journal of Engineering Science and Technology, 2021.

[200]S. J. Shiny Prakash and K. Sekar, “An intelligent home centric healthcare system based on the internet-of-things,” International Journal of Applied Engineering Research, 2015.

[201]I. Laranjo, J. Macedo, and A. Santos, “Internet of Things for Medication Control,” International Journal of Reliable and Quality E-Healthcare, 2013, doi: 10.4018/ijrqeh.2013070101.

[202]T. Kurita, K. Matsuo, and L. Barolli, “A wheelchair management system using iot sensors and agile-kanban,” 2020. doi: 10.1007/978-3-030-29035-1_9.

[203]T. Kurita, K. Matsuo, and L. Barolli, “A Management System for Electric Wheelchair Considering Agile-Kanban Using IoT Sensors and Scikit-Learn,” in Lecture Notes on Data Engineering and Communications Technologies, 2020. doi: 10.1007/978-3-030-39746-3_55.

[204]L. Hou, J. Latif, P. Mehryar, A. Zulfiqur, S. Withers, and A. Plastropoulos, “IoT Based Smart Wheelchair for Elderly Healthcare Monitoring,” 2021. doi: 10.1109/ICCCS52626.2021.9449273.

[205]T. M. N. U. Akhund et al., “Snappy Wheelchair: An IoT-Based Flex Controlled Robotic Wheel Chair for Disabled People,” 2021. doi: 10.1007/978-981-16-0882-7_71.

[206]P. Sekonopo, “Design and Development of a Solar Powered Wheelchair,” in Disability is not Inability, 2020. doi: 10.2307/j.ctv17vf5g2.24.

[207]V. Kolici, E. Spaho, K. Matsuo, S. Caballe, L. Barolli, and F. Xhafa, “Implementation of a medical support system considering P2P and IoT technologies,” 2014. doi: 10.1109/CISIS.2014.15.

[208]C. J. Ejiyi, J. Deng, T. U. Ejiyi, A. A. Salako, M. B. Ejiyi, and C. G. Anomihe, “Design and Development of Android Application for Educational Institutes,” Journal of Physics: Conference Series, 2021, doi: 10.1088/1742-6596/1769/1/012066.

[209]A. S. M. Mosa, I. Yoo, and L. Sheets, “A systematic review of healthcare applications for smartphones,” BMC Medical Informatics and Decision Making. 2012. doi: 10.1186/1472-6947-12-67.

[210]B. Liao, Y. Ali, S. Nazir, L. He, and H. U. Khan, “Security Analysis of IoT Devices by Using Mobile Computing: A Systematic Literature Review,” IEEE Access. 2020. doi: 10.1109/ACCESS.2020.3006358.

[211]J. M. Mühlen et al., “Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network,” British Journal of Sports Medicine. 2021. doi: 10.1136/bjsports-2020-103148.

[212]M. Fiorinelli et al., “Smartphone distraction during nursing care: Systematic literature review,” Applied Nursing Research, 2021, doi: 10.1016/j.apnr.2021.151405.

[213]J. Y. Choi, H. Choi, G. Seomun, and E. J. Kim, “Mobile-application-based interventions for patients with hypertension and ischemic heart disease: A systematic review,” Journal of Nursing Research. 2020. doi: 10.1097/JNR.0000000000000382.

[214]S. Sohrabei and A. Atashi, “The Impact of Mobile Health on Breast Cancer Patient’s Life and Treatment: A Systematic Review,” Frontiers in Health Informatics, 2021, doi: 10.30699/fhi.v10i1.295.

[215]N. Fijačko et al., “A Review of Mortality Risk Prediction Models in Smartphone Applications,” Journal of Medical Systems. 2021. doi: 10.1007/s10916-021-01776-x.

[216]F. Ross, “Hearing Aid Accompanying Smartphone Apps in Hearing Healthcare. A Systematic Review,” Applied Medical Informatics Review, 2020.

[217]F. Rousseau, S. M. Da Silva Godineau, C. De Casabianca, C. Begue, C. Tessier-Cazeneuve, and G. Legendre, “State of knowledge on smartphone applications concerning contraception: A systematic review,” Journal of Gynecology Obstetrics and Human Reproduction. 2019. doi: 10.1016/j.jogoh.2018.11.001.

[218]M. Goel et al., “SpiroCall: Measuring lung function over a phone call,” 2016. doi: 10.1145/2858036.2858401.

[219]J. Lee, B. A. Reyes, D. D. McManus, O. Mathias, and K. H. Chon, “Atrial fibrillation detection using an iphone 4S,” IEEE Transactions on Biomedical Engineering, 2013, doi: 10.1109/TBME.2012.2208112.

[220]L. J., R. B.A., M. D.D., M. O., and C. K.H., “Atrial fibrillation detection using an iphone 4S,” IEEE Transactions on Biomedical Engineering, 2013.

[221]M. O., L. J., R. D., B. P., and C. K.H., “Detection of atrial fibrillation using an iphone 4S,” Circulation, 2012.

[222]L. Krivoshei et al., “Smart detection of atrial fibrillation,” Europace, 2017, doi: 10.1093/europace/euw125.

[223]M. D.D. et al., “A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation,” Heart Rhythm, 2013.

[224]J. N. S. Rubí and P. R. de L. Gondim, “Interoperable Internet of Medical Things platform for e-Health applications,” International Journal of Distributed Sensor Networks, 2020, doi: 10.1177/1550147719889591.

[225]S. Swayamsiddha and C. Mohanty, “Application of cognitive Internet of Medical Things for COVID-19 pandemic,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2020. doi: 10.1016/j.dsx.2020.06.014.

[226]R. Pratap Singh, M. Javaid, A. Haleem, R. Vaishya, and S. Ali, “Internet of Medical Things (IoMT) for orthopaedic in COVID-19 pandemic: Roles, challenges, and applications,” Journal of Clinical Orthopaedics and Trauma. 2020. doi: 10.1016/j.jcot.2020.05.011.

[227]F. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, “Intelligence in the Internet of Medical Things era: A systematic review of current and future trends,” Computer Communications. 2020. doi: 10.1016/j.comcom.2019.12.030.

[228]M. A. Rahman and M. Shamim Hossain, “An Internet-of-Medical-Things-Enabled Edge Computing Framework for Tackling COVID-19,” IEEE Internet of Things Journal, 2021, doi: 10.1109/JIOT.2021.3051080.

[229]S. A. Khowaja, P. Khuwaja, K. Dev, and G. D’Aniello, “VIRFIM: an AI and Internet of Medical Things-driven framework for healthcare using smart sensors,” Neural Computing and Applications, 2021, doi: 10.1007/s00521-021-06434-4.

[230]S. Jain et al., “Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases,” Biosensors and Bioelectronics, 2021, doi: 10.1016/j.bios.2021.113074.

[231]L. Piwek, D. A. Ellis, S. Andrews, and A. Joinson, “The Rise of Consumer Health Wearables: Promises and Barriers,” PLoS Medicine, 2016, doi: 10.1371/journal.pmed.1001953.

[232]M. L. Thornton and W. F. Martin, “The Ethics of Consumer Health Wearables: Convergence of Bioethics and Value Sensitive Design,” Academy of Management Proceedings, 2020, doi: 10.5465/ambpp.2020.20710abstract.

[233]C. Matt, M. Becker, A. Kolbeck, and T. Hess, “Continuously Healthy, Continuously Used? –A Thematic Analysis of User Perceptions on Consumer Health Wearables,” Pacific Asia Journal of the Association for Information Systems, 2019, doi: 10.17705/1pais.11105.

[234]G. Boriani et al., “Consumer-led screening for atrial fibrillation using consumer-facing wearables, devices and apps: A survey of health care professionals by AF-SCREEN international collaboration,” European Journal of Internal Medicine, 2020, doi: 10.1016/j.ejim.2020.09.005.

[235]D. Y. Meier, P. Barthelmess, W. Sun, and F. Liberatore, “Wearable Technology Acceptance in Health Care Based on National Culture Differences: Cross-Country Analysis between Chinese and Swiss Consumers,” Journal of Medical Internet Research, 2020, doi: 10.2196/18801.

[236]E. O. Polat, “Seamlessly Integrable Optoelectronics for Clinical Grade Wearables,” Advanced Materials Technologies. 2021. doi: 10.1002/admt.202000853.

[237]B. Bent, B. A. Goldstein, W. A. Kibbe, and J. P. Dunn, “Investigating sources of inaccuracy in wearable optical heart rate sensors,” npj Digital Medicine, 2020, doi: 10.1038/s41746-020-0226-6.

[238]S. Huhn et al., “The Impact of Wearable Technologies in Health Research: Scoping Review,” JMIR mHealth and uHealth. 2022. doi: 10.2196/34384.

[239]L. Lonini et al., “Rapid Screening of Physiological Changes Associated with COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study,” IEEE Journal of Translational Engineering in Health and Medicine, 2021, doi: 10.1109/JTEHM.2021.3058841.

[240]J. Klucken, T. Gladow, J. G. Hilgert, M. Stamminger, C. Weigand, and B. Eskofier, “Wearables in the treatment of neurological diseases—where do we stand today?,” Nervenarzt. 2019. doi: 10.1007/s00115-019-0753-z.

[241]A. C. McKenna, M. Kloseck, R. Crilly, and J. Polgar, “Purchasing and Using Personal Emergency Response Systems (PERS): How decisions are made by community-dwelling seniors in Canada,” BMC Geriatrics, 2015, doi: 10.1186/s12877-015-0079-z.

[242]V. Young, E. Rochon, and A. Mihailidis, “Exploratory analysis of real personal emergency response call conversations: considerations for personal emergency response spoken dialogue systems,” Journal of NeuroEngineering and Rehabilitation, 2016, doi: 10.1186/s12984-016-0207-9.

[243]F. Lachal et al., “Effectiveness of light paths coupled with personal emergency response systems in preventing functional decline among the elderly,” SAGE Open Medicine, 2016, doi: 10.1177/2050312116665764.

[244]L. P. Malasinghe, N. Ramzan, and K. Dahal, “Remote patient monitoring: a comprehensive study,” Journal of Ambient Intelligence and Humanized Computing, 2019, doi: 10.1007/s12652-017-0598-x.

[245]S. S. Shah, A. Gvozdanovic, M. Knight, and J. Gagnon, “Mobile app-based remote patient monitoring in acute medical conditions: Prospective feasibility study exploring digital health solutions on clinical workload during the covid crisis,” JMIR Formative Research, 2021, doi: 10.2196/23190.

[246]K. N. Griggs, O. Ossipova, C. P. Kohlios, A. N. Baccarini, E. A. Howson, and T. Hayajneh, “Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring,” Journal of Medical Systems, 2018, doi: 10.1007/s10916-018-0982-x.

[247]M. Imtyaz Ahmed and G. Kannan, “Secure and lightweight privacy preserving Internet of things integration for remote patient monitoring,” Journal of King Saud University - Computer and Information Sciences, 2021, doi: 10.1016/j.jksuci.2021.07.016.

[248]S. Borrelli et al., “Remote patient monitoring in dialysis patients: The ‘change of pace’ for home dialysis,” Recenti Progressi in Medicina, 2020, doi: 10.1701/3407.33922.

[249]T. Annis et al., “Rapid implementation of a COVID-19 remote patient monitoring program,” Journal of the American Medical Informatics Association, 2020, doi: 10.1093/jamia/ocaa097.

[250]F. Motolese et al., “Parkinson’s Disease Remote Patient Monitoring During the COVID-19 Lockdown,” Frontiers in Neurology, 2020, doi: 10.3389/fneur.2020.567413.

[251]N. Hernandez, L. Castro, J. Medina-Quero, J. Favela, L. Michan, and W. Ben Mortenson, “Scoping Review of Healthcare Literature on Mobile, Wearable, and Textile Sensing Technology for Continuous Monitoring,” Journal of Healthcare Informatics Research, 2021, doi: 10.1007/s41666-020-00087-z.

[252]S. R. Hassan, I. Ahmad, S. Ahmad, A. Alfaify, and M. Shafiq, “Remote pain monitoring using fog computing for e-healthcare: An efficient architecture,” Sensors (Switzerland), 2020, doi: 10.3390/s20226574.

[253]B. J. Hafner and J. E. Sanders, “Considerations for development of sensing and monitoring tools to facilitate treatment and care of persons with lower-limb loss: A review,” Journal of Rehabilitation Research and Development. 2014. doi: 10.1682/JRRD.2013.01.0024.

[254]K. Itamura et al., “Assessment of Patient Experiences in Otolaryngology Virtual Visits During the COVID-19 Pandemic,” OTO Open, 2020, doi: 10.1177/2473974X20933573.

[255]G. Rosler, “Pediatric Telehealth Experiences: Myths and Truths About Video Visits From a Parent,” Journal of Patient Experience, 2020, doi: 10.1177/2374373520932724.

[256]A. Aziz et al., “Telehealth for High-Risk Pregnancies in the Setting of the COVID-19 Pandemic,” American Journal of Perinatology, 2020, doi: 10.1055/s-0040-1712121.

[257]D. M. Tarn, C. Hintz, E. Mendez-Hernandez, S. P. Sawlani, and M. A. Bholat, “Using virtual visits to care for primary care patients with COVID-19 symptoms,” Journal of the American Board of Family Medicine, 2021, doi: 10.3122/JABFM.2021.S1.200241.

[258]N. Warda and S. M. Rotolo, “Virtual medication tours with a pharmacist as part of a cystic fibrosis telehealth visit,” Journal of the American Pharmacists Association, 2021, doi: 10.1016/j.japh.2021.04.005.

[259]J. Hwa Jung, D. Kyu Choi, J. In Kim, and S. Joo Koh, “Mobility management for healthcare services in coap-based iot networks,” 2019. doi: 10.1109/ICOIN.2019.8718156.

[260]M. R. Davahli, W. Karwowski, K. Fiok, T. Wan, and H. R. Parsaei, “Controlling safety of artificial intelligence‐based systems in healthcare,” Symmetry, 2021, doi: 10.3390/sym13010102.

[261]A. Asadzadeh, S. Pakkhoo, M. M. Saeidabad, H. Khezri, and R. Ferdousi, “Information technology in emergency management of COVID-19 outbreak,” Informatics in Medicine Unlocked. 2020. doi: 10.1016/j.imu.2020.100475.

[262]G. Gorincour et al., “Management of abdominal emergencies in adults using telemedicine and artificial intelligence,” Journal of Visceral Surgery. 2021. doi: 10.1016/j.jviscsurg.2021.01.008.

[263]Y. Lyu et al., “Designing and optimizing a healthcare kiosk for the community,” Applied Ergonomics, 2015, doi: 10.1016/j.apergo.2014.08.018.

[264]G. Ng, S. W. Tan, and N. C. Tan, “Health outcomes of patients with chronic disease managed with a healthcare kiosk in primary care: Protocol for a pilot randomised controlled trial,” BMJ Open, 2018, doi: 10.1136/bmjopen-2017-020265.

[265]Point-of-Care Detection Devices for Healthcare. 2021. doi: 10.3390/books978-3-03943-660-6.

[266]A. N. Konwar and V. Borse, “Current status of point-of-care diagnostic devices in the Indian healthcare system with an update on COVID-19 pandemic,” Sensors International. 2020. doi: 10.1016/j.sintl.2020.100015.

[267]T. Mahmoudi, M. de la Guardia, and B. Baradaran, “Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends,” TrAC - Trends in Analytical Chemistry. 2020. doi: 10.1016/j.trac.2020.115842.

[268]D. Kritchanchai, S. Hoeur, and P. Engelseth, “Develop a strategy for improving healthcare logistics performance,” Supply Chain Forum, 2018, doi: 10.1080/16258312.2017.1416876.

[269]T. Pohjosenperä, P. Kekkonen, S. Pekkarinen, and J. Juga, “Service modularity in managing healthcare logistics,” International Journal of Logistics Management, 2019, doi: 10.1108/IJLM-12-2017-0338.

[270]N. Velasco, J. P. Moreno, and C. Rebolledo, “Logistics practices in healthcare organizations in Bogota,” Academia Revista Latinoamericana de Administracion, 2018, doi: 10.1108/ARLA-08-2016-0219.

[271]“The Evolution of Healthcare Logistics: The Canadian Experience,” Journal of Applied Business and Economics, 2020, doi: 10.33423/jabe.v22i14.3977.

[272]W. Li et al., “A Comprehensive Survey on Machine Learning-Based Big Data Analytics for IoT-Enabled Smart Healthcare System,” Mobile Networks and Applications, 2021, doi: 10.1007/s11036-020-01700-6.

[273]N. A. Mashudi, H. M. Kaidi, S. Sarip, and L. A. Latiff, “The modelling and simulation of iot system in healthcare applications,” International Journal of Advanced Technology and Engineering Exploration, 2021, doi: 10.19101/IJATEE.2020.S1762137.

[274]L. Liu, J. Xu, Y. Huan, Z. Zou, S. C. Yeh, and L. R. Zheng, “A Smart Dental Health-IoT Platform Based on Intelligent Hardware, Deep Learning, and Mobile Terminal,” IEEE Journal of Biomedical and Health Informatics, 2020, doi: 10.1109/JBHI.2019.2919916.

[275]J. B. Rousek, K. Pasupathy, D. Gannon, and S. Hallbeck, “Asset management in healthcare: Evaluation of RFID,” IIE Transactions on Healthcare Systems Engineering, 2014, doi: 10.1080/19488300.2014.938207.

[276]C. K. M. Lee, C. M. Na, and N. C. Kit, “IoT-based asset management system for healthcare-related industries,” International Journal of Engineering Business Management, 2015, doi: 10.5772/61821.

[277]F.-T.-N. Malik et al., “Clinical Presentation, Management and In-Hospital Outcome of Healthcare Personnel With COVID-19 Disease,” Cureus, 2020, doi: 10.7759/cureus.10004.

[278]N. Petrova and S. Pogosyan, “About the problem of personnel management in healthcare (on nursing staff example),” Vestnik of Saint Petersburg University Medicine, 2020, doi: 10.21638/spbu11.2020.305.

[279]D. M. Bean, P. Taylor, and R. J. B. Dobson, “A patient flow simulator for healthcare management education,” BMJ Simulation and Technology Enhanced Learning, 2019, doi: 10.1136/bmjstel-2017-000251.

[280]T. A. Souza, G. L. R. Vaccaro, and R. M. Lima, “PSCPF: planning, scheduling and control of patient flow,” Production, 2021, doi: 10.1590/0103-6513.20200006.

[281]L. Leaven, K. Ahmmad, and D. Peebles, “Inventory management applications for healthcare supply chains,” International Journal of Supply Chain Management, 2017.

[282]I. Syahrir, Suparno, and I. Vanany, “Inventory management in healthcare supply chain under uncertainty and emergency: A literature review,” Journal of Advanced Research in Dynamical and Control Systems, 2019.

[283]V. Karamshetty et al., “Inventory Management Practices in Private Healthcare Facilities in Nairobi County,” Production and Operations Management, 2022, doi: 10.1111/poms.13445.

[284]E. Saha and P. K. Ray, “Modelling and analysis of inventory management systems in healthcare: A review and reflections,” Computers and Industrial Engineering, 2019, doi: 10.1016/j.cie.2019.106051.

[285]S. Tian, W. Yang, J. M. Le Grange, P. Wang, W. Huang, and Z. Ye, “Smart healthcare: making medical care more intelligent,” Journal of Global Health, 2019, doi: 10.1016/j.glohj.2019.07.001.

[286]C. J. Ejiyi et al., “Comparative Analysis of Building Insurance Prediction Using Some Machine Learning Algorithms,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. Special Issue on Artificial Intelligence in Economics, Finance and Business, pp. 75–85, 2022, doi: 10.9781/ijimai.2022.02.005.

[287]O. Bamisile, A. Oluwasanmi, C. Ejiyi, N. Yimen, S. Obiora, and Q. Huang, “Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions,” International Journal of Energy Research, 2021, doi: 10.1002/er.6529.

[288]C. J. Ejiyi, O. Bamisile, N. Ugochi, Q. Zhen, N. Ilakoze, and C. Ijeoma, “Systematic Advancement of Yolo Object Detector For Real-Time Detection of Objects,” 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 279–284, Dec. 2021, doi: 10.1109/ICCWAMTIP53232.2021.9674163.

[289]L. Yu, Y. Lu, and X. J. Zhu, “Smart hospital based on internet of things,” Journal of Networks, 2012, doi: 10.4304/jnw.7.10.1654-1661.

[290]M. Thangaraj, P. P. Ponmalar, and S. Anuradha, “Internet of Things (IOT) enabled smart autonomous hospital management system - A real world health care use case with the technology drivers,” 2016. doi: 10.1109/ICCIC.2015.7435678.

[291]C. J. Ejiyi et al., “A robust predictive diagnosis model for diabetes mellitus using Shapley-incorporated machine learning algorithms,” Healthcare Analytics, vol. 3, p. 100166, Nov. 2023, doi: 10.1016/J.HEALTH.2023.100166.

[292]“Erratum: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 (The Lancet (2018),” The Lancet. 2019. doi: 10.1016/S0140-6736(19)31047-5.

[293]AIHW, “Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Australian Burden of Disease series no. 19. Cat. no. BOD 22.,” Canberra: AIHW, 2019.

[294]H. B. Kirkpatrick, J. Brasch, J. Chan, and S. Singh Kang, “A Narrative Web-Based Study of Reasons To Go On Living after a Suicide Attempt: Positive Impacts of the Mental Health System,” Journal of Mental Health and Addiction Nursing, 2017, doi: 10.22374/jmhan.v1i1.10.

[295]D. M. Vickery, H. Kalmer, D. Lowry, M. Constantine, E. Wright, and W. Loren, “Effect of a Self-care Education Program on Medical Visits,” JAMA: The Journal of the American Medical Association, 1983, doi: 10.1001/jama.1983.03340210050024.

[296]T. Nadarzynski, O. Miles, A. Cowie, and D. Ridge, “Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study,” Digital Health, 2019, doi: 10.1177/2055207619871808.

[297]H. Wisniewski et al., “Understanding the quality, effectiveness and attributes of top-rated smartphone health apps,” Evidence-Based Mental Health, 2019, doi: 10.1136/ebmental-2018-300069.

[298]D. W. Bates, A. Landman, and D. M. Levine, “Health apps and health policy what is needed?,” JAMA - Journal of the American Medical Association. 2018. doi: 10.1001/jama.2018.14378.

[299]E. Borycki, “Quality and safety in eHealth: The need to build the evidence base,” Journal of Medical Internet Research. 2019. doi: 10.2196/16689.

[300]Pacheco Rocha, Dias, Santinha, Rodrigues, Queirós, and Rodrigues, “Smart Cities and Healthcare: A Systematic Review,” Technologies, 2019, doi: 10.3390/technologies7030058.

[301]Y. Lai, W. Yeung, and L. A. Celi, “Urban Intelligence for Pandemic Response: Viewpoint,” JMIR Public Health and Surveillance. 2020. doi: 10.2196/18873.

[302]C. M. Chen et al., “Containing COVID-19 among 627,386 persons in contact with the diamond princess cruise ship passengers who disembarked in Taiwan: Big data analytics,” Journal of Medical Internet Research, 2020, doi: 10.2196/19540.

[303]A. Wray, D. L. Olstad, and L. M. Minaker, “Smart prevention: A new approach to primary and secondary cancer prevention in smart and connected communities,” Cities, 2018, doi: 10.1016/j.cities.2018.02.022.

[304]F. Palmieri, M. Ficco, S. Pardi, and A. Castiglione, “A cloud-based architecture for emergency management and first responders localization in smart city environments,” Computers and Electrical Engineering, 2016, doi: 10.1016/j.compeleceng.2016.02.012.

[305]D. G. Korzun, “Internet of Things Meets Mobile Health Systems in Smart Spaces: An Overview,” 2017. doi: 10.1007/978-3-319-49736-5_6.

[306]M. Dauwed and A. Meri, “IOT Service Utilisation in Healthcare,” in IoT and Smart Home Automation [Working Title], 2019. doi: 10.5772/intechopen.86014.

[307]F. Alshehri and G. Muhammad, “A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare,” IEEE Access, 2021, doi: 10.1109/ACCESS.2020.3047960.

[308]S. Veazie et al., “Rapid Evidence Review of Mobile Applications for Self-management of Diabetes,” Journal of General Internal Medicine. 2018. doi: 10.1007/s11606-018-4410-1.

[309]C. Jacob, A. Sanchez-Vazquez, and C. Ivory, “Social, organizational, and technological factors impacting clinicians’ adoption of mobile health tools: Systematic literature review,” JMIR mHealth and uHealth. 2020. doi: 10.2196/15935.

[310]P. Schofield, T. Shaw, and M. Pascoe, “Toward comprehensive patient-centric care by integrating digital health technology with direct clinical contact in Australia,” Journal of Medical Internet Research. 2019. doi: 10.2196/12382.

[311]M. S. Jalali, J. P. Kaiser, M. Siegel, and S. Madnick, “The Internet of Things Promises New Benefits and Risks: A Systematic Analysis of Adoption Dynamics of IoT Products,” IEEE Security and Privacy, 2019, doi: 10.1109/MSEC.2018.2888780.

[312]H. Lee et al., “Discrepancies in demand of internet of things services among older people and people with disabilities, their caregivers, and health care providers: Face-to-face survey study,” Journal of Medical Internet Research, 2020, doi: 10.2196/16614.

[313]H. Verloo, T. Kampel, N. Vidal, and F. Pereira, “Perceptions about technologies that help community-dwelling older adults remain at home: Qualitative study,” Journal of Medical Internet Research, 2020, doi: 10.2196/17930.

[314]M. P. Gagnon, P. Ngangue, J. Payne-Gagnon, and M. Desmartis, “M-Health adoption by healthcare professionals: A systematic review,” Journal of the American Medical Informatics Association, 2016, doi: 10.1093/jamia/ocv052.

[315]J. N. S. Rubí and P. R. L. Gondim, “IoMT platform for pervasive healthcare data aggregation, processing, and sharing based on oneM2M and openEHR,” Sensors (Switzerland), 2019, doi: 10.3390/s19194283.

[316]P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” 2015. doi: 10.1109/MobServ.2015.51.

[317]Z. Milosevic and A. Bond, “Digital Health Interoperability Frameworks: Use of RM-ODP Standards,” 2016. doi: 10.1109/EDOCW.2016.7584359.

[318]H. U. Khan, Y. Ali, and F. Khan, “A Features-Based Privacy Preserving Assessment Model for Authentication of Internet of Medical Things (IoMT) Devices in Healthcare,” Mathematics, 2023, doi: 10.3390/math11051197.

How to Cite

Ejiyi, C., Z. Qin, M. B. Ejiyi, G. U. Nneji, H. N. Monday, F. A. Agu, T. U. Ejiyi, C. Diokpo, and C. O. Orakwue. “The Internet of Medical Things in Healthcare Management: A Review”. Journal of Digital Health, vol. 2, no. 1, June 2023, pp. 30-62, doi:10.55976/jdh.22023116330-62.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.