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Abstract: 
Aim:This study aimed to explore the effect of training set diversity on the performance of deep learning models for 
predicting early gastric cancer (EGC) under endoscopy.

Methods: Images of EGC and non-cancerous lesions under narrow-band imaging (ME-NBI) and magnifying blue 
laser imaging (ME-BLI) were retrospectively collected. Training set 1 was composed of 150 non-cancerous and 
309 EGC ME-NBI images, training set 2 was composed of 1505 non-cancerous and 309 EGC ME-BLI images, and 
training set 3 was the combination of training set 1 and 2. Test set 1 was composed of 376 non-cancerous and 1052 
EGC ME-NBI images, test set 2 consisted of 529 non-cancerous and 71 EGC ME-BLI images, and test set 3 was the 
combination of test set 1 and test set 2. Three deep learning models, convolutional neural network (CNN) 1, CNN 2 
and CNN 3 (CNN 1, CNN 2 and CNN 3 were independently trained using training set 1, training set 2 and training 
set 3, respectively), were constructed, and their performances on each test set were respectively evaluated. One 
hundred and thirty-eight ME-NBI videos and 17 ME-BLI videos were further collected to evaluate and compare the 
performance of each model in real time. 

Results: On the whole, the performance of CNN 3 was the best. The accuracy (Acc), sensitivity (Sn), specificity 
(Sp) and area under the curve (AUC) of test set 1 in CNN 3 were 87.89% (1255/1428), 90.96% (342/376), 86.79% 
(913/1052) and 94.60%, respectively. The Acc, Sn, Sp and AUC of test set 2 in CNN 3 were 95% (570/600), 97.92% 
(518/529), 73.24% (52/71) and 90.93% respectively. The Acc, Sn, Sp and AUC of test set 3 in CNN 3 were 89.99% 
(1825/2028), 95.03% (860/905), 85.93% (965/1123) and 94.89%, respectively. The performance of CNN 3 was also 
the best in videos test set. The Acc, Sn and Sp of videos test set in CNN 3 were 91.03% (142/156), 90.58% (125/138) 
and 94.44% (17/18), respectively. 

Conclusion: The deep learning model with the most diverse training data has the best diagnostic effect. 
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Introduction

   Gastric cancer is the second leading cause of cancer-
related death worldwide and one of the most common 
cancers in East Asia.[1] Improving the detection rate of 
early gastric cancer (EGC) can significantly improve 
the survival rate of gastric cancer patients.[2] White 
light endoscopy (WLE) is one of the commonly used 
examination methods of the upper digestive tract. 
However, it can only detect relatively obvious lesions, 
and for small lesions such as EGC, the detection rate of 
WLE is suboptimal. [3,4] It has been demonstrated that 
magnifying narrow-band imaging (ME-NBI) and blue 
laser imaging (ME-BLI) have higher diagnostic accuracy 
than WLE for EGC, and both techniques have been 
widely applied in clinical practice. [5-7]
   However, the performance of endoscopists for using 
these emerging techniques varies greatly, leading to a 
low detection rate of EGC, especially in primary medical 
institutions. [8,9] 
   With the rapid development of artificial intelligence 
(AI), deep learning technologies have been widely 
researched in the field of digestive endoscopy. [10,11] 
Our research group has developed a deep learning-
based system in previous studies, which can identify the 
differentiation state of EGC and outline the marginality 
of early gastric cancer under ME-NBI endoscopy. The 
system correctly predicts the differentiation status of 
EGCs with an accuracy of 83.3%, which provides great 
help to endoscopists. [5] However, whether deep learning 
methods can be used in ME-BLI has not been explored 
yet. 
   Data diversity is a common problem in the development 
of AI systems with health records. [12] In clinical practice, 
we can use different brands or types of equipment to do 
the same examination on patients. Different devices have 
some different characteristics, such as color, imaging 
resolution, shape, etc. [13] Although these differences 

in details rarely affect endoscopists’ diagnosis, they may 
interfere with the performances of AI models. Should 
we extensively collect highly heterogeneous images for 
training, or should we train different deep learning models 
for different patterns of images? There are no definitive 
answers to these questions.
   Therefore, in this study, we trained and tested deep 
learning models with different data diversity and explored 
the effect of training set diversity on the performance 
of deep learning models for predicting EGC under 
endoscopy. 

Methods 

Data acquisition

   The endoscopic images of non-cancerous lesions and 
EGC were retrospectively obtained from the Renmin 
Hospital of Wuhan University, including 2414 ME-BLI 
images (2034 non-cancerous and 380 EGC images) and 
3242 ME-NBI images (1881 non-cancerous and 1361 
EGC images). The images were divided into training 
sets and test sets, and images of the training and test sets 
were from different patients. Training set 1 was composed 
of 1505 non-cancerous and 309 EGC ME-NBI images, 
training set 2 was composed of 1505 non-cancerous and 
309 EGC ME-BLI images, and training set 3 was the 
combination of training set 1 and 2. Among them, training 
set 1 and training set 2 were from different patients with 
different instruments (ME-NBI and ME-BLI). Test set 
1 was composed of 376 non-cancerous and 1052 EGC 
ME-NBI images, test set 2 was composed of 529 non-
cancerous and 71 EGC ME-BLI images, and test set 3 was 
the combination of test set 1 and test set 2. The detailed 
sample distribution is shown in Table 1.

Training set 1
(NBI)

Training set 2
(BLI)

Training set 3
(NBI+BLI)

Test set 1
(NBI)

Test set 2
(BLI)

Test set 3
(NBI+BLI)

ECG 309 309 618 1052 71 1123
Non-cancerous lesions 1505 1505 3010 376 529 905

Table 1 Composition of data sets

   Poor quality images (resulted from defocus, halation, 
blurs and so on) were excluded by two doctoral students, 
and then the images were evaluated by two experienced 
endoscopists (>10 years of experience) based on 
Magnifying Endoscopy Simple Diagnostic Algorithm for 
Early Gastric Cancer (MESDA-G) and the pathologic 
results. If there was disagreement between the two 
endoscopists, a reassessment was carried out to reach a 

consensus.[6] All the images used were acquainted with 
two instruments (Olympus Optical Co. Ltd. Tokyo, Japan; 
Fujifilm Co. Kanagawa, Japan). 

Model construction and test

   ECG recognition models were trained with ResNet 50. 
[14] Convolutional neural networks (CNN) 1, CNN 2 and

NBI: narrow-band imaging, BLI: blue laser imaging, EGC: early gastric cancer.
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CNN 3 were independently trained using training set 1, 
training set 2 and training set 3, respectively. Finally, the 
performance of each model was evaluated in all three test 
sets.
   The optimal parameters were obtained after the 
repeated training of the model, of which the batch size 
of parameters was 64, the learning rate was 0.0001, 
and the iteration ordinal number was 30. Dropout, data 
augmentation and early stopping were used to reduce 
the overfitting risk of the model.[15-17] When images 
of the training set and test set were assigned, image 
enhancement should be used if necessary to balance the 
number of images in the two categories, including image 
translation, rotation, mirroring and cropping. All the 
algorithms were written in Python 3.6.5, with Keras 2.1.5 
and TensorFlow1.12.2 as the backends. The models were 
trained on the NVIDIA Geforce GTX1080 server, the 
GPU of which had 8GB of memory.

Running the models on videos

   The image-enhanced endoscopic videos of non-
cancerous lesions and EGC were retrospectively obtained 
from the Renmin Hospital of Wuhan University, including 
17 ME-BLI videos (11 non-cancerous and 6 EGC videos) 
and 282 ME-NBI videos (127 non-cancerous and 55 EGC 
videos). With pathological results as the gold standard, 
all videos were cut into single lesion videos. Frame -wise 
prediction was used on the videos at 25 frames per second 
(fps). The noise was smoothed by the rule of outputting 
cancer only when more than seven of ten consecutive 
images were cancer, otherwise, the model outputs non-
cancer. 

Ethics

   This study was approved by the Ethics Committee 
o f  the  Renmin  Hosp i t a l  o f  Wuhan  Unive r s i ty 
(WDRY2019-K091). The board exempted the informed 
consent of patients because this was a retrospective study.

Statistical Analyses

   The McNemar test was applied to compare the 
differences in accuracy (Acc), sensitivity (Sn), specificity 
(Sp), and area under the curve (AUC) among the models. 
Two-sided statistical tests were conducted, and the 
P-values < 0.05 was considered statistically significant. 
The statistical analysis was performed using the SPSS 25. 
0 software.  

Results

Performances of the models in images

   Compared with CNN 1 and CNN 2, CNN 3 performed 
the best in all the three test sets, especially in Acc. The 
test results of the models are shown in Table 2 and 
Figure 1. The Sn, Sp, Acc and AUC of CNN 1 in test set 
1 were 87.64% (922/1052), 78.72% (296/376), 85.29% 
(1218/1428) and 90.07%, respectively. The Sn, Sp, Acc 
and AUC of CNN 1 in test set 2 were 69.01% (49/71), 
97.54% (516/529), 94.17% (565/600) and 93.15%, 
respectively. The Sn, Sp, Acc and AUC of CNN 1 in 
test set 3 were 86.46% (971/1123), 89.72% (812/905), 
87.92% (1783/2028) and 94.03%, respectively. The Sn, 
Sp, Acc and AUC of CNN 2 in test set 1 were 86.12% 
(906/1052), 87.77% (330/376), 86.55% (1236/1428) and 
94.06%, respectively. The Sn, Sp, Acc and AUC of CNN 
2 in test set 2 were 63.38% (45/71), 95.46% (505/529), 
91.67% (550/600) and 83.50%, respectively. The Sn, 
Sp, Acc and AUC of CNN 2 in test set 3 were 84.68% 
(951/1123), 92.27% (835/905), 88.07% (1786/2028) and 
94.57%, respectively. The Sn, Sp, Acc and AUC of CNN 
3 in test set 1 were 86.79% (913/1052), 90.96% (342/376), 
87.89% (1255/1428) and 94.60%, respectively. The Sn, 
Sp, Acc and AUC of CNN 3 in test set 2 were 73.24% 
(52/71), 97.92% (518/529), 95% (570/600) and 90.93%, 
respectively. The Sn, Sp, Acc and AUC of CNN 3 in test 
set 3 were 85.93% (965/1123), 95.03% (860/905), 89.99% 
(1825/2028) and 94.89%, respectively. The findings are 
summarized in Table 2 and Figure 1.

Model Sn Sp Acc AUC

Test set 1 
(NBI)

CNN 1 87.64%(922/1052) 78.72%(296/376) 85.29%(1218/1428) 90.07%
CNN 2 86.12%(906/1052) 87.77%(330/376) 86.55%(1236/1428) 94.06%
CNN 3 86.79%(913/1052) 90.96%(342/376)# 87.89%(1255/1428)# 94.60%

Test set 2
(BLI)

CNN 1 69.01%(49/71) 97.54%(516/529) 94.17%(565/600) 93.15%
CNN 2 63.38%(45/71) 95.46%(505/529) 91.67%(550/600) 83.50%
CNN 3 73.24%(52/71) 97.92%(518/529)^ 95.00%(570/600)^ 90.93%

Test set 3
(NBI+BLI)

CNN 1 86.46%(971/1123) 89.72%(812/905) 87.92%(1783/2028) 94.03%
CNN 2 84.68%(951/1123) 92.27%(835/905) 88.07%(1786/2028) 94.57%
CNN 3 85.93%(965/1123) 95.03%(860/905)#^ 89.99%(1825/2028)# 94.89%

Table 2 Performances of the models in images

* CNN 1 ~ 3 were the deep learning models trained using ME-NBI only, ME-BLI only and ME-NBI+ME-BLI, respectively
# Compare with CNN 1，P ＜ 0.05
^ Compare with CNN 2，P ＜ 0.05
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Sn: sensitivity, Sp: specificity, Acc: accuracy, AUC: area under the curve, NBI: narrow-band imaging, BLI: blue laser imaging, CNN: convolutional 
neural networks.

    

(a) (b)

(c)

Figure 1. The ROC curves of three CNNs in three test sets. (a). Test set 1; (b). Test set 2; 
(c). Test set 3. ROC: receiver operating characteristic, CNN: convolutional neural network.

   In test set 1 and test set 3, the AUC of CNN 3 was 
higher than that of CNN 1 and CNN 2, the Acc of CNN 
3 was better than that of CNN 1, and the differences were 
statistically significant (χ2= 9.460, P < 0.05; χ2= 10.250, 
P < 0.05). In test set 2, the Acc of CNN 3 was better 
than that of CNN 2, and the difference was statistically 
significant (χ² = 15.042, P < 0.05). In test set 1 and test set 
3, the Sp of CNN 3 was better than that of CNN 1, and 
the difference was statistically significant (χ² = 40.500, 
P < 0.05; χ² = 36.625, P < 0.05). In test set 2 and test set 
3, the Sp of CNN 3 was better than that of CNN 2, and 
the difference was statistically significant (χ² = 8.471, P 
< 0.05; χ² = 8.862, P < 0.05 ). In test set 1 and test set 3, 
the Sn of CNN 3 was better than that of CNN 2, and the 
difference was not statistically significant. In test set 2, the 
Sn of CNN 3 was better than that of model 1 and CNN 2, 
and the differences were not statistically significant（P > 
0.05）

Tests of the models in videos

   To explore the performances of the CNNs in a real-time 
clinical setting, we tested them in real image-enhanced 

endoscopic videos and calculated the Sn, Sp and Acc of 
models. The test results of the model are shown in Table 
3. The Sn, Sp and Acc of CNN 1 in videos test set were 
88.88%(16/18), 63.04%(87/138) and 66.03% (103/156), 
respectively. The Sn, Sp and Acc of CNN 2 videos test 
set were 88.88% (16/18), 83.33% (115/138) and 83.97% 
(131/156), respectively. The Sn, Sp and Acc of CNN 3 in 
videos test set were 94.44% (17/18), 90.58% (125/138) 
and 91.03% (142/156), respectively. 
   In videos test set, the Sn, Sp and Acc of CNN 3 were  
better than those of CNN 1 and CNN 2. The Acc and 
Sp of CNN 3 were better than those of CNN 1, and the 
differences were statistically significant (χ² = 33.581, P < 
0.05; χ² = 34.225, P < 0.05). Other statistical results were 
not statistically significant. (P > 0.05).  
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Model Sn Sp Acc
CNN 1 88.88%(16/18) 63.04%(87/138) 66.03% (103/156)
CNN 2 88.88%(16/18) 83.33% (115/138) 83.97% (131/156)
CNN 3 94.44% (17/18) 90.58%(125/138)# 91.03% (142/156)#

Table 3 Performances of the models in real-time videos

Discussion

   This study explored the effect of data diversity on the 
performances of deep learning models for predicting 
early gastric cancer, which is different from most other 
studies focusing on the auxiliary diagnosis of EGC 
with AI. We retrospectively collected image-enhanced 
endoscopic images and videos, and deep learning models 
for predicting early gastric cancer were trained according 
to the types of images in the training set and compared 
among the models. The results showed that CNN 3 which 
was trained by both ME- NBI images and ME- BLI 
images performed better.
   ME-NBI and ME-BLI are commonly used in clinical 
endoscopy, which is of great significance in the diagnosis 
of early gastric cancer. Compared with traditional white 
light, ME-NBI and ME-BLI are of better diagnostic 
performance. [5-7] The difference in the diagnosis of EGC 
by endoscopists is a major clinical problem, especially 
for junior doctors. Endoscopists in different regions also 
differ significantly in the use of ME-NBI and ME-BLI 
in the diagnosis of EGC. These factors seriously affect 
the detection rate of early gastric cancer, thus affecting 
the prognosis of these patients. A good deep learning 
system for predicting early gastric cancer can solve these 
problems.
   In this study, we found that the performance of deep 
learning models for predicting early gastric cancer trained 
by the two training sets was superior to that trained by 
the single training set. These results suggest that if the 
types of training sets are increased, deep learning models 
trained with a variety of training sets may have better 
performances in diagnosing EGC. The model trained by 
multiple training sets may have more significant potential 
in assisting endoscopists in clinical practice.
   In clinical practice, if early intervention for cancer can 
be carried out, the survival rate and later quality of life 
of patients will be greatly improved, so the diagnosis of 
early cancer is of great significance in the treatment and 
prognosis of patients. The early diagnosis of the whole 
digestive tract tumor (such as colorectal cancer), not only 
of EGC, is very important. [18] Increasing the diversity of 
training sets of deep learning-based early gastric cancer 
recognition models can improve their performances. [19] 
Then, can other deep learning-based early gastrointestinal 

cancer recognition models also improve the diagnosis rate 
of early cancer by this method? 
   This study also has many limitations. First, this is a 
retrospective test, and it is difficult to collect complete 
and sufficient data because some information cannot be 
included in the medical records. Second, the sample size 
of the ME-BLI image and video is small and should be 
strengthened in further study. Third, this is a single-center 
trial, and further multi-center trials should be conducted to 
prove the robustness of the results in this study.
   In summary, we constructed three deep learning models 
with different data diversity in training sets and fully 
validated each model in different test sets. The results 
showed that the model with the most data diversity 
performed the best, indicating that in the case of a limited 
sample size, we should collect heterogeneous images for 
training deep learning models, rather than use different 
patterns of images to train different deep learning models.
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