Peter Fritz 1 * , Raoufi Rokai 2 , Peter Dalquen 3 , Atiq Sediqi 4 , Simon Müller 5 , Joachim Mollin 6 , Steffen Goletz 7 , Jürgen Dippon 8 , Monika Hubler 9 , Tanja Aeppel 10 , Bisharah Soudah 11 , Haroon Firooz 12 , Michael Weinhara 13 , Inke Fabian de Barreto 14 , Christian Aichmüller 15 , Gerhard Stauch 16
Correspondence: Peter.Fritz23@arcor.de
DOI: https://doi.org/10.55976/jdh.2202311501-11
Show More
[1]Chagpar AB, Coccia M. Factors associated with breast cancer mortality-per-incident case in low-to-middle income countries (LMICs). Journal of Clinical Oncology. 2019; 37: 1566-1566. DOI: 10.1200/JCO.2019.37.15_suppl.1566
[2]Malakzai HA, Haidary AM, Gulzar S et al. Prevalence, Distribution, and Histopathological Features of Malignant Tumors Reported at Tertiary Level in Afghanistan: A 3-Year Study. Cancer Management and Research. 2022;14:2569-2582. DOI :10.2147/cmar.s377710
[3]Coccia M. 2020. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society. 2020; 60:1-11. DOI : https://doi.org/10.1016/j.techsoc.2019.101198
[4]Coccia M. The increasing risk of mortality in breast cancer: A socioeconomic analysis between countries. Journal of Social and Administrative Sciences. 2019; 6(4): 218-230. DOI: doi.org/10.1453/jsas.v6i4.1972
[5]Saadaat R, Abdul-Ghafar,J, Haidary AM et al. Age distribution and types of breast lesions among Afghan women diagnosed by fine needle aspiration cytology (FNAC) at a tertiary care centre in Afghanistan: A descriptive cross-sectional study. BMJ Open. 2020; 10(9): e037513. DOI: 10.1136/bmjopen-2020-037513
[6]Coccia M. The effect of country wealth on incidence of breast cancer. Breast Cancer Research and Treatment. 2013; 141:225-229. DOI: doi.org/10.1007/s10549-013-2683-y
[7]World Health Organization. Guide for establishing a pathology laboratory in the context of cancer control. World Health Organisation. 2019; https://apps.who.int/iris/handle/10665/330664.
[8]Akaba FN, Fujita N, Stauch G et al. How can we strengthen pathology services in Cambodia? Global Health & Medicine. 2019; 1(2): 110-113. DOI: 10.35772/ghm.2019.01023
[9]Voelker HU, Poetzl L, Strehl A et al. Telepathological evaluation of paediatric histological specimens in support of a hospital in Tanzania. African Health Sciences. 2020; 20(3): 1313-1321. DOI: 10.1177/1357633x19866564
[10]Stauch G, Schweppe KW, Kayser K. Diagnostic errors in interactive telepathology. Analytical Cellular Pathology. 2000;21(3-4): 201-206. DOI: 10.1155/2000/154031
[11]Kadaba V, Ly T, Noor S et al. A hybrid approach to telepathology in Cambodia. Journal of telemedicine and telecare. 2013;19(8): 475-478. DOI: 10.1177/1357633X13512071
[12]Stauch G, Raoufi R, Sediqi A et al. M. Experience with telepathology in northern Afghanistan: A 10-year success story. Pathologe. 2020; 43: 303-310. DOI: 10.1007/s00292-022-01060-w
[13]Dinas C, Pratilas GC, Nasioutziki M et al. Clinical Significance of fine needle aspiration in managing patients with breast lesions. Folia Medica. 2018;60(3): 364-72. DOI:10.2478/folmed-2018-0002
[14]Wang M, He X, Chiang Y et al . A sensitivity and specificity comparison of fine needle aspiration cytology and core needle biopsy in evaluation of suspicious breast lesions: A systematic review and meta-analysis. The Breast. 2017;31: 157-166. DOI: https://doi.org/10.1016/j.breast.2016.11.009
[15]Brauchli K, Christen H, Meyer P . Telepathology: design of a modular system. Analytical Cellular Pathology. 2000; 21(3-4): 193-199.
[16]Zhang C, Bai Y, Yang C et al. Histopathological image recognition of breast cancer based on three-channel reconstructed color slice feature fusion. Biochemical and Biophysical Research Communications. 2022; 619: 159-165. DOI: https://doi.org/10.1016/j.bbrc.2022.06.004
[17]Hilaliyah PK, Irfan M, Lestandy M. Early detection of breast cancer in histopathology images employing convolutional neural network (CNN). AIP Conference Proceedings. AIP Publishing LLC. 2022; 2453(1): 020053. DOI: https://doi.org/10.1063/5.0094608
[18]Roshani S, Coccia M, Mosleh M. Sensor Technology for Opening New Pathways in Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech and Innovation Journal. 2022; 3: 356-375. DOI: doi.org/10.28991/HIJ-2022-03-03-010
[19]Coccia M. Artificial intelligence technology in cancer imaging: Clinical challenges for detection of lung and breast cancer. Journal of Social and Administrative Sciences. 2019; 6(2): 82-98. DOI: doi.org/10.1453/jsas.v6i2.1888
[20]Hao Y, Zhang L, Qiao S et al. Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix. Plos One. 2022; 17(5): e0267955. DOI: https://doi.org/10.1371/journal.pone.0267955
[21]Hu H, Qiao S, Hao Y et al. Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy. Plos One. 2022, 17(4): e0266973. DOI: https://doi.org/10.1371/journal.pone.0266973
[22]Selvaraj S, Deepa D, Ramya S et al. Classification of Breast Cancer Using CNN and Its Variant. Intelligent Communication Technologies and Virtual Mobile Networks. Proceedings of ICICV 2022. Singapore: Springer Nature Singapore. 2022: 35-46.
[23]Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology. 2017; 70(1): 134-145. DOI: https://doi.org/10.1111/his.12993
[24]Bejnordi EB, Veta M, van Diest JP et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastasis in woman with breast cancer. Jama. 2017; 318(22): 2199-2210. DOI:10.1001/jama.2017.14585
[25]Steiner DF, MacDonald R, Liu Y et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic cancer. The American Journal of Surgical Pathology. 2018; 42(12): 1636. DOI: 10.1097/PAS.0000000000001151
[26]Field AS, Raymond WA, Rickard M et al. The international Academy of Cytology Yokohama System for reporting breast Fine-Needle. Acta Cytologica. 2019, 63(4): 257-273. DOI: 10.1159/000499509
[27]van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 2011; 45: 1-67. DOI: 10.18637/jss.v045.i03.
[28]Groothuis-Oudshoorn K, Vink G, Schouten R et al . Multivariate Imputation by Chained Equations. Available from: https://cran.r-project.org/web/packages/mice/index.html https://github.com/amices/mice, https://amices.org/mice/
[29]Google image classification: https://cloud.google.com: Vision AI | Derive Image Insights via ML | Cloud Vision API
[30]PyTorch image classification: Training a Classifier. PyTorch Tutorials 1.12.0+cu102 documentation
[31]Pytorch image lassification: https://www.analyticsvidhya.com/blog/2021/06/
[32]PyTorch image classification: /https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
[33]Chollet F, Allaire JJ. Deep Learning mit R und Kreras: das Praxis-Handbuch von Entwicklern von Keras RStudio. MITP-Verlags GmbH & Co. KG;2018.
[34]Youden WT. Index for rating diagnosing tests. Cancer. 1950; 3(1): 32-35. DOI: https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
[35]Robin X, Turck N, Hainard A et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1): 1-8. DOI: 10.1186/1471-2105-12-77
[36]Horten, B. Calculation AUC: The area under a ROC curve. R-bloggers: Calculating AUC: the area under a ROC Curve . Calculating AUC: the area under a ROC Curve | R-bloggers
[37]Fritz P, Kleinhans A, Hubler M et al. Experience with telepathology in combination with diagnostic assistance systems in countries with restricted resources. Journal of Telemedicine and Telecare. 2020; 26(7-8): 488-494. DOI: 10.1177/1357633X19840475
[38]Stauch G, Fritz P, Rokai R et al. The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. International Journal of Breast Cancer. 2021; 2021. DOI: 10.1155/2021/6625239
[39]Campanella G, Hanna MG, Geneslaw L et al. Clinical-grade computational pathology using weakly supervised deep learning in whole slide images. Nature Medicine. 2019; 25(8): 1301-1309. DOI: 10.1038/s41591-019-0508-1
[40]Teague MW, Wolberg WN, Street OL et al. Indeterminate fine-needle aspiration of the breast. Image-analysis-assisted diagnosis. Cancer Cytopathology: Interdisciplinary International Journal of the American Cancer Society. 1997; 81(2): 129-135. DOI: https://doi.org/10.1002/(SICI)1097-0142(19970425)81:2<129::AID-CNCR7>3.0.CO;2-N
[41]Marchevsky AM, Shah S, Patel S . Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc.1999; 12(5): 505-513.
[42]Dey P, Logasundaram R, Joshi K. Artificial neuronal network in diagnosis of lobular carcinoma of breast in fine-needle aspiration in cytology. Diagnostic Cytopathology. 2013; 41(2): 102-106. DOI: 10.1002/dc.21773
[43]Kowal M, Filipczuk P, Obuchowicz A et al. Computer-aided diagnosis of breast cnancer based on fine needle biopsy microscopic images. Computers in Biology and Medicine. 2013; 43(10): 1563-1572. DOI: 10.1016/j.compbiomed.2013.08.003
[44]Subbaiah RM, Dey P, Nijhawan R. Artificial neural network in breast lesions from fine-needle aspiration cytology smear. Diagnostic Cytopathology. 2014; 42(3): 218-224. DOI: 10.1002/dc.23026.
[45]Foersch S, Eckstein M, Wagner D-C et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Annals of Oncology. 2021; 32(9): 1178-1187. DOI: 10.1016/j.annonc.2021.06.007
[46]Ke J, Shen Y, Lu Y et al. Quantitative analysis of abnormalities in gynecocologic cytopathology with deep learning. Laboratory Investigation. 2021; 101(4): 513-524. DOI: 10.1038/s41374-021-00537-1
[47]Yedjou CG, Tchounwou SS, Alo R et al. Application of machine learning algorithms in breast cancer diagnosis and classification. International Journal of Science Academic Research. 2021; 2(1):3081-3086.
[48]Saha M, Mukherjee R, Chakraborty M. Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue and Cell. 2016; 48(5): 461-474. DOI: 10.1016/j.tice.2016.07.006
Copyright © 2023 Peter Fritz, Raoufi Rokai, Peter Dalquen, Atiq Sediqi, Simon Müller, Joachim Mollin, Steffen Goletz, Jürgen Dippon, Monika Hubler, Tanja Aeppel, Bisharah Soudah, Haroon Firooz, Michael Weinhara, Inke Fabian de Barreto, Christian Aichmüller, Gerhard Stauch
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn