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Abstract: Endoscopy is an important tool for detecting and diagnosing digestive diseases. However, the performance 
of endoscopists varies, which significantly impacts the health outcomes of patients. In recent years, with the 
continuous development of science and technology, artificial intelligence (AI) has also set off a new wave. Nowadays, 
AI has been widely studied in the medical field and has shown great potential, especially in gastrointestinal 
endoscopy. The application of AI in endoscopy mainly includes the detection of lesions, classification of diseases, 
selection of best therapy, prognosis judgment, quality control, etc. What's more, the effectiveness and safety of the 
application of AI in gastrointestinal endoscopy have been confirmed in clinical trials. In this paper, we review the 
current research status and future development of AI in gastrointestinal endoscopy.

Keywords: Artificial intelligence, Deep learning, Gastrointestinal endoscopy, Digestive diseases, Quality control

Core Tips: Endoscopy is an important tool for detecting and diagnosing digestive diseases. However, the level of 
endoscopists varies, which significantly impacts the health outcomes of patients. In recent years, with the continuous 
development of science and technology, artificial intelligence (AI) has also set off a new wave. AI is increasingly 
widely used in the medical field nowadays and has shown great potential, especially in gastrointestinal endoscopy. 
The application of AI in endoscopy mainly includes the detection of lesions, classification of diseases, selection of 
best therapy, prognosis judgment, quality control, etc. Furthermore, the effectiveness and safety of the application of 
AI in gastrointestinal endoscopy have been confirmed in clinical trials. In this paper, we review the current research 
status and future development of AI in gastrointestinal endoscopy.
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Introduction

   Gastrointestinal cancer is one of the most common 
and deadly malignant tumors worldwide. According 
to the latest statistics (2020) [1], colorectal cancer and 

stomach cancer rank in the top five cancers amongst 
women; amongst men, they are the third and fourth 
most common cancers, respectively. In addition, nearly 
2.5 million people die of gastrointestinal cancer every 
year. Among the leading causes of cancer-related deaths, 
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colorectal cancer and gastric cancer rank second and 
fourth, respectively, causing a huge social and economic 
burden. The basic reason why malignant tumors are life-
threatening is that they cannot be detected in the early 
stage [2]. Gastrointestinal tumors are generally treatable 
in their early stages [3, 4]. More importantly, the 5-year 
survival rate for early cancer of the digestive tract is 
higher than 90%. However, if cancer progresses to the 
middle and advanced stage, the 5-year survival rate will 
be less than 25% [5]. Therefore, early diagnosis and early 
treatment are the keys to improve the survival rate of 
patients with gastrointestinal cancer.
   Endoscopy is the most commonly used method for 
screening and detecting gastrointestinal diseases. In 
recent decades, rapid progress in endoscopy has been seen 
worldwide. However, behind the vigorous development, 
some quality and safety concerns also exist. Mucosal 
changes in early gastrointestinal cancer are slight and 
difficult to identify, which requires endoscopists to be 
armed with rich experience and strong knowledge [6, 
7]. However, there are great variations among the level 
and performance of endoscopists, resulting in a high rate 
of missed detection of lesions and the poor quality of 
gastrointestinal endoscopy, which seriously threatens the 
health and prognosis of patients [8, 9].
   With the rapid development of computer technology and 
big data, artificial intelligence (AI) has gradually entered 
the public eye and the medical industry in recent years 
[10-12]. Nowadays, AI has made tremendous advances 
in medical fields such as radiology, pathology, and 
dermatology [13-15]. At present, numerous studies have 
shown the great potential of AI in endoscopy, which is 
expected to bring revolutionary changes to the diagnosis 
and treatment of digestive endoscopy [16]. This article 
summarizes the AI technology and its research in the field 
of digestive endoscopy, including (1) the introduction 
of AI and deep learning; (2) the application of AI 
technology in the field of endoscopy: diagnosis of cancer 
or pre-cancer diseases, diagnosis of other diseases, and 
quality control; (3) challenges and prospects of artificial 
intelligence.

1. Overview of artificial intelligence

1.1 Artificial intelligence and deep learning

   Broadly speaking, artificial intelligence (AI) is a new 
technical science that enables computers to simulate 
certain thinking processes and intelligent behaviors of 
human beings, such as learning, reasoning, thinking, and 
planning [17, 18]. As an important branch of computer 
science, AI is one of the three cutting-edge technologies 
(space technology, energy technology, and artificial 
intelligence) in the world. The development of AI has 
experienced three waves [12]. The first two waves 
occurred in the 1970s and 1990s [19, 20], respectively. 

Due to the constraints of algorithms and computing power, 
AI did not achieve good results in the practical application 
of various industries at that time. With the deep learning 
technology proposed in 2006, AI ushered in the third 
wave [21]. In 2012, the ImageNet competition brought a 
breakthrough to the application of artificial intelligence in 
the field of image recognition and also made deep learning 
a widely used method in the field of image recognition. 
Different from the previous two waves, AI is not limited to 
academic theory but has entered into wide fields, showing 
extraordinary practical results and gradually changing our 
lives.
   Deep learning, whose principle is to establish a neural 
network that analyzes and interprets data by imitating the 
operation mechanism of the human brain, is an important 
branch of technology in the field of AI and the latest 
development trend of artificial neural networks [17]. By 
extracting more abstract features of the input data layer 
by layer from the lower level to the higher level, the 
deep learning model forms the most appropriate network 
weight structure of the required features, to achieve an 
accurate classification. Deep learning mainly includes 
Deep Neural Network (DNN), Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), and 
so on [22]. Although various deep learning architectures 
have been explored to solve different tasks, convolutional 
neural networks (CNNs) remain the most popular type 
of deep learning architecture in medical imaging today. 
A typical CNN is mainly composed of the input layer, 
convolution layer, pooling layer, and output laye [23]. The 
input layer receives input values and passes them to the 
next layer, but does not perform operations on the input 
value. The first hidden layer is the nonlinear mapping 
of the input data, and the second hidden layer is also the 
nonlinear mapping of the previous layer. They get the 
maps that are easy to classify through weight updating and 
pass the values to the output layer, to get the ideal results 
within a reasonable range. The artificial neurons of CNN 
respond to the part of the surrounding units within the 
coverage, which helps with processing large images [24].

1.2 Deep learning in computer vision

   Computer Vision (CV), a discipline that teaches 
machines to see, has a rich history of decades. Advances 
in neural networks and deep learning have greatly 
promoted the development of computer vision recognition 
systems [25]. Four types of tasks are commonly applied 
to computer vision using deep learning, namely image 
classification, object detection, semantic segmentation, 
and instance segmentation. Image classification is the 
most basic application in computer vision, and the purpose 
of it is to determine the classification of a given picture. 
The training data set contains a variety of different objects, 
and the objects included in a given picture are required 
to output. Object detection refers to further clarifying 
the specific positions of various objects in the picture 
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with a rectangular frame based on image classification. 
The essence of semantic segmentation is to classify 
every pixel in the image to distinguish various objects 
in the image. For the positions of objects of different 
categories, each pixel should be distinguished, but not for 
different objects belonging to the same category. Instance 
segmentation is the combination of object detection and 
semantic segmentation. It not only uses object detection 
to box out different objects in the picture but also needs 
to use semantic segmentation to understand the given box 
at the pixel level. Compared with the boundary box given 
by object detection, instance segmentation can be further 
refined to the edge of the object. What's more, it can 
further annotate different objects of the same categories in 
the picture compared with semantic segmentation.

2 . A p p l i c a t i o n  o f  A I  i n  u p p e r 
gastrointestinal endoscopy

2.1 Esophageal cancer

   Esophageal cancer is one of the most fatal tumors. In 
2020, more than 604,000 people were newly diagnosed 
with esophageal cancer worldwide, accounting for 3.1% 
of new cancer cases globally each year [1]. Furthermore, 
esophageal squamous cell carcinoma (ESCC) is the 
major subtype of Esophageal cancer, accounting for 
more than 90% of esophageal cancer in China [26]. 
However, in recent years, the incidence of esophageal 
adenocarcinoma has increased significantly. And it has 
surpassed the incidence of esophageal squamous cell 
carcinoma gradually in many western countries [27]. 
With early diagnosis and treatment, the 5-year survival 
rate of patients with esophageal cancer is up to 90% [28]. 
However, most esophageal cancers are in the middle and 
late stages at the time of diagnosis, and the overall 5-year 
survival rate is less than 20% [1]. There is no doubt that 
early diagnosis of esophageal cancer is crucial to improve 
the prognosis.
   LinJie Guo et al. used 6473 NBI images, including 
dysplasia, early ESCC, and non-cancerous lesions 
from 549 patients to train the semantic segmentation 
model SegNet for real-time diagnosis of esophageal 
precancerous lesions and early ESCC [29]. The sensitivity, 
specificity, and the area under the curve (AUC) in 
predicting precancerous lesions and early ESCC in a test 
set consisting of 6,671 NBI images from 59 cancerous 
patients and 2004 non-cancerous patients were 98.04%, 
95.03%, and 0.989, respectively. In the test set of 47 
patients with cancer and 33 patients without cancer, the 
model achieved a per-case sensitivity of 100% and a 
per-case specificity of 90.9%. The authors conclude that 
the deep learning model achieved high sensitivity and 
specificity in images and videos, and has the potential to 
assist endoscopists in diagnosing precancerous lesions 

and ESCC in real-time. As we all know, Intrapapillary 
capillary loops (IPCLs) are an effective endoscopic 
marker for the detection of squamous dysplasia and 
esophageal squamous carcinoma. Everson MA et al. 
used 67,742 magnification endoscopy narrow-band(ME-
NBI) images of 115 patients to construct a convolutional 
neural network that could classify IPCL patterns [30]. The 
model predicted dysplasia with an accuracy of 91.7% and 
sensitivity of 93.7%, which was preferable to previous 
studies [31]. In short, this kind of clinically interpretable 
CNN based on the IPCL model puts forward a new idea 
for our future research.
   The key point of early esophageal cancer is not the 
diagnosis, but the judgment of invasion depth, which 
is very crucial for the selection of treatment [32]. 
Nevertheless, the current diagnostic theory of invasion 
depth is complex, and the judgment is often subjective. 
Kentaro et al. developed a deep learning system to 
evaluate invasion depth of esophageal superficial 
squamous cell carcinoma using 8660 non-ME images and 
5678 ME images from 804 patients whose invasion depth 
was confirmed by pathology [33]. The system performed 
well in diagnosing the depth of invasion of superficial 
esophageal squamous cell carcinoma with a sensitivity of 
90.1%, a specificity of 95.8%, and an accuracy of 91.0%, 
comparable to experienced endoscopists. 

2.2 Barrett's esophagus

   Barrett's esophagus (BE) refers to a pathological 
phenomenon in which the lamellar squamous epithelium 
of the lower mucosa of the esophagus is replaced by 
a single columnar epithelium. BE is the only known 
precancerous lesion of esophageal adenocarcinoma (EAC), 
and early detection and follow-up monitoring of patients 
with BE are conducive to the improvement of prognosis  
[34, 35]. However, the lesion of BE is relatively mild, 
which could be easily ignored or missed. Guidelines 
recommend an endoscopic biopsy of the four quadrants 
of BE at random intervals of 1-2cm to detect dysplasia in 
time [32], but this method is invasive, time-consuming, 
and difficult to adhere to in some cases. The use of deep 
learning to detect BE and distinguish BE from neoplasia 
is expected to improve detection efficiency.
   Hashimoto R et al. collected 916 images from 65 cases 
with early esophageal neoplasia in BE containing high-
grade dysplasia or T1 cancer and 919 images from 119 
cases of BE without high-grade dysplasia or T1 cancer, 
to train image classification and target detection nested 
model (Inception-ResNet-v2 as the main model to detect 
whether there is a target lesion in the image, and adding 
Yolo to locate the lesion), to identify and locate early 
tumors from BE images [36]. In the 458 test images (225 
early tumors and 233 controls), the sensitivity, specificity, 
and accuracy of the model to detect early tumors were 
96.4%, 94.2%, and 95.4%, respectively. The intersection 
over union (IOU) between the model and the endoscopist 
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on the localization of the lesion was 0.3. The authors 
conclude that the model can detect early esophageal 
tumors in BE images with high accuracy and map a 
positioning box around the areas of early esophageal 
neoplasia with high accuracy. What's more, Ebigbo A et al 
developed a real-time deep learning artificial intelligence 
system based on their previous work [37]. The system 
differentiated and predicted normal BE and early 
oesophageal adenocarcinoma (EAC) accurately. This is 
the first real-time application of a deep learning AI system 
in the evaluation and diagnosis of early EAC in BE in a 
real-life setting.
   The differentiation between Barrett's cancer mucosa 
(T1a) and submucosal invasion (T1b) is the key to the 
choice of treatment and prognosis [32]. Unfortunately, it 
is quite challenging [38]. Ebigbo A et al. trained a deep 
learning system to distinguish T1a from T1b Barrett's-
related cancer using 230 white light endoscopy images 
(108 T1a and 122 T1b) from 116 patients with Barrett's 
cancer [39]. The sensitivity, specificity, and accuracy of 
the system were 0.77, 0.64 and 0.71, respectively. This 
suggested its diagnostic performance was comparable to 
that of experts. However, this study was based on static 
images, so it still needed further improvement to be put 
into the practical clinical application as soon as possible.

2.3 Esophageal protruded lesions

   Nearly 30% of the protruded lesions of the upper 
digestive tract originate in the esophagus [40]. In clinical 
practice, it is important to distinguish esophageal 
protruded lesions, such as esophageal leiomyoma (EL), 
esophageal cyst (EC), and esophageal papilloma (EP). 
But it is difficult to judge by white light image alone, 
and endoscopic ultrasonography (EUS) is often required 
[41]. Unfortunately, EUS has a steep learning curve and 
remains a challenging task for endoscopists of all levels 
of experience [42]. Min Zhang et al. developed a CNN-
based model using WLE and EUS images of 1217 patients 
with benign esophageal protruded lesions to identify and 
differentiate the three subtypes (EL, EC, EP) [43]. For the 
identification of esophageal benign lesions from healthy 
controls, the AUC of the CNN model was 0.751. The 
model achieved an AUC of 0.907, 0.897 and 0.868 for the 
identification of EP, EL, and EC under WL, while 0.739 
and 0.724 for EL and EC under EUS. Compared with all 
endoscopists, the model achieved higher sensitivity and 
specificity than all endoscopists in correctly classifying 
EL and EC using EUS images.

2.4 Esophagogastric varices

   Esophagogastric varices (EGV) are one of the main 
complications of cirrhosis, and the death rate of acute 
variceal rupture and bleeding can reach 15%-50% 
[44]. Early identification of patients with a high risk 
of variceal hemorrhage in cirrhosis is very important 

for the primary prevention of variceal hemorrhage. 
Esophagogastroduodenoscopy (EGD) is recommended in 
the Guidelines as a tool for assessing the risk of bleeding 
from esophageal and gastric varices, but this is often 
subjective in practical clinical practice [45]. Chen M et al. 
trained a DCNN system (ENDOANGEL) based on 8,566 
endoscopic images of gastroesophageal varices in 3021 
patients and 6,152 normal esophagus/stomach images 
in 3168 patients for the diagnosis of gastroesophageal 
varices and the prediction of rupture risk [46]. As a result, 
ENDOANGEL detected esophageal varices (EVs) and 
gastric varices (GVs) at the accuracy of 97.00% and 
92.00%, respectively, comparable to that of experts. 
Moreover, it achieved excellent results in the detection 
of endoscopic risk factors for esophagogastric variceal 
bleeding. The authors point out that although this system 
still has some limitations in the judgment of treatment 
decisions, prospective studies are needed to further 
verify the performance of the model. As for patients with 
compensated advanced chronic liver disease, Agarwal 
S et al developed a machine learning model to predict 
bleeding in esophageal varices [47]. The model improved 
the performance of endoscopic stratification to predict VB 
with an accuracy of 98.7%.

2.5 Gastric cancer

   More than 1 million new cases of gastric cancer 
occur globally each year, making it the fourth leading 
cause of cancer-related death [1]. The 5-year survival 
rate of advanced gastric cancer is 5%-25%, while early 
endoscopic diagnosis and treatment can improve the 
survival rate to more than 90% [5]. Early detection and 
treatment is critical to reduce mortality and improve 
survival rates. The recognition and diagnosis of EGC 
based on deep learning are expected to reduce the missed 
diagnosis of gastric cancer and enhance survival.
  Our previous work used a total of 3,170 gastric cancer 
and 5,981 benign images to train the vgg-16 and 
resnet-50 for the detection of EGC [48]. Based on the 
image classification model, a class-like activation map 
was further developed to automatically cover suspicious 
cancerous areas. One hundred EGC and one hundred 
non-cancerous images were used as a test set to evaluate 
and compare the diagnostic capabilities of the model 
and endoscopists. The results showed that the accuracy, 
sensitivity, specificity, positive predictive value, and 
negative predictive value of the model were 92.5%, 
94.0%, 91.0%, 91.3%, and 93.8%, respectively, which 
were better than that of endoscopists. At the same time, 
the study of real-time monitoring of EGC in early cancer 
and non-cancer videos demonstrated a good effect. Li 
L et al. collected 386 images of non-cancerous lesions 
and 1702 images of early gastric cancer to train the 
classification model Inception-v3 to distinguish early and 
non-cancer by magnifying endoscopy with narrow-band 
imaging (ME-NBI) [49]. The model showed comparable 
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accuracy (90.9%) and superior sensitivity (91.2%) to 
that of experts. In addition, Tang D et al. used 3407 
endoscopic images from 666 patients with gastric cancer 
to construct a deep convolutional neural network model 
to differentiate intramucosal GC from advanced GC [50]. 
With the help of this model, novice endoscopists(84.6%) 
achieved the same level of accuracy as specialists(85.5%).
  With the development of endoscopic treatment for EGC, 
endoscopic submucosal dissection (ESD) is becoming 
more and more popular [51]. However, whether ESD 
can be performed depends to a large extent on the depth 
of invasion, degree of differentiation, and boundary of 
gastric cancer [52, 53]. Zhu Y et al. developed a CNN-
CAD system for judging the depth of gastric cancer 
invasion, which can effectively distinguish early gastric 
cancer from deep submucosal invasion and minimize 
the overestimation of the depth of invasion to avoid 
overtreatment [54]. Ling T et al. retrospectively collected 
2217 images of differentiated gastric cancer and 11,870 
images of undifferentiated gastric cancer to establish a 
model to evaluate the degree of differentiation of gastric 
cancer [55]. In addition, 694 images of differentiated 
cancer and 234 images of undifferentiated cancer labeled 
by experts were used to train and test the gastric cancer 
boundary delineation model to accurately identify the 
differentiation state and delineate the edge of EGC 
under ME-NBI endoscopy. The accuracy of the model 
to identify the differentiation degree of EGC reached 
83.3%. At the overlap rate of 0.80, the accuracy rate 
for differentiated and undifferentiated EGC was 82.7% 
and 88.1%, respectively, which was better than that of 
endoscopy experts and had potential clinical practical 
value. The system performed excellently in a multicenter, 
prospective, real-time, competitive comparative, 
diagnostic study [56].

2.6 Precancerous lesions

   Chronic inflammation of gastric mucosa induces a 
series of precancerous conditions (gastric atrophy and 
intestinal metaplasia) and lesions (dysplasia), leading to 
the occurrence and development of gastric cancer [57]. 
In patients with extensive atrophy of gastric mucosa, the 
5-year incidence of gastric cancer can reach 1.9%-10%, 
while in patients with intestinal metaplasia, the incidence 
is as high as 5.3%-9.8% [58]. Therefore, early identifying 
and monitoring the precancerous conditions is beneficial 
to the healthy outcome of patients. Zhang Y et al. collected 
3042 images of atrophic gastritis and 2428 images of non-
atrophic gastritis from the gastric antrum of 1470 patients, 
aiming to construct a classification model to diagnose 
chronic atrophic gastritis [59]. The authors conclude that 
the deep learning model has high sensitivity (94.5%) and 
accuracy (94.2%) in the diagnosis of atrophic gastritis, 
which can improve the diagnostic ability of endoscopists 
on atrophic gastritis. Based on 6250 endoscopic images 
from 760 patients with precancerous gastric cancer and 98 

videos from 77 patients who underwent image-enhanced 
endoscopy (IEE), Xu M et al. constructed ENDOANGEL, 
a deep convolutional neural network system, for the 
detection of precancerous gastric cancer [60]. The 
system showed high accuracy, sensitivity, and specificity 
in detecting precancerous lesions, and the diagnostic 
accuracy (GA 0.901; IE 0.908) was close to the expert 
level, which provided the possibility of being widely used 
in the diagnosis of precancerous lesions of gastric cancer.

2.7 Helicobacter pylori (Hp) infection

   Helicobacter pylori (Hp) is a ubiquitous microbe, which 
can be found in 50% of the world's population [61]. 
Chronic infection with Hp can lead to gastric atrophy and 
even metaplasia. The International Agency for Research 
on Cancer (IARC) of the World Health Organization 
(WHO) believes that 78% of gastric cancers can be 
attributed to chronic infection caused by Hp and has 
classified it as a class I carcinogen [62]. Timely diagnosis 
and eradication of HP are considered to be an important 
strategy to prevent gastric cancer. With the continuous 
progress of endoscopic technology, more and more studies 
have found that morphological changes of esophageal 
and gastric mucosa under endoscopy (such as atrophy, 
punctured redness, mucosal swelling, erosion, etc.) are 
related to Hp infection [63, 64]. However, there are no 
objective indicators for these endoscopic features, which 
greatly limits their clinical application. Shichijo S et al. 
constructed a convolutional neural network that could 
diagnose Hp infection [65]. The sensitivity and accuracy 
of the model in determining Hp infection through 
gastroscopic images reached 81.9% and 83.1%, showing 
excellent performance. Zheng W et al. collected 11,729 
gastric images from 1,507 patients (847 of whom were 
infected with Hp) to train classification model ResNet-50 
and tested the model in 3,755 images from 452 patients 
(310 of whom were infected with Hp) [66]. The results 
showed that the AUC per image and per patient was 0.93 
and 0.97, respectively. with sensitivity, specificity, and 
accuracy of 91.6%, 98.6%, and 93.8%, which indicated 
a high diagnostic accuracy. To evaluate the infection 
status of Helicobacter pylori (not infected, past infection 
or current infection), Yoshii S et al. recruited 498 
subjects and developed a predictive model by evaluating 
their gastritis endoscopic results based on the Kyoto 
classification [63]. The overall diagnostic accuracy of the 
model for gastritis was 82.9%. With further improvement, 
this model might be very helpful to novice endoscopists.

2.8 Quality control

  Gastroscopy is a key step in the diagnosis of upper 
gastrointestinal diseases. However, endoscopists vary in 
their performance levels, which affects the detection of 
gastric cancer and precancerous lesions. At present, most 
of published articles focus on the diagnosis or detection of
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lesions, while a few studies focus on the quality of 
endoscopic examination.
   Our previous work used more than 60,000 EGD 
images and divided them into training set and test set 
at the ratio of 9:1. Endoscopists studied the guidelines 
of the European Society of Gastrointestinal Endoscopy 
(ESGE), the Japanese systematic screening protocol and 
independently labeled EGD images into 26 different sites 
[67]. Then VGG-16 was trained to realize the function of 
classifying gastric sites [68]. The model monitored blind 

spots with an accuracy of 90.40% in real EGD videos. 
What's more, the blind spot rate of the patients in AI-
assisted group (5.9%) was significantly lower than that 
of the control group (22.5%) in our clinical trial, which 
suggested that this system had the potential to improve 
the quality of daily endoscopic examination. In our most 
recent prospective randomized controlled study, the 
number of blind areas during gastroscopy was reduced 
from 9.82% to 5.39% with the aid of AI [69].

Table 1 Examples of the application of artificial intelligence in digestive endoscopy

Lesions Diagnostic or predictive 
modality AI model

Number of images/cases
in training dataset

Number of images/cases
in test dataset

Result

Esophageal cancer

Guo L et al. narrow-band imaging (NBI) SegNet 6473 NBI images 6670 NBI images
80 videos

Sensitivity
Image dataset:93.6%

Nonmagnifying video 
dataset:46.9%

Magnifying video 
dataset:85.8%

Everson MA 
et al.

magnification
 endoscopy CNN

54,193 magnification 
endoscopy narrow-band 
images

13,548 magnification 
endoscopy narrow-band 

images

F1 score: 94%
Sensitivity:93.7%
Accuracy:91.7%

Nakagawa 
K et al. upper GI endoscopes CNN

8660 non-magnified 
endoscopic (non-ME)
 and 5678 ME images from 
804 superficial esophageal 
SCCs

405 non-ME images 
and 509 ME images 

from 155 patients 

SM1,SM2/3：
Sensitivity:90.1%
Specificity: 95.8%
Accuracy :91.0%

Barrett's esophagus

Hashimoto 
R et al.

Wchromoendoscopy CNN 960 images from 
65 patients

458 images (225 dysplasia 
and 233 non-dysplasia) 

Sensitivity: 96.4%
Specificity:94.2%
 Accuracy:95.4%

Ebigbo A et 
al.

upper GI endoscopes CNN 230 white-light endoscopic images 
(108 T1a and 122 T1b) 

Sensitivity: 0.77
 Specificity:0.64

Accuracy:0.71 
Esophageal protruded lesions

Zhang M et 
al.

white-light endoscopy 
 EUS

CNN

(1)identification of esophageal benign lesions from 
healthy controls: 17279 WLI images from 598 patients
(2)differentiation esophageal leiomyoma, esophageal 
cyst, esophageal papilloma: 3226 WLI images from 
619 patients 
(3) discrimination between EL and EC Wusing EUS 
images: 3411 EUS images from 248 patients 

(1)AUC: 0.751
(2)AUC: EP:0.907 

EL:0.897 EC:0.868
(3)AUC: EL:0.739  

EC:0.724 

Esophagogastric varices

Chen M et 
al.

upper GI endoscopes DCNN 8566 images 
(gastroesophageal varices)
 6152 images (normal 
esophagus/stomach)

-
Accuracy: 

esophageal varices 
(EVs):97.00% 
gastric varices 
(GVs):92.00%

Gastric cancer

Wu L et al. esophagogastroduodenoscopy DCNN

24,549 images of different parts of the stomach were 
taken to train the model to monitor the blind spot
3170 images of gastric cancer and 5981 images 
of benign lesions were used to train the model to 
recognize early cancer

 Accuracy:
10 parts classification: 90%

 26 parts classification: 
65.9% 

early cancer in WL images: 
92.4%

Li L et al. magnifying endoscopy CNN
386 images of non-
cancerous lesions and 
1702 images of early 
gastric cancer

341 endoscopic images 
(171 non-cancerous 

lesions and 170 early 
gastric cancer)

Sensitivity:91.18%
 Specificity:90.64%

 Accuracy:90.91%
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Tang D et 
al.

esophagogastroduodenoscopy DCNN 3407 endoscopic images 
from 666 gastric cancer 
patients

228 images from 62 
patients

 
AUC:0.942 

 Sensitivity:90.5%
 Specificity:85.3% 

Zhu Y et al. esophagogastroduodenoscopy CNN
ResNet50

790 images 203 images Ensitivity:76.47%
 Specificity:95.56%

Accuracy:89.16%

Ling T et al. magnifying narrow-band 
imaging (ME-NBI) endoscopy

CNN
1131 images of 
differentiated and 1086 
images of undifferentiated 
gastric cancer

1526 images from 105 
differentiated gastric 

cancers and 344 images 
from 34 undifferentiated 

gastric cancers

Accuracy:83.3 %

Wu L et al.
magnifying narrow-band 

imaging endoscopy - -
37 EGCs and 63 

noncancerous lesions

Sensitivity:Detect 
neoplasms 87.81%        

      Diagnose EGCs100%
Accuracy: 

Predict EGC invasion 
depth78.57%  

Differentiate status 71.43%
Precancerous lesions

Zhang Y et 
al.

esophagogastroduodenoscopy CNN 5470 images of the gastric antrums 
of 1699 patients

 Diagnose atrophic gastritis 
Accuracy:0.942

 Sensitivity:0.945
Specificity: 0.940

Xu M et al. image-enhanced endoscopy 
(IEE) 

DCNN
3,049 images of 
precancerous states and 
2,149 images of chronic 
inflammation

1052 images
98 videos

Accuracy:
gastric atrophy:0.901

intestinal metaplasia:0.908

Helicobacter pylori (Hp) infection

Shichijo S 
et al.

esophagogastroduodenoscopy CNN 32,208 images either 
positive or negative for H. 
pylori

11,481 images from 397 
patients

CNN1:sensitivity 81.9%
 specificity83.4%

accuracy83.1%
CNN2: sensitivity 88.9%

 specificity87.4%
accuracy87.7%

Zheng W et 
al.

upper endoscopy ResNet-50 11,729 gastric images 3,755 images Sensitivity:81.4%
Specificity:90.1%
Accuracy:84.5% 

Yoshii S et 
al.

upper endoscopy CNN 498 patients
 Accuracy:

 Kyoto classification of 
gastritis:82.9%

without H. pylori 
eradication history: 88.6%

   with eradication 
history:93.4%

Quality control

Wu L et al. esophagogastroduodenoscopy VGG-16
DenseNet

DCNN1:12 220 in vitro, 
25 222 in vivo and 16 760 
unqualified EGD images
DCNN2:34 513 qualified 
EGD images

DCNN1:3000 images 
(1000 per category)

DCNN2:2160 images 
(80 per site) 

 
monitor blind spots with 

an average accuracy of 
90.02%

Wu L et al. esophagogastroduodenoscopy - ENDOANGEL groups: 498 patients 
Control groups:504 patients

The number of blind spots:
 ENDOANGEL group: 

5.39%
Control group: 9.82%

Application of AI in capsule colonoscopy

Aoki T et al.
 
wireless capsule endoscopy CNN

5360 WCE images of 
erosions and ulcerations

440 images of erosions and 
ulcerations

Ensitivity:88.2%
 Specificity:90.9% 

Accuracy:90.8%
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Ding Z et al. small bowel capsule endoscopy 
(SB-CE)

CNN 158,235 SB-CE images 
from 1970 patients

5000 patients
 

Sensitivity of identifying 
abnormalities

per-patient analysis: 
99.88% 

 per-lesion analysis:99.90% 

Yamada A et 
al.

colon capsule endoscopy Single Shot 
MultiBox 
Detector

15 933 CCE images of 
colorectal neoplasms

4784 images(1850 images 
of colorectal neoplasms 
and 2934 normal colon 

images)

Sensitivity:79.0 %
 Specificity: 87.0 %

 Accuracy: 83.9 %

Leenhardt R 
et al.

small-bowel capsule 
endoscopy CNN - -

sensitivity : 90.3 %
Specificity: 83.3 %
Accuracy: 89.7 %

Colorectal cancer

Luo X et al. white-light colonoscopy CNN
7734 nonmagnified white-
light colonoscopy (WLC) 
imagesfrom 657 lesions

1634 WLC images from 
156 lesions 

Accuracy: 91.1% 
 Sensitivity: 91.2%
Specificity: 91.0%

Ichimasa K 
et al.

colonoscopy SVM 590 patients 100 patients Sensitivity:100 %
Specificity:66%
Accuracy:69%

Polyps and adenomas

Kudo SE et 
al.

colonoscopy CNN 69,142 endocytoscopic 
images

100 lesions from 89 
patients

Sensitivity:96.9%  
Specificity:100% 

Accuracy: 98% 

Wang P et 
al.

colonoscopy - 1,290 patients 612 polyp-containing 
images

per-image-sensitivity, 
88.24%

Wang P et 
al.

colonoscopy - standard colonoscopy group:536 patients
computer-aided group:522 patients

ADR 
 standard colonoscopy 

group:29.1%
computer-aided 

group:20.3%
Inflammatory bowel disease

Takenaka K 
et al.

colonoscopy DNUC 40,758 images of 
colonoscopies

4187 endoscopic images 
and 4104 biopsy specimens

The DNUC identified 
patients in histologic 

remission with 92.9% 
accuracy

Gottlieb K 
et al.

colonoscopy - 795 prospectively recorded full-length endoscopy quadratic weighted kappa 
(QWK):

eMS :0.844
UCEIS:0.855

Quality control

Zhou J et al. colonoscopy CNN 5583 clear colonoscopic 
images

120 images (30 in each 
classification) 

BBPS four classification 
scoring accuracy: 93.33%
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3 .  Appl icat ion  of  AI  in  capsule 
colonoscopy

   Capsule endoscopy (CE) entered the domain of small 
intestine disease diagnosis in 2001 [70]. As a non-
invasive deglutition diagnostic device, CE can not only 
reduce patients' discomfort during the examination but 
also clearly observe various types of intestinal mucosal 
abnormalities [71]. However, the major limitation 
is that CE is time-consuming and has a high risk of 
missed detection [72]. Aoki T et al. collected 5,360 CE 
images of erosion and ulcer to train the detection model 
SSD and tested it in 10,440 CE images (including 440 
erosion and ulcer) [73]. The deep learning model can 
automatically detect erosion and ulcers with an accuracy 
of 90.8% in the CE image, thus reducing the burden 
on endoscopists. Furthermore, Ding Z et al. collected 
113,426,569 CE colonoscopy images from 6970 patients 
who had undergone small bowel capsule endoscopy in 
77 medical centers to conduct a classification model 
ResNet which could distinguish between normal and 
abnormal images [74]. With the assistance of AI model, 
endoscopists identified abnormalities with a higher 
sensitivity(99.88%) and in a shorter time( 5.9±2.23 min 
per case) with the assistance of AI. Recently, Yamada A et 
al. used 15 933 colon capsule endoscopy (CCE) images 
of colon tumors, such as polyps and cancers, to develop 
a deep convolutional neural network based on a Single 
Shot MultiBox Detector for the automatic detection of 
colorectal tumors [75]. Leenhardt R et al. also developed 
a neural network-based algorithm that can automatically 
evaluate the cleanliness of the small intestine during 
capsule endoscopy with a high sensitivity of 90.3% [76]. 
What's more, Saraiva MM et al developed a Convolutional 
Neural Network model using a database of CCE images 
to detect protruding lesions [77]. This model performed 
well in detecting protruding lesions with sensitivity and 
specificity of 90.7% and 92.6%, respectively.

4. Application of AI in colonoscopy

4.1 Colorectal cancer

   Colorectal cancer is the second most deadly malignancy 
in the world [1], and new cases of colorectal cancer are 
expected to rise to 2.5 million worldwide by 2035 [78]
which will place huge health and economic burden on 
society. Screening for colorectal cancer, early detection 
and treatment of precancerous lesions and asymptomatic 
early cancer are essential to delay progression and 
reduce mortality. Colonoscopy is an important means for 
early diagnosis and treatment of lower gastrointestinal 
diseases and is the gold standard for colorectal cancer 
screening [79]. Unfortunately, the current application of 
AI in colonoscopy mainly focuses on the detection and 

classification of polyps [80, 81]. However, once colorectal 
cancer is diagnosed, evaluation of the depth of invasion 
is our first task, which is crucial for the selection of 
treatment strategy [52]. Luo X et al. constructed a deep 
convolutional neural network with tumor localization 
branches based on GoogLeNet architecture to evaluate the 
invasion depth using 7734 white light colonoscopy images 
of 657 lesions [82]. Pathological results were the gold 
standard. Consequently, the model achieved an accuracy 
of 91.1% in the prediction of non-invasive and superficial 
invasive tumors. In addition, the model could distinguish 
between superficial submucosal invasive tumors and 
deep invasive CRC with an accuracy similar to that of 
experienced endoscopists. Some studies also focus on the 
treatment and prognosis of patients with colorectal cancer, 
trying to use AI to select the optimal treatment plan for 
patients. Ichimasa K et al. developed a machine learning 
model to predict the risk of lymph node metastasis. 
Consequently, it showed that AI could significantly reduce 
unnecessary additional surgery after the endoscopic 
resection of T1 colorectal cancer [83].

4.2 Polyps and adenomas

   Removal of adenomas found by colonoscopy can 
significantly reduce the incidence and mortality of 
colorectal cancer [84, 85]. Each 1.0% increase in the 
adenoma detection rate is associated with a 3.0% 
decrease in the risk of cancer [86]. However, the level of 
endoscopists varies, and polyps may be missed during 
colonoscopy. In one study, the missed rate of adenomas is 
as high as 26% [87]. At the same time, it is important to 
distinguish between non-neoplastic and neoplastic lesions 
for the treatment and prognosis of patients. The traditional 
method is to take biopsy to identify neoplastic lesions [88], 
but this method is invasive and time-consuming. Accurate 
optical diagnosis of colorectal polyps can decrease the 
cost of colonoscopy and reduce the complications related 
to polyp biopsy. 
   Kudo SE et al. collected 69,142 images of endoscopy 
from patients with colorectal polyps in 5 academic centers 
in Japan to train the system EndoBRAIN [89]. Compared 
with 30 endoscopists (20 trainees and 10 specialists), 
EndoBRAIN showed a better performance in the 
diagnosis of neoplasia in stained endocytoscopic images 
with a sensitivity of 96.9%. Furthermore, the sensitivity 
and accuracy of EndoBRAIN in narrow-band images were 
96.9% and 96.0%, which were significantly better than 
that of non-experts and comparable with that of experts.
   To improve the detection rate of colorectal polyps, 
early detection and removal of colorectal polyps is of 
great significance for the prevention of colorectal cancer. 
Wang P et al. conducted a segmentation model SegNet 
to detect colorectal polyps, which performed well with 
the sensitivity of 94.38% and specificity of 95.92% 
[90]. Subsequently, a randomized, controlled and single-
blind clinical trial, of which 536 received conventional 
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colonoscopy and 522 received AI-assisted colonoscopy 
was conducted [91]. The results showed that the AI 
system could significantly improve the adenoma detection 
rate (ADR) from 20.3% to 29.1% and the mean number of 
adenomas detected per patient (MNA) from 0.31 to 0.53. 
Recently, to study the influence of artificial intelligence 
system on ADR after eliminating the operational 
bias, Wang P et al. further designed and conducted a 
randomized double-blind clinical trial involving 1,010 
patients [92]. The AI-assisted group simulates the alarm 
box on polyps; while the sham control group simulates 
the alarm box on the polypoid non-polyp mucosas. Only 
the observer can see the output of the systems on a second 
monitor and report the alert to endoscopists. Only when 
the area predicted by the AI system is not thought to be a 
polyp by the operating endoscopist and is about to leave 
the field of vision, will the observer point at the area to 
alert the endoscopist. The results showed that the ADR of 
the AI-assisted group(34%) was significantly higher than 
that of the sham control group(28%), which indicated that 
the AI system could help endoscopists detect more polyps 
and adenomas in real time. Furthermore, Sinonquel P et al 
also used a second observer in a non-RCT setting to assess 
the miss rate of AI system and endoscopists [93]. Both the 
system and the endoscopists performed well with a real-
time accuracy of 96.5% and 98.2%, which suggested the 
system was non-inferior in terms of sensitivity and might 
aid in guaranteeing quality in colonoscopy.

4.3 Inflammatory bowel disease

   At present, the prevalence of inflammatory bowel 
disease (IBD) is on the rise, and it has become a global 
disease [94]. As we all know, delayed diagnosis of IBD 
significantly increases the risk of surgical resection and 
complications [95, 96]. Objective endoscopic evaluation 
of inflammatory bowel disease is of great significance in 
promoting the treatment of patients and improving the 
prognosis [97]. However, endoscopic assessment requires 
training for endoscopists, and there are usually differences 
in the assessment among different endoscopists [98]. It 
is difficult to diagnose IBD, misdiagnosis and missed 
diagnosis are widespread in the world. Takenaka K et al. 
collected 40,758 colonoscopy images from 2,012 patients 
with ulcerative colitis (UC) to train the classification 
model to assess the severity of UC and validated it 
prospectively with 4187 endoscopic images from 875 
patients with UC [99]. Endoscopic remission was defined 
as the ulcerative colitis endoscopic, the index of severity 
(UCEIS) score is 0. Histological remission was defined 
as Geboes score ≤ 3. The deep learning model is highly 
accurate in assessing UC with an accuracy of 90.1% and 
92.9% in predicting endoscopic remission and histological 
remission, and is expected to help endoscopists identify 
remission in UC patients without biopsy. What's more, 
Bossuyt P et al also developed an operator-independent 
computer-based tool to determine UC activity based 

on endoscopic images, which provided an objective 
computer-based score that accurately assessed disease 
activity in UC [100]. In their validation study, they 
tested the correlation between the algorithm RD score 
and clinical, endoscopic and histological features. 
Consequently, RD was correlated with endoscopic and 
histological disease activity. To identify the endoscopic 
disease activity scoring in UC in the video, Gottlieb 
K et al. collected 795 endoscopy videos prospectively 
and constructed a system based on convolutional neural 
network and recurrent neural network to evaluate UC 
endoscopy Mayo score(eMS) and Ulcerative Colitis 
Endoscopic Index of Severity (UCEIS) score [101]. 
Quadratic weighted kappa (QWK), which was used to 
evaluate the model, was 0.844 and 0.855 for eMS and 
UCEIS respectively. Soffer S et al. was encouraged by 
this innovative research and believed that it would be 
a stepping stone for the future development of AI in 
Esophagogastroduodenoscopy [102]. 

4.4 Quality control

   In recent years, the incidence and mortality of colorectal 
cancer have been increasing and it has become one of 
the major malignant tumors threatening human health. 
Colonoscopy is the gold standard for CRC screening, 
and high-quality colonoscopy is the basis for the early 
detection of lesions. Studies have shown that adenoma 
detection rate (ADR), as an important indicator of 
colonoscopy quality control [86], can decrease the risk 
of interphase colon cancer by 3% and the mortality of 
colorectal cancer by 5% with an increase of 1%. The key 
indicators to evaluate the quality of colonoscopy mainly 
include intestinal preparation, cecal intubation rate, ADR, 
etc [88]. However, the existing number of endoscopists 
cannot meet the increasing demand for colonoscopy, and 
the level of endoscopists varies, which will lead to the 
uneven quality of colonoscopy. Therefore, we should 
further strengthen the quality control of colonoscopy, 
and reduce the rate of missed diagnosis of the lower 
gastrointestinal tract during colonoscopy.
   Inadequate intestinal preparation is associated with a 
reduced adenoma detection rate (ADR). Our previous 
work used 4,764 colonoscopy images, which were graded 
from 0 to 3 according to the Boston bowel score (BBPS) 
by endoscopies to train the classification model DenseNet 
[103]. In predicting the bowel preparation in real-time, 
the model achieved an accuracy of 93.33% in a test set 
of 480 colonoscopy images (120 for each category) and 
89.04% in 20 colonoscopy videos. We have recently 
developed an intestinal preparation assessment system for 
calculating automatic BBPS (E-BBPS) scores (range 0-20)
[104]. The system classified colonoscopy video images 
into qualified and unqualified images, and then calculated 
the proportion of unqualified frames in real-time to reflect 
intestinal preparation. In addition, the correlation between 
the proportion of intestinal unqualified preparation and the 
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ADR was explored based on 616 prospective colonoscopy 
screening videos. We were pleasantly surprised to find that 
there was a significant negative correlation between the 
proportion of intestinal preparation unqualified frames and 
the ADR (ρ= -0.976, P<0.01), and ADR was significantly 
lower in patients with scores greater than 3 than in 
patients with scores less than 3 (15.93% vs 28.03%, OR 
0.43). This suggests that our system has the potential to 
provide more objective and refined thresholds for the 
quantification of adequate intestinal preparation.
   It is well known that the withdrawal time is significantly 
associated with the incidence of interval colorectal cancer 
[105]. As is recommended in the guidelines, it should 
not be less than 6 minutes [88]. Our previous work used 
more than 20,000 images of colonoscopy to construct 
a real-time quality improvement system through VGG-
16 and perceptual hashing algorithm to monitor real-
time withdrawal speed, withdrawal time and remind 
endoscopists of blind spots caused by scope slipping 
[106]. Subsequently, 791 patients were recruited for a 
randomized controlled clinical trial. The results showed 
that the ADR of the AI-assisted group (16.34%) was 
significantly higher than that of the control group (7.74%). 
We conclude that the system has greatly improved the 
detection of adenomas and polyps by improving the 
quality of colonoscopy, and it is expected to be a powerful 
tool to narrow the skill gap among endoscopists.

5. Summary and prospect

   With the rapid development of computer technology, 
the application of AI in the field of digestive endoscopy 
has mushroomed. Needless to say, the future of artificial 
intelligence is promising. However, it is also full of 
challenges. Behind the rapid development of technology, 
there are still many problems and difficulties to be solved. 
Firstly, the sample data set is important to the deep 
learning model, and the quantity and quality of the data 
set directly affect the accuracy and generalization ability 
of the model. How to evaluate the quality of the data set, 
how to improve the quality of sample labeling, and how 
to ensure that there is no cross contamination between 
training and testing sets, etc., are problems worth further 
discussion. In addition, there are "black boxes" in the logic 
of deep-learning algorithms' decision-making processes 
that are difficult for humans to understand, preventing 
doctors from discovering potential confounding factors. 
More importantly, AI is still in the development stage, and 
there are no relevant rules or the formation of industry 
norms yet. In future practical applications, AI cannot 
know the comprehensive situation of patients, nor does it 
understand the laws and responsibilities except the picture 
information read. If misdiagnosis occurs, how to solve the 
ethical problem and who should bear the corresponding 
responsibility?
   The free and open-source sharing of algorithms ensures 

us to use the most advanced deep learning model to study 
and explore the application of deep learning in medical 
imaging. We need to start from the actual clinical needs, 
take the basic theory as the starting point, and form a 
set of independent digestive endoscopy AI technology 
development mechanism with the accumulation of 
time experience. Hope we could see that AI brings 
revolutionary changes to digestive endoscopy and even 
the whole medical field, contributes to improving patients' 
outcome worldwide.
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