Make Knowledge Veritable, Visible and Valuable.

Artificial intelligence assisted diagnoses of fine-needle aspiration of breast diseases: a single-center experience

Peter Fritz 1 * , Raoufi Rokai 2 , Peter Dalquen 3 , Atiq Sediqi 4 , Simon Müller 5 , Joachim Mollin 6 , Steffen Goletz 7 , Jürgen Dippon 8 , Monika Hubler 9 , Tanja Aeppel 10 , Bisharah Soudah 11 , Haroon Firooz 12 , Michael Weinhara 13 , Inke Fabian de Barreto 14 , Christian Aichmüller 15 , Gerhard Stauch 16

  • 1. Robert Bosch Hospital, Department of Pathology, 70341, Stuttgart, Germany
  • 2. Abu Ali Sina Hospital, 1702 Mazar e Sharif, Afghanistan; Balkh Pathology Laboratory ,1702 Mazar e Sharif, Afghanistan
  • 3. Institute of Pathology University 4031 Basel, Switzerland
  • 4. Abu Ali Sina Hospital, 1702 Mazar e Sharif, Afghanistan; Balkh Pathology Laboratory ,1702 Mazar e Sharif, Afghanistan
  • 5. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany
  • 6. GOPA Worldwide Consultants, 61348 Bad Homburg, Germany 
  • 7. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany
  • 8. Institute of Stochastic, Faculty of Mathematics, University 70569 Stuttgart, Germany
  • 9. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany
  • 10. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany
  • 11. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany
  • 12. Firooz Medical Laboratory 3001 Herat, Afghanistan
  • 13. GOPA Worldwide Consultants, 61348 Bad Homburg, Germany 
  • 14. GOPA Worldwide Consultants, 61348 Bad Homburg, Germany 
  • 15. PAICON GmbH Kurfürsten-Anlage 60 69115 Heidelberg, Germany
  • 16. iPath Telemedicine Network nonprofit company with limited liability (gGmbH) 26603 Aurich, Germany



  • Received

    10 December 2022

  • Revised

    16 January 2023

  • Accepted

    08 February 2023

  • Published

    24 March 2023

Breast cytopathology Artificial intelligence Fine needle aspiration

Show More



[1]Chagpar AB, Coccia M. Factors associated with breast cancer mortality-per-incident case in low-to-middle income countries (LMICs). Journal of Clinical Oncology. 2019; 37: 1566-1566. DOI: 10.1200/JCO.2019.37.15_suppl.1566

[2]Malakzai HA, Haidary AM, Gulzar S et al. Prevalence, Distribution, and Histopathological Features of Malignant Tumors Reported at Tertiary Level in Afghanistan: A 3-Year Study. Cancer Management and Research. 2022;14:2569-2582. DOI :10.2147/cmar.s377710

[3]Coccia M. 2020. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society. 2020; 60:1-11. DOI :

[4]Coccia M. The increasing risk of mortality in breast cancer: A socioeconomic analysis between countries. Journal of Social and Administrative Sciences. 2019; 6(4): 218-230. DOI:

[5]Saadaat R, Abdul-Ghafar,J, Haidary AM et al. Age distribution and types of breast lesions among Afghan women diagnosed by fine needle aspiration cytology (FNAC) at a tertiary care centre in Afghanistan: A descriptive cross-sectional study. BMJ Open. 2020; 10(9): e037513. DOI: 10.1136/bmjopen-2020-037513

[6]Coccia M. The effect of country wealth on incidence of breast cancer. Breast Cancer Research and Treatment. 2013; 141:225-229. DOI:

[7]World Health Organization‎. Guide for establishing a pathology laboratory in the context of cancer control. World Health Organisation. 2019;

[8]Akaba FN, Fujita N, Stauch G et al. How can we strengthen pathology services in Cambodia? Global Health & Medicine. 2019; 1(2): 110-113. DOI: 10.35772/ghm.2019.01023

[9]Voelker HU, Poetzl L, Strehl A et al. Telepathological evaluation of paediatric histological specimens in support of a hospital in Tanzania. African Health Sciences. 2020; 20(3): 1313-1321. DOI: 10.1177/1357633x19866564

[10]Stauch G, Schweppe KW, Kayser K. Diagnostic errors in interactive telepathology. Analytical Cellular Pathology. 2000;21(3-4): 201-206. DOI: 10.1155/2000/154031

[11]Kadaba V, Ly T, Noor S et al. A hybrid approach to telepathology in Cambodia. Journal of telemedicine and telecare. 2013;19(8): 475-478. DOI: 10.1177/1357633X13512071

[12]Stauch G, Raoufi R, Sediqi A et al. M. Experience with telepathology in northern Afghanistan: A 10-year success story. Pathologe. 2020; 43: 303-310. DOI: 10.1007/s00292-022-01060-w

[13]Dinas C, Pratilas GC, Nasioutziki M et al. Clinical Significance of fine needle aspiration in managing patients with breast lesions. Folia Medica. 2018;60(3): 364-72. DOI:10.2478/folmed-2018-0002

[14]Wang M, He X, Chiang Y et al . A sensitivity and specificity comparison of fine needle aspiration cytology and core needle biopsy in evaluation of suspicious breast lesions: A systematic review and meta-analysis. The Breast. 2017;31: 157-166. DOI:

[15]Brauchli K, Christen H, Meyer P . Telepathology: design of a modular system. Analytical Cellular Pathology. 2000; 21(3-4): 193-199.

[16]Zhang C, Bai Y, Yang C et al. Histopathological image recognition of breast cancer based on three-channel reconstructed color slice feature fusion. Biochemical and Biophysical Research Communications. 2022; 619: 159-165. DOI:

[17]Hilaliyah PK, Irfan M, Lestandy M. Early detection of breast cancer in histopathology images employing convolutional neural network (CNN). AIP Conference Proceedings. AIP Publishing LLC. 2022; 2453(1): 020053. DOI:

[18]Roshani S, Coccia M, Mosleh M. Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech and Innovation Journal. 2022; 3: 356-375. DOI:

[19]Coccia M. Artificial intelligence technology in cancer imaging: Clinical challenges for detection of lung and breast cancer. Journal of Social and Administrative Sciences. 2019; 6(2): 82-98. DOI:

[20]Hao Y, Zhang L, Qiao S et al. Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix. Plos One. 2022; 17(5): e0267955. DOI:

[21]Hu H, Qiao S, Hao Y et al. Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy. Plos One. 2022, 17(4): e0266973. DOI:

[22]Selvaraj S, Deepa D, Ramya S et al. Classification of Breast Cancer Using CNN and Its Variant. Intelligent Communication Technologies and Virtual Mobile Networks. Proceedings of ICICV 2022. Singapore: Springer Nature Singapore. 2022: 35-46.

[23]Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology. 2017; 70(1): 134-145. DOI:

[24]Bejnordi EB, Veta M, van Diest JP et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastasis in woman with breast cancer. Jama. 2017; 318(22): 2199-2210. DOI:10.1001/jama.2017.14585

[25]Steiner DF, MacDonald R, Liu Y et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic cancer. The American Journal of Surgical Pathology. 2018; 42(12): 1636. DOI: 10.1097/PAS.0000000000001151

[26]Field AS, Raymond WA, Rickard M et al. The international Academy of Cytology Yokohama System for reporting breast Fine-Needle. Acta Cytologica. 2019, 63(4): 257-273. DOI: 10.1159/000499509

[27]van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 2011; 45: 1-67. DOI: 10.18637/jss.v045.i03.

[28]Groothuis-Oudshoorn K, Vink G, Schouten R et al . Multivariate Imputation by Chained Equations. Available from:,

[29]Google image classification: Vision AI | Derive Image Insights via ML | Cloud Vision API

[30]PyTorch image classification: Training a Classifier. PyTorch Tutorials 1.12.0+cu102 documentation

[31]Pytorch image lassification:

[32]PyTorch image classification: /

[33]Chollet F, Allaire JJ. Deep Learning mit R und Kreras: das Praxis-Handbuch von Entwicklern von Keras RStudio. MITP-Verlags GmbH & Co. KG;2018.

[34]Youden WT. Index for rating diagnosing tests. Cancer. 1950; 3(1): 32-35. DOI:<32::AID-CNCR2820030106>3.0.CO;2-3

[35]Robin X, Turck N, Hainard A et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1): 1-8. DOI: 10.1186/1471-2105-12-77

[36]Horten, B. Calculation AUC: The area under a ROC curve. R-bloggers: Calculating AUC: the area under a ROC Curve . Calculating AUC: the area under a ROC Curve | R-bloggers

[37]Fritz P, Kleinhans A, Hubler M et al. Experience with telepathology in combination with diagnostic assistance systems in countries with restricted resources. Journal of Telemedicine and Telecare. 2020; 26(7-8): 488-494. DOI: 10.1177/1357633X19840475

[38]Stauch G, Fritz P, Rokai R et al. The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. International Journal of Breast Cancer. 2021; 2021. DOI: 10.1155/2021/6625239

[39]Campanella G, Hanna MG, Geneslaw L et al. Clinical-grade computational pathology using weakly supervised deep learning in whole slide images. Nature Medicine. 2019; 25(8): 1301-1309. DOI: 10.1038/s41591-019-0508-1

[40]Teague MW, Wolberg WN, Street OL et al. Indeterminate fine-needle aspiration of the breast. Image-analysis-assisted diagnosis. Cancer Cytopathology: Interdisciplinary International Journal of the American Cancer Society. 1997; 81(2): 129-135. DOI:<129::AID-CNCR7>3.0.CO;2-N

[41]Marchevsky AM, Shah S, Patel S . Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc.1999; 12(5): 505-513.

[42]Dey P, Logasundaram R, Joshi K. Artificial neuronal network in diagnosis of lobular carcinoma of breast in fine-needle aspiration in cytology. Diagnostic Cytopathology. 2013; 41(2): 102-106. DOI: 10.1002/dc.21773

[43]Kowal M, Filipczuk P, Obuchowicz A et al. Computer-aided diagnosis of breast cnancer based on fine needle biopsy microscopic images. Computers in Biology and Medicine. 2013; 43(10): 1563-1572. DOI: 10.1016/j.compbiomed.2013.08.003

[44]Subbaiah RM, Dey P, Nijhawan R. Artificial neural network in breast lesions from fine-needle aspiration cytology smear. Diagnostic Cytopathology. 2014; 42(3): 218-224. DOI: 10.1002/dc.23026.

[45]Foersch S, Eckstein M, Wagner D-C et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Annals of Oncology. 2021; 32(9): 1178-1187. DOI: 10.1016/j.annonc.2021.06.007

[46]Ke J, Shen Y, Lu Y et al. Quantitative analysis of abnormalities in gynecocologic cytopathology with deep learning. Laboratory Investigation. 2021; 101(4): 513-524. DOI: 10.1038/s41374-021-00537-1

[47]Yedjou CG, Tchounwou SS, Alo R et al. Application of machine learning algorithms in breast cancer diagnosis and classification. International Journal of Science Academic Research. 2021; 2(1):3081-3086.

[48]Saha M, Mukherjee R, Chakraborty M. Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue and Cell. 2016; 48(5): 461-474. DOI: 10.1016/j.tice.2016.07.006

How to Cite

Fritz, P., R. Raoufi, P. Dalquen, . A. Sediqi, S. Müller, J. Mollin, S. Goletz, J. Dippon, M. Hubler, T. Aeppel, B. Soudah, H. Firooz, M. Weinhara, I. Fabian de Barreto, C. Aichmüller, and G. Stauch. “Artificial Intelligence Assisted Diagnoses of Fine-Needle Aspiration of Breast Diseases: A Single-Center Experience”. Journal of Digital Health, vol. 2, no. 1, Mar. 2023, pp. 1-11, doi:10.55976/jdh.2202311501-11.

Scan QR code to follow us by Wechat


Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.


鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.