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Abstract: Financial costs are a major concern in the healthcare system, with medical billing and coding playing a 
key role in facilitating transactions and financing procedures. Billing involves filing claims with insurance companies 
and requires scrutiny of clinical summaries and electronic health records to correctly match diagnoses, prescriptions, 
and procedures to standardized codes. Accuracy in assigning International Classification of Diseases (ICD) codes 
is critical to proper reimbursement of care. Incorrect codes waste time and resources, and cause administrative and 
financial problems for hospitals, insurance companies and patients. Manual medical coding is a labor-intensive 
and error-prone process that creates additional administrative burden and inconvenience for hospitals, insurance 
companies, and patients. To simplify the process, clinical records are often processed to automatically identify and 
extract clinical concepts and corresponding ICD codes. Deep learning and natural language processing techniques 
have shown promise in a variety of tasks but applying them to medical coding has been challenging. Accurate coding 
requires a deep understanding of medical terminology, context, and guidelines that may be difficult to capture with 
traditional deep learning methods. Although deep learning shows promise in healthcare, its specific impact on ICD 
coding is not fully understood, and translating scalable deep learning methods into practical improvements in ICD 
coding remains a challenge. Evaluating deep learning models under the scenarios of real-world coding and comparing 
them to established practice is critical to determining their true effectiveness. In this work, we address the automation 
of ICD coding by highlighting pitfalls and contrasting different perspectives. We investigated automatic ICD coding 
using baseline machine learning models, with a focus on identifying ICD-9 codes in discharge notes from Medical 
Information Mart for Intensive Care (MIMIC) database. A thorough evaluation of different models and approaches 
is crucial to avoid over-reliance on any method. Our findings show that simpler methods can achieve comparable 
results to deep learning models while still requiring fewer computational resources.
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1. Introduction

   Much of the aggravation with the current healthcare 
system is the financial cost. The crucial role of medical 
billing and coding in the healthcare industry is sometimes 
overlooked or goes unnoticed, yet these are the behind-
the-scenes processes that facilitate financial transactions 
and secure funding for medical procedures. Billing 
involves preparing and submitting claims to insurance 
carriers which requires close review of clinical summaries 
and electronic health records (EHRs) prepared by nurses 
and physicians [1]. Aiming to efficiently review thousands 
of records, medical coding in hospitals involves matching 
an exclusive numerical or alphanumerical index for 
diagnoses, prescriptions, and procedures from these free-
form clinical notes to allow for a standardized way to 
communicate identification of health issues [2].
   One of the most used classification systems for medical 
codes is the International Classification of Diseases 
(ICD) reporting and coding guidelines [3]. The people 
who conduct this work are usually called coders, who are 
experts at summarizing and abstracting long documents 
and advanced clinical terminology into corresponding 
codes used for data analysis, communication, records, 
and financial purposes. Based on these codes, insurance 
companies deny or accept claims. Therefore, it is 
imperative that codes are accurate the first time so that 
patient care is reimbursed correctly and timely. If the 
codes are incorrect or the problem is misidentified, the 
tedious reconciliation and resubmission wastes time and 
resources that could have gone into the hospitals' many 
other processes [4].
   Manual medical coding is a laborious and resource-
intensive process that demands expertise in abstraction 
and clinical domains [2]. However, due to the inherent 
complexity and subjectivity, it is error-prone, demanding 
additional administrative efforts to rectify these 
mistakes. Consequently, hospitals, insurance companies, 
and patients face the inconvenience of dealing with 
bureaucratic overhead and financial documentation issues 
caused by these inaccuracies. To make this medical 
coding process more streamlined, clinical notes need to 
be processed in a way that identifies and extracts clinical 
concepts and their ICD codes when applicable [5].
   Despite significant advances in deep learning and 
natural language processing (NLP) techniques, it remains 
unclear whether these efforts have resulted in significant 
improvements in ICD coding. While deep learning models 
have shown promising results on various NLP tasks such 
as text classification and named entity recognition, their 
application to the complex and detailed domain of medical 
coding presents unique challenges. Accurate assignment 
of ICD codes requires a deep understanding of medical 
terminology, context, and clinical guidelines that may not 
be easily captured by traditional deep learning methods 
[6]. Furthermore, the interpretability and transparency of 
deep learning models in healthcare raises concerns about 

their reliability and trustworthiness [7]. Therefore, it is 
important to critically evaluate the impact of deep learning 
techniques on ICD coding and whether they have brought 
significant improvements in the field. Further research 
and evaluation are required to verify the effectiveness and 
practicality of deep learning methods and to improve the 
accuracy and efficiency of ICD coding [8].
   Deep learning models have shown promise in healthcare 
applications, such as when predicting specific clinical risks 
[9], [10] or readmission rates [11], [12], while the specific 
impact of these models on the accuracy and efficiency 
of ICD coding is not yet fully understood. Scalable and 
accurate deep learning for electronic health records 
has been explored, but translating these approaches 
into practical improvements in ICD coding remains an 
ongoing challenge. It is important to carefully evaluate the 
performance of deep learning models in real-world ICD 
coding scenarios and compare them to established coding 
practices to determine their true effectiveness and potential 
to improve baseline performance when processing patient 
discharge reports [13].
   In this paper, we provide an overview of the trends 
in automation of ICD coding by highlighting the 
shortcomings, while at the same time contrasting different 
perspectives to support ICD identification at a lower level, 
i.e., detecting related snippets of text and using them to 
train baseline machine learning models for automatic 
ICD coding. Our study also investigates the potential of 
baseline methods to gain insights into the effectiveness 
and utility of these methods for optimizing ICD coding in 
patient discharge reports. We explore the effectiveness of 
less complex baselines for solving the task of identifying 
ICD-9 codes using patient discharge notes from a publicly 
available dataset (MIMIC). Despite the widespread use 
of deep learning models, we demonstrate that simpler 
methods can achieve comparable results while requiring 
less computational resources. Our results highlight the 
importance of thoroughly evaluating the performance of 
various models and methods for different tasks to avoid 
over-reliance on a particular approach. By considering 
the importance of a vocabulary versus concept approach, 
researchers can improve the efficiency and practicality of 
their solutions while still achieving competitive results.
   In Section 2, we introduce the three main components 
of health care data flow (terming, coding, and grouping), 
and contrast different clinical terminologies for each of 
the aggregation levels. Section 3 provides the background 
context that supports performing ICD coding in automatic 
or semi-automatic ways, and we outline the different 
approaches proposed for automatic ICD coding and the 
difficulties they entail. In Sections 4 and 5, we describe 
how we designed the baseline methods for automatic ICD 
coding and the corresponding results. Finally, in Section 
6 we discuss some important baseline design aspects in 
NLP tasks. We also propose three distinct cumulative 
perspectives when designing more sophisticated machine 
learning applications to support ICD coders, which we 
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consider as the following progressive natural steps in 
automatic annotation, as terming practically consists of a 
lexical problem and coding requires greater abstraction. 
Each perspective focuses on dealing with different 
levels of complexity: semantic relatedness, contextual 
management, and reasoning. While the latter involves 
greater complications, the former is feasible given the 
current state of the art and more easily extended to the 
second level using contextual information.
   
  
2. Clinical terminologies

   A report on inpatient care activity in England1 shows 
the amount of Finished Consultant Episodes (FCEs) 
recorded in 2016-2017 increased by 2.5% from the 
previous year and by 33.4% from 2006-2007. The course 
of a single hospitalization can produce hundreds of pages 
of clinical information, digitally stored in the form of an 
Electronic Health Record (EHR). That increasing amount 
of patient-specific information could be theoretically 
used to enhance health-care services and expand research 
opportunities [14]. However, the vast amount of clinical 
data generated, stored, and shared by patient primary care 
centers and hospitals hinders accurate analysis, potentially 
detrimental to decision-making, management, and health 
policy in patient care.
   To facilitate information management, modern health 
centers try to automatically capture structured data related 
to the patients’ care, such as patient problems, procedures, 
socio-economic status, laboratory test results, and 
radiological imaging data. Nevertheless, a large amount 
of data related to diagnoses, medications, or patient 
history remains as unstructured data or mainly text. 
Such flexibility in the use of natural language is linked 
to greater variability, so that the text may contain typos, 
incorrect syntactical structures, synonyms, abbreviations, 
or ambiguities, making it difficult to process automatically. 
Thus, computer prompting is essential to use clinical 
terms as the prompt to trigger the appropriate clinical 
documentation procedures.
   Over the past decade, there has been an increased 
interest in converting clinical text into structured data 
by coupling EHR systems with a core coded clinical 
thesaurus, which could be a vital component to efficiently 
facilitate communication between healthcare professionals 
and support clinical practice [15]. Thus, several countries 
are developing infrastructure for national health 
information by implementing standards, nomenclatures, 
codes, and vocabularies with the aim of producing open, 
standard, and interoperable EHR systems [16].
   The Language of Health [17] was designed in the 1990s 
and since then has been used to describe the three main 
constituents that comprise the data flow required for direct 
and indirect care of patients by healthcare providers: (a) 
terming (or terminology), (b) coding (or classification), 
and (c) grouping. Figure 1 presents a pyramid dissected 

into three distinct sections, each representing a different 
level of granularity and specificity within the language of 
health, in which multiple terminologies are arranged to 
provide different levels of aggregation. The upper layers 
contain narratives with a higher level of abstraction. 
Therefore, there is a greater gain in comprehension and 
completeness at the expense of losing clinical details in 
the terminologies located in the upper layers.

Figure 1. Pyramidal representation for the aggregation processes 
the flow of clinical information goes through – adapted from [17]

   Clinical terminologies are key components for 
standardizing terms for clinical concepts. They are 
particularly useful for supporting many processes such 
as (a) the development of clinical guidelines focused 
on the treatment of specific conditions, (b) the retrieval 
of relevant data for local and national comparisons in 
patient care, clinical audits, and outcome studies, and 
(c) clinical and decision support systems [17]. Such a 
variety of purposes implies the design of terminologies 
with different granularities, which hampers a potential 
interoperability between them. Hence, efficient automatic 
retrieval of medical information is required to correctly 
search and find references for diagnoses, surgeries, and 
procedures in each patient record [18].
   Differences in the magnitude of each terminology 
led to the development of different standards to ensure 
each classification is consistently applied: terming 
has a magnitude of hundreds of thousands of clinical 
terms, focused on clinical records and guidelines, audit, 
and decision support systems; coding includes tens of 
thousands of categories in order to support local service 
planning, contracting, epidemiology, and national 
assessment; and grouping uses a thousands of high-
level groups to manage resources and support service 
planning and assessment [17]. Although it is theoretically 
possible to use the terms of the lower layers and external 
knowledge to figure out those of the upper layers (as 
described in the next sections), terming, coding, and 
grouping are mutually complementary processes.
   Clinical terminologies are designed according to different 
criteria for different purposes. Nevertheless, there are 
mappings between terminologies that exploit this flow of 
clinical information specificity to establish equivalences 
between lower-layer term sets and higher-layer concepts. 

1.http://digital.nhs.uk/pubs/apc1617
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   These mappings are unidirectional (Figure 2), since 
the aggregation process leads to the loss of clinical 
information, which does not allow the original meanings 
to be restored. Although meanings of a lower layer 
can be aggregated into those of a higher layer, external 
information, not contained in the terminology, is still 
needed (e.g., the mapping between the terminology 
and coding layers may require contextual information 
or non-clinical data, while mapping from coding to 
grouping, requires patient data). Their chain of converting 
detailed clinical information from terms captured in 
the EHR system into classification assignments is of 
the fundamental importance, for example, to support 
national commissioning dataset returns [19], and as the 
unit currency to support the local commissioning and 
contracting process [20].
   The required infrastructure to meet the increasing 
demands for improved quality, greater volume of services 
and more effective use of resources, includes shared 
information flow, national standards to enable inter-
computer communication, and carrying information 
aligned to the purposes of the healthcare industry. At this 
point, the language components become relevant, with: 
(a) terming being the most fundamental building block for 
any set of clinical data; (b) coding offering an intermediate 
level of aggregation which is useful for statistical analysis 
of incidence and trend, and service management; and (c) 
grouping as a higher level of aggregation for planning, 
contracting, and commissioning purposes [17].

2.1 Terming

   Terming is designed for clinicians, and serves as a front-
end interface for naming standard data to capture clinical 

concepts in the form of medical terms with appropriate 
granularity and precision. On the back-end, various 
clinical descriptions are mapped to codes that form an 
ontology, enabling the EHR system to automatically 
recognize a unique concept ID for each term. This ensures 
standardization across different platforms, organizations, 
and even countries when exchanging health data.
   In the UK, the National Health Service (NHS) uses 
SNOMED CT [21] as a systematized nomenclature of 
medicine. SNOMED CT is a comprehensive standard 
reference and interface terminology that supports both 
general and very specific concepts. Each concept is 
defined by a set of attribute-value pairs (relations) that 
distinguish it from all other concepts. SNOMED CT 
supports a model that specifies correct attributes and value 
sets for each domain of meaning, comprising one code per 
meaning, one meaning per code.
   In [22], different sources of controlled clinical 
terminology are compared in terms of the attributes 
of completeness, clinical taxonomy, administrative 
mapping, term definitions, and clarity, by assembling 
1,929 source concept records from a variety of clinical 
information. SNOMED CT was considered richer as a 
clinical taxonomy due to its compositional nature and 
was found to be much more complete in identifying 
clinical details suitable for terming. However, there are 
many more duplicates of code assignments on SNOMED 
CT, with a loss of clarity, due to a lack of syntax and 
evolutionary changes in the coding scheme. The Unified 
Medical Language System (UMLS) [23] was pointed as 
a rich lexical resource, with mappings to many source 
vocabularies, although it still has limitations in clinical 
representation in an EHR perspective, mainly due to the 
different granularities and purposes of its source schemes.

Figure 2. Aggregation process using SNOMED CT to ICD-10 and ICD-10 to HRG4+ mappings: (a) the mapping process between 
SNOMED CT to ICD-10 uses contextual data to translate detailed clinical information into standardized diagnostic codes; (b) then 
patient data is used to aggregate ICD-10 codes into HRG4+ categories based on various factors such as clinical similarity, resource 

utilization, and cost patterns

2. https://www.gov.uk/government/publications/personalised-health-and-care-2020
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   With a vision to support patient care, by enabling 
different platforms to share data without ambiguity, the 
Personalized Health and Care 20202 white paper stated 
that by 2020 all health records should be digital real-time 
and interoperable, and by April 2020 the entire health care 
system should adopt SNOMED CT as the clinical data 
standard in the UK, as agreed by NHS Digital.

2.2 Coding

   The intermediate layer in Figure 1 is referred to as 
coding. According to the World Health Organization 
(WHO)3, medical coding consists of characterizing health 
reports with standardized sets of codes that represent 
diagnoses, thereby achieving to report diseases and health 
conditions as a foundation for identifying health trends 
and statistics.
   The most widely used classification systems are the 
International Classification of Diseases and Related Health 
Problems (ICD) [3] and the Classification of Interventions 
and Procedures (OPCS) [24]. Both are typically used for 
statistical purposes, with a higher level of abstraction 
requiring more complete information processing about 
meanings, contexts, and interactions. The design of 
these standards focused on the ease of storage, retrieval, 
and analysis of health information for data comparisons 
that can provide evidenced-based decision-making. 
These criteria promote easy statistical monitoring of the 
incidence and prevalence of diseases, injuries, symptoms, 
reasons for occurrence, and other factors that influence 
health status. In this way, such monitoring can be 
properly used for service, billing, planning, research, and 
education, so that the better quality and detail of coding, 
the better quality and detail of information available, 
leading to improved patient care [18].
   For example, in the UK, the current coding system 
for diagnoses and healthcare  related problems in the 
NHS is the 10th revision of the ICD (ICD-10). The 
operating environment requires the Patient Administration 
System (PAS) to provide monthly commissioning 
datasets comprising ICD codes for each hospital patient 
admission when discharged as well as hospital outpatient 
visits. ICD codes are manually assigned by highly 
trained health specialists (coders), who analyze the case 
notes (normally in the free text format) as well as use 
available computerized systems and abstract the clinical 
information, such as diagnoses, comorbidities, procedures, 
complications and any other issues related to healthcare. 
The information that coders currently access is normally 
in the free text format. Consequently, this task entails 
great expenses. In addition, although ICD is designed 
for non-clinical use, this standard requires the workforce 
who interact with the systems to possess sufficient clinical 
knowledge, so that they are able to understand the subtlety 
among different health conditions described in the patient 
record.
   Coding terminologies are designed at a much more 

aggregated level, and include many meanings per code. 
ICD uses a hierarchical structure to define the universe of 
diseases, which allows coders to use residual categories 
(other specified or unspecified) to capture the leftover 
equivalents from the lower terming level that may 
not fit any of the specific categories. In this way, the 
granularity and purpose of ICD is different from that of 
SNOMED CT. The latter consists of 400,000 concepts 
to be used for clinical terming, whereas ICD comprise 
approximately 70,000 concepts to be used along the 
clinical coding process. In theory, it should be possible 
to automatically link ICD to SNOMED CT as part of the 
back-end transition between terming and coding – UMLS 
provides mapping resources between multiple clinical 
terminologies.
   However, the focus of coding is statistical, as opposed 
to using lexical resources - the more general and vaguer 
the coding descriptions are, the less granular the mapped 
clinical terms become, which encompass multiple, 
sometimes nonclinical, meanings. In ICD, the less 
common diseases are grouped into general categories, 
which lead to a loss of information during coding: (a) not 
otherwise specified (NOS) codes, which are used in cases 
with insufficient information for more specific codes; and 
(b) not elsewhere classified (NEC) codes, comprising 
cases with more specific information but are not covered 
by existing ones. An example of lossy compression is 
ICD-10 code N83.8 (Other noninflammatory disorders 
of ovary, fallopian tube, and broad ligament) shown 
in red in Figure 2. For coders, it means that there are 
certain conditions for which they are not able to find a 
more specific code along the ICD standard. However, the 
description of N83.8 may not be fully clear to clinicians, a 
lack of meaning that SNOMED CT supports by providing 
over 30 unique concepts that can be matched to N83.8.

2.3 Grouping

   Finally, the top layer in Figure 1 is called grouping, 
and it is designed for administrative staff and can be 
roughly translated as how the Trust gets paid, as the way 
of supporting and managing reimbursement for provided 
health services.
   Diagnosis Related Group (DRG) [25] is a health 
classification system used in several European countries 
to standardize prospective payment for hospitals and to 
promote cost containment initiatives. DRG covers all 
charges associated with an inpatient stay from the time of 
admission to discharge, including services performed by 
an outside provider. In addition to patient’s information 
(e.g., age, gender, admission method), trusts can also be 
paid differently based on whether the patient stay is an 
elective admission or an emergency admission.
   Within the NHS in the UK, for example, Healthcare 
Resource Group (HRG) [26] is the way of materializing 
the grouping process. For example, sets of ICD codes 

3. https://www.who.int
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are mapped to HRG codes using additional patient 
information such as gender and age to disambiguate them. 
HRG is the classification system at the most aggregated 
level and consists of patient events that have been judged 
to consume a similar level of resource. For example, 
different knee-related procedures requiring similar levels 
of resources may be assigned to the same HRG4. An 
example of this level of aggregation from coding can be 
illustrated in Figure 2 by the ICD-10 code N83.8, which 
is mapped as the HRG code MB09 (Non-malignant 
gynecological disorders with or without interventions), 
highlighted in green color - , there are 264 ICD-10 codes 
that can be grouped into the same HGR.

3. Related work

   The integration of automatic tools for clinical textual 
processing in health systems is estimated to be a major 
step forward on embracing more focused and personalized 
actions [27], which ultimately means increasing the 
productivity of health professionals. However, there 
remain some unresolved big challenges to be overcome, 
such as automatic ICD coding. Assigning ICD codes to 
EHRs directly affects a multitude of processes, from the 
calculation of morbidity and mortality statistics to the 
estimation of medical expenditure, and it involves many 
complexities for both coders and automatic systems. 
Thus, most of the proposed approaches do not achieve 
satisfactory performance and cannot be applied to real 
systems. In this section, we outline some attempts to fully 
solve this task. 
   The drawbacks of ICD coding can be divided into those 
that are inherent to the field, and others that are specific 
to each task. Regarding the former, the biomedical area 
involves a high degree of linguistic variability due to 
the large and specific vocabulary and the abundance of 
synonyms and lexical variants. Especially in the clinical 
field, typographical errors, an abundance of abbreviations 
and acronyms, and a lack of grammatical structures 
are common due to the heavy workload of clinicians. 
Therefore, automatic ICD coding is a high-level task that 
is even more complex than linking other clinical concepts 
to EHRs. It requires to understand the context and 
semantics and tends to follow unbalanced distributions. 
   Different ways of dealing with automatic ICD coding 
can be distinguished, and the proposals can be grouped 
into three main groups. Unsupervised approaches can 
be used to find similarities between ICD descriptions 
and clinical concepts in the text. However, given the 
complexity of working with more abstract meanings, 
supervised approaches are the most widely used 
algorithms [2], [28]. Finally, using more specific clinical 
terminologies to identify the most relevant concepts 
and subsequently to exploit the equivalences made by 
experts with ICD is explored by mapping approaches. The 
strengths and weaknesses of each approach are discussed 

below.

3.1 Unsupervised approaches

   Unsupervised approaches link ICD-provided codes 
to EHRs. Medical knowledge bases and ontologies are 
normally used to identify health concepts in text, and 
further find correspondences with the concepts based 
on the ICD descriptions. However, health authorities 
frequently use terminologies different from those reflected 
in ICD code descriptions, mainly because the former 
represents more specific instances, and the latter is 
associated with a higher level of abstraction (that makes 
it difficult to directly look for similarities). Besides that, 
the textual pieces required to identify a diagnosis do not 
necessarily have to be found sequentially in the clinical 
notes - on the contrary, the pieces of text with significant 
meanings are often scattered throughout the EHRs.
   Contextualizing meanings is key to determining what 
information should be considered. The meanings of the 
concepts are highly influenced by co-occurring concepts 
or modifiers [29]. Therefore, various limitations must 
be considered when collecting the scattered data to 
exclude irrelevant information such as denied, non-
patient-related, temporal- and clinical-suspicion-related 
concepts. In addition, there is the fact that this is a goal-
oriented task, meaning that only medical information 
related to the cause of hospitalization is coded. Thus, 
during the clinical coding process, different constraints 
must be considered to exclude irrelevant information 
such as negation statements, suspected condition, or 
information that does not pertain to the patient. However, 
a negation such as "the patient has no personal history of 
myocardial infarction" is equally important to the clinical 
assessment but need not be coded. Coding is not required 
for either (a) a documented condition that does not affect 
the patient's care treatment at the time of this admission, 
or (b) conditions that were previously treated and no 
longer exist. For example, if the patient is admitted for 
pneumonia, the fact that the person had a wrist fracture 
ten years ago has no bearing on the current admission. 
Nevertheless, clinicians note these conditions when they 
write down the patient’s medical and surgical history.
   Despite all these difficulties, an unsupervised coding 
method can have a wide coverage, avoid the frequent 
biases in this task, and be suitable for any data collection. 
This motivates numerous studies based on word co-
occurrence [30]-[32] to explore the generation of queries 
from documents and their expansion through medical 
knowledge databases. In contrast, semantic similarity is 
explored to match words between ICD descriptions and 
text by applying the Longest Common Subsequence (LCS) 
method [33] or using ontologies to estimate similarities 
[34].

3.2 Supervised approaches

4. NHS is currently using HRG4+, which is derived from the clinical coder’s coded information, as a unit of currency to underpin the    
financial scheme PBR (Payment by Results).
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   ICD coding can be considered as a multi-label 
classification task using supervised learning. To this end, 
labelled data is required, though strong data protection 
regulations make it a hard task. Moreover, the data 
generated by healthcare centers are extremely scattered, 
biased, and unbalanced.
   Both available medical services and local factors 
determine what percentage of ICD codes are reported by 
the healthcare center. In addition, the nature of diagnoses 
provides a clear tendency to concentrate on a small 
number of codes, while the vast majority appear very 
infrequently. In this way, a supervised model will not 
be able to model the missing or infrequent codes during 
training, thus only a very small group of ICD codes that 
consist of the most likely diagnoses in the center can be 
predicted.
   The strength of supervised models comes from their 
performance in encoding similar data, which often far 
exceeds that of other approaches. Therefore, supervised 
learning is useful when the distribution of training data 
to which the model is to be applied is not unbalanced and 
overlaps the distribution of training data. Some authors 
have opted for this way to achieve better classification 
results by exploiting the hierarchical ICD structure [35], 
[36]. However, given that such balanced distribution is 
impractical, most authors tend to use external sources 
of knowledge to enrich the learning step, which 
includes (though not restricted to): (a) adding medical 
terminologies into the representation of documents [37]; 
(b) learning patterns directly from dictionaries [38]; (c) 
combining supervised learning with information retrieval 
techniques [39], [40]; (d) combining dictionaries, other 
corpora and synonyms [41]-[43]; (e) enriching small 
corpora with equivalence mappings [44]; and (f) utilizing 
word embeddings trained from medical documents [45].
   The application of deep learning to ICD code 
identification offers several advantages. Approaches to 
ICD code identification have changed significantly in 
recent years, with deep learning emerging as the standard 
implementation reference for this type of problem. Deep 
learning models, such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), have 
made progress in extracting complex patterns and 
representations from patient discharge notes [46]. These 
models have revolutionized the field by automatically 
learning hierarchical features, which enables them to 
capture intricate relationships within textual data. By 
leveraging large-scale annotated datasets, deep learning 
algorithms can learn robust representations that adapt to 
different clinical settings and coding practices.
   Deep learning models must adapt to handling diverse 
and evolving medical terminologies and language 
variations. Results are promising, but it is essential to 
consider the potential limitations and challenges they 
pose. Deep learning models often require substantial 
computational resources and extensive training data to 
achieve optimal performance. The training process can 

be computationally expensive and time-consuming, 
especially when working with large volumes of patient 
discharge notes. Additionally, deep learning models may 
be prone to over-fitting, especially when dealing with 
limited or imbalanced data sets. It is crucial to address 
these challenges and explore alternative approaches 
to ensure the practicality and efficiency of ICD code 
identification systems.
   A study in 2019 [47] aimed to assess the performance 
of deep-learning-based systems in automatically mapping 
clinical notes to ICD-9 medical codes. The research 
focused on end-to-end learning methods without manually 
defined rules. Traditional machine learning algorithms 
and state-of-the-art deep learning methods, including 
Recurrent Neural Networks and Convolutional Neural 
Networks, were applied to the MIMIC-III dataset. The 
results demonstrated that the deep learning-based methods 
outperformed conventional machine learning methods. 
The best models achieved an average F1 score of 0.6957 
and an accuracy of 0.8967 in predicting the top-10 most 
common ICD-9 codes in MIMIC. However, this is only 
true when all scores for each of the top 10 labels were 
averaged together. For the class-based results, the study 
shared the Average Precision Score which ranged from 0.4 
to 0.9. Based on the assessment using standard metrics, 
the study concluded that the deep learning-based systems 
showed superior performance in assigning ICD-9 codes 
on the MIMIC-III dataset.
   A recent study [48] reproduces, compares, and analyzes 
the state-of-the-art and automated medical coding 
machine learning models, and it shows that several models 
underperform due to weak configurations, poorly sampled 
train-test splits, and insufficient evaluation. In addition, 
the analysis confirms that models struggle with rare codes, 
while long documents only have a negligible impact.
   In [49], the authors conducted a study on supervised 
multi-label text classification for assigning ICD-9-CM 
diagnosis codes to electronic medical records (EMRs) 
from three datasets of varied scale. They compared their 
approaches, which included problem transformation 
techniques, feature selection, training data selection, label 
calibration, and learning-to-rank, with basic approaches 
to evaluate the impact of these additional learning 
components on diagnosis code assignment. Results 
showed that the classifier chains performed comparably 
to the state of the art on a gold standard dataset with short 
reports. They also examined a large dataset (UKLarge) 
and a subset (UKSmall) and found that feature selection, 
data selection, and label calibration significantly improved 
performance on UKSmall but did not have the same effect 
on UKLarge.
   Finally, the HiLAT model [50] uses a hierarchical label-
wise attention mechanism and a pretrained transformer 
language model, called ClinicalplusXLNet, for automatic 
ICD coding from discharge reports. HiLAT extracts 
specific text representations for each ICD code and maps 
them accordingly. The model’s label-wise attention 
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weights are utilized to highlight the keywords that 
contribute to code predictions. The authors suggest that 
HiLAT, along with ClinicalplusXLNet, can achieve state-
of-the-art results in multi-label text classification tasks, 
particularly in the clinical health domain. They propose 
deploying HiLAT to enhance and streamline manual 
processes in clinical coding, focusing on predicting the 
50 most frequent ICD codes. Additionally, the authors 
highlight potential applications of HiLAT in automated 
patient identification for clinical trials and identification of 
specific clinical endpoints in real-world evidence studies.

3.3 Mapping approaches

   Oppositely to directly encode documents by using ICD, 
structured data can be extracted from EHRs in the form 
of specific clinical concepts and then used to derive ICD 
codes through an expert-knowledge mapping. Different 
authors highlight that maintaining more specific terms 
during encoding EHRs is a prerequisite to avoid the loss 
of clinical information in the upper layers [15], [51]. 
Hence, mappings are pointed out as a promising way to 
transform collected meanings into less granular categories.
   SNOMED CT is the most complete clinical terminology. 
ICD equivalent mapping is available and under continuous 
development by the International Health Terminology 
Standards Development Organization (IHTSDO) and 
WHO [52]. Granularity of ICD codes leads to the 
aggregation of SNOMED CT codes. The cardinality is 
zero-to-many. An ICD code may include many SNOMED 
CT concepts, so there are several ways to group the 
SNOMED CT codes extracted from a document. For this 
reason, the available mapping is a rule-based mapping 
that suggests multiple candidates. The idea is to present 
all ICD codes that contain the meaning elements of the 
collected SNOMED CT concept. SNOMED CT itself is 
not sufficient to find equivalences, so additional patient 
information, such as age or gender is required.
   The mapping from SNOMED CT to ICD might 
facilitate an encoding that preserves the detailed clinical 
information. 45% of SNOMED CT concepts with ICD 
equivalencies can be directly associated with a code, 
without ambiguity; the remaining concepts depend on 
both other codes and additional contextual information. 
Although this seems to be the right way to solve the 
automatic coding, there are several problems that hinder 
its unsupervised application.
   Given the differences in terms of granularity, SNOMED 
CT to ICD mapping is not exhaustive – more than 6% of 
codes are not covered by equivalencies (e.g., concepts 
with laterality or episode of care information). Moreover, 
the ambiguity occurs in different forms. Currently, there 
are 724 ambiguous concepts that cannot be assigned 
until clarified, and more than 25,000 have multiple 
targets. For example, the concept 68449006 (Coxitis) 
is associated with 14 different ICD-10 codes. There are 
also contradictions such as synonyms corresponding 

to different ICD codes due to the structure of the two 
terminologies. Finally, although contextual information is 
required to perform a full ICD coding task, SNOMED CT 
to ICD mapping is based on context-free assumptions. The 
meanings of SNOMED CT per se do not provide all the 
supporting information. Thus, the mapping is not designed 
to automatically assign ICD codes, but to suggest a 
list of equivalent ICD codes from a given SNOMED 
CT concept, and to delegate the task of choosing the 
appropriate codes to a person.
   In January 2022, WHO released the 11th revision of the 
International Classification of Diseases (ICD-11), which 
has evolved beyond its original purpose in epidemiology 
to encompass billing, quality and safety, and research. 
However, the transition to ICD-11 is expected to take an 
effort for 4-5 years, and requires guidance and testing 
from WHO. Successful implementation within the 
healthcare system demands ongoing investment and 
planning, as well as the evaluation of the impact of ICD-
11 on existing processes. Sharing this knowledge within 
organizations, along with testing and implementing 
solutions, will streamline the transition and ensure that 
ICD-11 effectively meets the diverse needs of its users 
[53].

4. Materials and methods

   The field of deep learning has witnessed a surge in 
popularity over the last decade, with many researchers 
using these models to tackle various tasks. However, it is 
often unclear how efficient these methods are, compared 
to less complex baselines. While deep learning models 
have achieved remarkable success in several domains, 
their efficiency is sometimes questionable, which has 
prompted researchers to discuss the complexities, 
limitations, and challenges associated with deep learning 
models, including their interpretability, efficiency, and 
generalization performance, as well as to investigate 
alternative, less complex approaches to solving some 
tasks [6].
   While deep learning has attracted a lot of attention 
in natural language processing (NLP) and healthcare, 
baseline methods play a crucial role in the field of 
machine learning as they provide a point of reference and 
comparison for evaluating the performance of advanced 
models [54], [55]. Baseline models can also effectively 
capture contextual information and dependencies 
between words and phrases in patient discharge notes, 
though with expected less accuracy. However, this 
holistic understanding allows models to grasp the subtle 
nuances and semantics necessary for establishing baseline 
performance in ICD code assignment.
   For our experimental evaluation, clinical records were 
obtained from the Medical Information Mart for Intensive 
Care, MIMIC [56], an open-source database for de-
identified health-related data from patients in critical care 
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units. We used version 3 of MIMIC, which covers the 
years 2008-2019. Of the available health-related data, 
only discharge summaries were used - a total of 59,652 
discharge summaries are available in MIMIC-III. We then 
identified and removed discharge notes corresponding to 
cases with more than one discharge summary per hospital 
admission. The result was that 47,006 discharge notes 
were randomly split, approximately 60% for training, 10% 
for tuning, 30% for testing.
   We aim to establish stronger baselines in text 
classification in the healthcare domain. Therefore, we 
explore the use of the Logistic Regression [57] and 
XGBoost (eXtreme Gradient Boosting) [58] algorithms 
as baseline methods to evaluate the performance of 
vocabulary- based versus concept-based datasets when 
identifying ICD-9 codes in patient discharge notes 
gathered from MIMIC-III dataset.
   XGBoost is a powerful algorithm that can be used 
for both regression and classification tasks. Its ability 
to handle complex, high-dimensional datasets and to 
provide highly accurate predictions make it a popular 
choice among data scientists and machine learning 
practitioners [59]. It has gained significant attention and 
achieved a level of success in various machine learning 
competitions and real-world applications due to its 
efficiency, scalability, and high-quality performance. In 
a recent study, researchers attempted to use XGBoost to 
develop mortality prediction models and compared their 
performance with logistic regression, Injury Severity 
Score (ISS), and Trauma Mortality Prediction Model 
based on International Classification of Diseases (TMPM-
ICD10), using a dataset that uses ICD-10 codes. The 
findings suggest that machine learning models utilizing 
XGBoost outperform logistic regression, ISS, and TMPM-
ICD10 in predicting mortality [60].

4.1 Feature extraction

   Feature engineering refers to the process of extracting 
relevant features from raw text data to enhance the 
performance of machine learning models. This crucial 
step reduces irrelevant information and redundancies from 
raw text data that can negatively impact the performance 
of models. MetaMap [61] is one of the available tools 
that facilitates information extraction, text mining, and 
information retrieval by identifying relevant concepts in 
clinical text.
   MetaMap uses a combination of lexical and syntactic 
features to identify and annotate medical concepts and 
entities in clinical text, such as diseases, treatments, and 
laboratory results. These features include, but are not 
limited to, keywords, part-of-speech tags, dependency 
relationships, and semantic types. MetaMap also employs 
domain-specific knowledge sources, such as the Unified 
Medical Language System (UMLS) [23], to enhance its 
feature extraction capabilities. By utilizing a combination 
of features and knowledge sources, MetaMap can 

accurately identify and extract relevant information from 
clinical text, which is essential for various biomedical 
applications such as clinical decision support systems.
   We evaluate different feature engineering methods for 
predicting ICD codes. First, we processed discharge notes 
through MetaMap to extract unique concept identifiers 
(CUIs) corresponding to SNOMED-CT terms. In addition, 
we used spaCy [62] to capture the vocabulary from each 
discharge note in the form of lemmatized tokens. Table 
1 outlines the number of discharge notes, and the total 
number of CUIs and words (lemmas) identified in each 
training, tuning, and testing subsets.
   We also tried to use stemming, a heuristic that reduces 
words to their base or stem form by removing suffixes, 
reducing reliance on dictionaries, and potentially making 
the use of non-lexical words and technical terms more 
robust. However, compared to lemmatization, stemming is 
a less linguistically sound approach that may lead to less 
accurate root representations. Indeed, our experimental 
results show that XGBoost trained on both lemmas and 
stems have equivalent F1 scores in the test set, with 
differences observed in the third decimal place, mostly in 
favor of those models trained with lemmas [63].

Table 1. MIMIC-III discharge notes in each subset after pre-
processing and removing patient admissions with more than one 

discharge note

Set Discharge 
notes

CUIs Lemmas

Training (60%) 28,204 43,041 10,722,340
Training (10%) 4,701 26,882 1,904,405
Training (30%) 14,101 36,296 5,450,021

Total 47,006

   The full set of CUIs and lemmas was then divided into 
three distinct experimental datasets composed by binary 
features:
1)BoW: the Bag-Of-Words dataset contains binary 
features (0 = absent, 1 = present) that indicate whether a 
lemma occurs in each discharge note. We only consider 
lemmas that occur in at least 68 discharge notes. 
This is the statistical sample required to estimate the 
characteristics of the entire population at a confidence 
level of 90% within a ±10% margin of error, adding up to 
8,933 different lemmas.
2)CUI: In the second experimental dataset, each binary 
feature corresponds to the occurrence of CUIs in each 
discharge note. 8,944 different CUIs occurring in at least 
68 notes were considered.
3)DSyn: Finally, the third dataset is a subset from the 
CUI dataset, only considering 946 CUIs labeled by 
MetaMap as belonging to the semantic type DSyn (Disease 
or Symptom), as a way to evaluate how much direct 
mentions those concepts can be correlated to the resulting 
ICD code for each patient.
   Finally, the target labels for the classification task were 
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the top-10 most common ICD-9 codes in MIMIC-III 
database. Table 2 depicts the number of positive cases for 
each ICD-9 code among the 47,006 considered discharge 
notes. We used the top-10 ICD codes from MIMIC-
III because they offer less imbalanced distributions of 
labels which reflects in less bias towards the predominant 
negative class, which makes the experiments more reliable 
in terms of how resulting performance is reported and 
facilitates comparison against previous research work.

Table 2. Top-10 MIMIC-III ICD-9 codes with the corresponding 
percentage of positive occurrences within the 47,006 patients 

with unique discharge notes

ICD-9 Description Positive cases
4019 Hypertension 38.31%
4280 Congestive heart failure 23.81%
42731 Atrial fibrillation 23.27%
41401 Coronary atherosclerosis 22.83%
5849 Acute kidney failure 17.00%
25000 Diabetes Type II 16.96%
2724 Hyperlipidemia 16.56%
51881 Acute respiratory failure 13.89%
5990 Urinary tract infection 11.97%
53081 Esophageal reflux 12.04%

4.2 Baseline models

   Although ICD coding can be viewed as a multi-label 
classification task, multi-label classifiers face challenges 
in handling complex relationships between multiple 
classes. The presence of multiple labels can lead to 
dependencies and correlations between classes, making 
the evaluation of performance metrics more nuanced and 
often requiring specialized metrics such as Hamming 
loss or subset accuracy [64]. Moreover, they can become 
computationally expensive and memory-intensive, 
especially when dealing with a large number of classes 
and complex relationships between them. The scalability 
of multi-label classifiers may be a concern when dealing 
with high-dimensional data or large-scale multi-label 
problems [65]. Conversely, binary classifiers can focus on 
distinguishing the minority positive class on imbalanced 
datasets, leading to potentially higher precision and 
recall for each individual class [66]. Finally, binary 
classifiers are generally more scalable since only two 
classifiers (positive and negative) need to be trained, and 
the training time and computational resources required 
are generally less compared to multi-label classifiers 
[67]. We train binary classification models to predict 
class probabilities on the training set and then extract 
the predicted probabilities for the positive class. The 
predicted probabilities and the true labels of the tuning set 
are used to calculate precision, recall, and thresholds for 
the precision-recall curve analysis.
   Both Logistic Regression and XGBoost models are 

trained on the training set. In Logistic Regression, the 
maximum number of iterations used for each model was 
10,000, with no convergence warnings reported. Due to 
the imbalanced nature of the proposed task, we then use 
the tuning set to obtain the threshold that maximizes the 
F1 score based on the Area Under the Precision-Recall 
Curve (AUPRC, also known as Average Precision). 
This threshold value is considered the optimal point that 
balances precision and recall, and it is used to decide the 
predicted class in the test set. We set the model prediction 
as a positive class (1) when the resulting probability 
is≥ threshold (as opposed to using 0.5 as the standard 
threshold for balanced datasets), otherwise setting it as 
a negative class (0) - in imbalanced datasets, the tuned 
threshold tends to be lower than 0.5.
   For XGBoost, one additional step must be taken to 
determine the optimal depth (hyperparameter), tested from 
4 to 12 in the tuning set. During the tuning process of the 
XGBoost models, we found that the optimal depths varied 
depending on the specific data sets and labels. For the 
BoW and CUI datasets, average depths were 9.9 and 10.4 
respectively, ranging 5-13 for the BoW dataset, and 7-15 
for CUI. For the DSyn dataset, the average depth was 
12.0, as expected by the fact that DSyn is a subset of CUI 
dataset and might impose more decisions to figure out 
predictions due to the loss of information resulting from 
SNOMED CT concepts not considered in this UMLS 
semantic type.
   Finally, the F1 score is calculated using the test set. The 
area under the curve and the average precision scores 
were also recorded to be compared with the previous 
literature. Each label has an independent model that went 
through training and tuning before applying the test set for 
label identification.

5. Results

   The baseline scores resulting from the Logistic 
Regression and XGBoost models are presented in Table 
3. In experiments with three different datasets, the results 
consistently show that XGBoost outperforms logistic 
regression in all precision, recall, and F1 score.
   Logistic regression is a linear model that has difficulty 
in handling nonlinear patterns and high-dimensional data 
effectively. It performs better overall on all metrics in the 
DSyn dataset. However, DSyn is a subset of CUI dataset, 
which means that the first dataset contains only a portion 
of the data present in the second. Although a loss of 
information compared to the original dataset from which it 
was derived is expected, logistic regression still performs 
better in this scenario.
   In contrast, XGBoost demonstrates superior performance 
by effectively capturing complex relationships and 
interactions in the data. Its ability to cluster weak learners 
and optimize decision boundaries can lead to better 
prediction accuracy and more robust generalization. This 
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suggests that XGBoost is a more reliable and robust 
choice for designing baseline models for classification 
tasks on these datasets, which mostly show better 
performance between the BoW and CUI datasets, but 
rarely outperform the DSyn subset. XGBoost Macro F1 is 
still slightly better in BoW (0.7453) when compared to the 
same score resulting from CUI dataset (0.7449).
   Despite the differences in feature representation 
methods, models trained on bag-of-words features were 
as effective as models trained after pre-processing clinical 
records and extracting SNOMED CT concepts. This 
means that capturing the frequency of individual words in 
the text may be as effective as capturing the semantics and 
relationships between medical concepts represented by the 
corresponding SNOMED CT codes. However, it should 
be noted that the effectiveness of these models highly 
depends on the nature of the task and the complexity of 
the dataset. Bag-of-Word features are sufficient for tasks 
involving simple relationships between words, while 
clinical record preprocessing and SNOMED CT concept 
extraction can provide significant benefits when dealing 
with complex medical language and interrelated medical 

concepts. In addition, the computational cost and data pre-
processing effort associated with SNOMED CT concept 
extraction should also be considered. In some cases, the 
added complexity of the pre-processing step may not 
justify a small performance gain, making bag-of-words 
a more practical and efficient choice. In general, both 
approaches can produce effective underlying models, 
but decisions should be made considering the specific 
requirements of the task, the complexity of the data, and 
the trade-off between performance and computational 
resources.
   Table 4 compares different approaches in terms of 
how the results are reported. Although most approaches 
present F1 scores in the test set, many do not disclose the 
Precision and Recall scores used to achieve F1. However, 
when reported, Precision and Recall can be used to 
explain how the model was tuned in favor of one of the 
composite F1 metrics, such as in [49], in which we clearly 
see that the model favors Precision, with an evident 
imbalance compared to Recall, making the F1 score drops 
significantly.

Table 3. Baseline Precision, Recall, and F1 scores resulting from Logistic Regression and XGBoost models tested in three 
different structured representations for features extracted from MIMIC discharge notes: (a) Bag-of-words (BoW); (b) 
SNOMED CT concepts resulting pre-processing notes with MetaMap (CUI); and (c) the Diagnosis and Symptoms semantic 

type subset extracted from MetaMap (DSyn)
 

  ICD-9 Precision Recall F1
Logistic Regression XGBoost Logistic Regression XGBoost Logistic Regression XGBoost

Code Description BoW   CUI    DSyn  BoW   CUI    DSyn BoW   CUI    DSyn  BoW   CUI    DSyn BoW   CUI    DSyn  BoW   CUI    DSyn 
4019 Hypertension 0.602  0.601  0.6340.634 0.703  0.7300.730  0.626 0.798  0.802 0.802  0.785 0.868  0.8780.878  0.815 0.686  0.687  0.7010.701 0.777  0.7970.797  0.708
4280 Congestive heart failure 0.637  0.619  0.7300.730 0.7490.749  0.737  0.720 0.709  0.750  0.7890.789 0.815  0.8290.829  0.814 0.671  0.678  0.7580.758 0.7810.781  0.780  0.764
42731 Atrial fibrillation 0.863  0.809  0.8910.891 0.887  0.890  0.9050.905 0.782  0.8010.801  0.752 0.9220.922  0.900  0.745 0.8210.821  0.805  0.816 0.9040.904  0.895  0.817
41401 Coronary atherosclerosis 0.665  0.7190.719  0.685 0.793  0.7990.799  0.696 0.7590.759  0.677  0.688 0.8010.801  0.790  0.697 0.7090.709  0.697  0.687 0.7970.797  0.795  0.697
5849 Acute kidney failure 0.503  0.575  0.6600.660 0.665  0.7240.724  0.672 0.603  0.517  0.6070.607 0.6790.679  0.661  0.650 0.548  0.544  0.6320.632 0.671  0.6910.691  0.661
25000 Diabetes Type II 0.5190.519  0.510  0.484 0.6640.664  0.621  0.477 0.612  0.577  0.6490.649 0.7820.782  0.782  0.733 0.5620.562  0.541  0.544 0.7180.718  0.692  0.578
2724 Hyperlipidemia 0.505  0.547  0.624 0.641  0.6500.650  0.607 0.697  0.560  0.7740.774 0.8550.855  0.785  0.792 0.586  0.553  0.6910.691 0.7330.733  0.711  0.687
51881 Acute respiratory failure 0.444  0.444  0.482 0.5900.590  0.577  0.573 0.627  0.6350.635  0.632 0.694  0.7360.736  0.548 0.520  0.523  0.5470.547 0.638  0.6470.647  0.560
5990 Urinary tract infection 0.583  0.585  0.630 0.639  0.649  0.636 0.551  0.530  0.7040.704 0.733  0.7440.744  0.718 0.567  0.556  0.6650.665 0.682  0.6930.693  0.675
53081 Esophageal reflux 0.620  0.592  0.6790.679 0.680  0.6800.680  0.671 0.564  0.657  0.8260.826 0.8400.840  0.830  0.837 0.591  0.623  0.7450.745 0.7510.751  0.748  0.745

Macro F1 0.626  0.621  0.6800.680 0.7450.745  0.745  0.689

Best score in each subset highlighted in gray; best precision, recall and F1 score in each ICD code underscored in bold

Table 4. Comparison of different ICD coding approaches based on the macro average of different scores: Precision (P), Recall (R), 
F1 score (F1), Area Under the Receiver Operating Characteristic Curve (AUC), and Area Under the Precision-Recall Curve (AUPRC)

Auto ICD Coding Approach P R F1 AUC AUPRC
Our Baseline - XGBoost BoW (10 codes) 0.701 0.799 0.745 0.934 0.778
[49] CMC dataset 0.540 0.440 0.470
[49] UKLarge LR + L2R + NERC 0.822 0.218 0.211
[50] HiLAT + ClinicalplusXLNet (50 codes) 0.627 0.710 0.690 0.927
[68] BERT-ICD (50 codes) 0.845
[69] MultiResCNN (50 codes) 0.606
[70] KEPTLongformer (50 codes) 0.673* 0.689 0.926
[71] Text-TF-IDF-CNN + LS + DR + TD (50 codes) 0.687 0.934
[49] UKLarge (≥2%; 92 codes) 0.959 0.187 0.167
[69] MultiResCNN (full codes) 0.085
[72] Zero-Shot ICD Coding 0.317 0.281 0.298 0.941
[73] eFastText-UMLS (full codes) 0.479 0.629 0.544

                            * Precision@5
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   The area under the curve is supposed to be calculated 
during tuning and model optimization. Our approach 
uses tuning to find the optimal threshold for separating 
positive and negative classes and to maximizing F1 
score while maintaining a balance between Precision and 
Recall. Although we use the tuning set to perform such 
optimization, the overall model performance still remains 
equally accurate when using the test set for evaluation, 
with minor and expected decreases in the reported F1 
score. However, in previous research work, it is frequently 
unclear whether AUC and AUPRC scores are calculated 
in the validation/tuning set or incorrectly using the test 
set, which is not appropriate for such metrics. Finally, 
AUC is mostly used, though it is not the best solution for 
evaluating imbalanced datasets, as when using AUPRC.
   The differences between AUC and AUPRC are evident 
in Figure 3. Although each of the top-10 ICD-9 codes in 
MIMIC poses different levels of complexity regarding the 
ability of each model to predict them correctly, mainly due 
to the imbalanced aspect of each label (varying from 38% 
positive in the top-1 ICD-9 code to 12% positive in the 
top-10 ICD-9 code as described in Table 2), the average 
AUC tends to be flat and consistently reports scores in the 
range of 0.9, whereas the average AUPRC correlates more 
strongly with the resulting F1 scores, better reflecting the 
complexity of each ICD-9 label.

Figure 3. AUC and AUPRC scores across the top-10 most 
frequent ICD-9 codes in MIMIC-III. The average AUC and PRC 

across all labels is highlighted

   We calculated the derivative of the linear function that 
aligns the percent distribution of the positive class against 
AUC and AUPRC. From AUPRC, the derivative resulted 
-0.00794, which is consistent – the more imbalanced, 
the more difficult the classification task and the lower 
the AUPRC. In contrast, from AUC, the derivative 
resulted 0.00085, which is almost a flat line, but still 
increasing, with AUC score slightly better, even though 
the imbalanced class makes the task harder.

6. Discussion

   Natural Language Processing (NLP) techniques are key 

components for unlocking clinical evidence from EHR 
notes. Clinical NLP tools aim to enhance productivity, 
provide accessibility, and ultimately improve health 
systems by extracting clinical concepts from free text 
using distinct approaches, including lexical and semantic 
matching, machine learning, and rule-based systems. 
Those clinical concepts are defined and standardized in 
terminologies.
   Our primary goal in this research was to figure out the 
differences of performance between the baseline methods 
and the more sophisticated approaches from the literature. 
It was quite a surprise that we achieved competitive 
results when working with these baseline methods. We 
had expected to understand what the actual contribution 
the so-called language models would make compared to 
the simple baseline models, but we found that the results 
reported from more sophisticated models were at least 
questionable.

6.1 Vocabulary importance

   The vocabulary used in establishing baselines for 
machine learning approaches to identify ICD codes in 
the healthcare domain holds significant importance. ICD 
codes represent a standardized system for classifying 
and categorizing medical diagnoses, procedures, and 
conditions. To accurately identify these codes, machine 
learning models rely on the vocabulary of the set of 
terms and concepts present in the data. A comprehensive 
and domain-specific vocabulary is crucial for achieving 
accurate and reliable results. It ensures that the models 
can effectively capture the nuances and intricacies of 
clinical terminology, medical conditions, and procedures. 
By encompassing a wide range of relevant terms, 
the vocabulary enables the baseline models to make 
meaningful associations and predictions. Oppositely, 
insufficient or incomplete vocabulary can lead to 
suboptimal performance, as models may have difficulty 
in recognizing and interpreting specific medical concepts 
or terms. This can lead to classification errors, inaccurate 
predictions, and reduce overall effectiveness of machine 
learning approaches.
   Therefore, when establishing baselines for machine 
learning approaches to ICD code identification, it is 
vital to develop and utilize a robust and comprehensive 
vocabulary that encompasses the diverse terminology 
used in the healthcare domain. A well-constructed 
vocabulary enhances models' understanding of medical 
texts, facilitates accurate code assignment, and contributes 
to the overall reliability and effectiveness of the machine 
learning-based identification process.

6.2 Word sparsity

   The BoW (Bag-of-Words), CUI (Concept Unique 
Identifier), and DSyn (Disease and Symptoms) datasets 
each consist of nine subsections. This yields a total 
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number of 27 datasets, resulting in a combined number 
of 81 subsections for all three sets. The initial subsection 
in each set has the highest term density, while subsequent 
subsections become increasingly sparse, with the ninth 
subsection having the lowest term density. The density of 
terms in these datasets is determined by the frequency of 
words or concepts present to them.
   To assess the impact of term density on the accuracy 
of ICD-9 code prediction, the BoW dataset was divided 
into three subsets, with each subset grouping lemmas 
according to their frequency, i.e., by the number of 
discharge notes in which each lemma is observed.
   The goal was to systematically evaluate the importance 
of different feature frequencies when designing the 
baselines models, and to investigate whether the models 
would achieve higher or lower accuracy in predicting ICD 
codes when confronted with data sets that contain higher 
or lower term frequencies.
   It was recognized that stop words are insignificant in 
establishing clinical labels, and it was observed that the 
subset composed with less frequent lemmas, despite being 
sparser, contains more meaningful clinical terms and has 
less noise from irrelevant data. However, it was found 
that relying solely on the frequency subsets did not yield 
satisfactory model performance. Therefore, we found that 
employing the full feature set produced the most favorable 
outcomes.

6.3 Area under ‘what ’?

   AUC measures the ability of the model to distinguish 
between positive and negative samples, while AUPRC 
(area under the precision-recall curve) emphasizes the 
model’s ability to rank positive samples higher than 
negative samples, which is crucial when dealing with 
imbalanced datasets.
   AUC assesses the model's discriminative power, 
measuring the probability that a randomly selected 
positive instance has a higher predicted probability than 
a randomly selected negative instance. Its interpretation 
is intuitive and ranges from 0 to 1, with higher values 
indicating better performance and enabling easy model 
comparisons [74]. In addition, AUC is less affected by 
skewed class distributions and allows a comprehensive 
evaluation of the model's performance at all thresholds. 
Several studies highlight the effectiveness of AUC in 
imbalanced datasets [75], [76].
   Conversely, AUPRC is a performance metric that 
focuses on the trade-off between precision and recall, 
which is particularly relevant for imbalanced datasets. 
When positive classes are rare, AUPRC is sensitive 
to changes in callbacks and puts more weight on the 
performance of positive classes. This becomes critical 
when the cost of false negatives is high, such as in medical 
diagnosis, fraud detection, or rare disease prediction [77], 
[78]. Therefore, AUPRC provides a more meaningful 
measure of the model's performance in distinguishing 

between the positive and negative classes, especially when 
the prevalence of the positive class is low.
   In summary, both AUC and AUPRC are valuable 
evaluation metrics for imbalanced datasets, each providing 
unique insights into model performance. If the goal is to 
focus on overall classification performance, especially 
in scenarios where negative classes dominate, AUC is 
an appropriate choice. However, in cases where positive 
classes are few and correct identification is critical, more 
attention should be paid to AUPRC due to its recall 
sensitivity.
   There are several other studies [79]-[81] that explore the 
benefits of using AUPRC in cases of highly imbalanced 
datasets and advocate its adoption to overcome the 
limitations of AUROC/AUC in such cases, highlighting 
the importance of considering the trade-off between 
precision and recall, and the sensitivity of AUPRC to 
rare positive cases, which makes it a more informative 
and appropriate metric for evaluating the performance of 
models on imbalanced data. We agree with those claims, 
and also recommend using AUPRC to better understand 
the performance of the model when making informed 
decisions.

6.4 Supporting ICD coding

   Terming, coding, and grouping terminologies were 
designed for different purposes and audiences, which 
entails differing structures. From terming to grouping, 
the degree of clinical specificity gradually decreases, 
abstracting the meaning of concepts  and requiring 
increasingly complex analysis from lexicon to semantics, 
context, and reasoning. For this reason, although terming 
to coding mappings has been deemed as an important 
resource for retaining clinical detail after coding - as 
essential meanings are retained - the loss of context 
precludes the application of an automatic approach. 
Mapping can be considered as another useful source 
of information to support systems based on other 
perspectives that focus on terming only when a high level 
of clinical detail is needed. An effective coding system 
could analyze all the necessary textual information and in 
turn seize the information coming from terming.
   Regarding the base layer in Figure 1, lexical-based 
tools can automatize the terming task by identifying 
terminology concepts from EHR documents, such as 
Bio-Yodie [82] and cTAKES (clinical Text Analysis 
and Knowledge Extraction System) [83]. A lexical 
NLP approach is overall able to highlight predefined 
dictionary-based keywords and expressions in an exact 
matching way, not necessarily aware of either context and 
semantics, or correlations between the annotated more 
specific coding terminology. The output cardinality of a 
lexical approaches is usually token- or keyword-centered.
   Within the intermediate layer, coding raises as a more 
challenging task. Corresponding terminologies are 
presented in a hierarchical structure and using more 
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complex descriptions, including abstract concepts that 
encompass multiple meanings. Thus, we propose three 
different perspectives when designing more sophisticated 
ML applications focused on recognizing ICD codes in 
text, each one playing a cumulative role in supporting the 
coding process: a) semantic relatedness, b) contextualized, 
and c) advisory perspectives.

6.4.1 Semantic relatedness perspective

   This is a partially sentence-centered approach that aims 
to identify ICD references taking the meanings of words 
into account to get higher-level annotations than those 
produced by purely lexical-based approaches. A semantic 
relatedness perspective is not focused on the final coding 
result, and does not consider context when providing 
annotations. This task works like a robot, as it is not 
allowed to make any clinical assumptions.
   The proposed constraint for a semantically related 
approach includes the proper choice of the related ICD 
code for each given piece of text (multi-word expression), 
considering the surrounding words within the same 
sentence when reasoning about either the sense or 
meaning of terms. Thus, NLP applications following this 
role can identify concepts related to ICD codes based 
on the semantic relatedness of textual expressions. The 
output cardinality is expression-centered with possibly 
multiple alternative ICD codes presented to the same 
expression. No disambiguation is performed in this 
role, i.e., each diagnosis is linked to a specific part of a 
document, and the same expression may have multiple 
ICD correspondences.
   A semantic relatedness approach focuses on generating 
low-level features to support either (a) clinicians in 
validation, (b) a subsequent high-level approach, or even 
(c) coders by capturing and presenting clinical concepts 
that may be related to the final ICD diagnoses. For 
example, some sentences or expressions associated with 
code R50.9 (Fever, unspecified) could be presented as 
follows:
(E1) the patient is admitted with a high fever
(E2) patient with pyrexia
(E3) three episodes of fever during pregnancy
(E4) patient does not exhibit hyperthermia
(E5) patient had constant fevers last year
   Although this perspective may have some resemblance 
to the mapping approach in Section 3.3, the results 
differ. The mapping approach is based on collecting ICD 
candidates by combining only essential clinical meanings, 
whereas an approach based on the semantic relatedness 
perspective also deals with non-clinical meanings.

6.4.2 Contextualized perspective

   This is a document-centered approach that takes multiple 
contextual components from text into account, including: 
a) negations, b) temporality, and c) experiencers. Context 

was explored using lexical-based approaches. However, 
the complexity of how ICD references can be found in 
text could possibly drive this context-based approach 
to be more difficult. An ICD code consists of pieces 
of meaning, so if one isolated piece of text produces a 
code, maybe another piece of text in a different location 
contributes to changing the whole meaning and producing 
a different code. Similar to semantic relatedness, this 
perspective does not focus on the final coding result. 
However,  semantic assumptions are made to determine 
whether an ICD reference is contextualized in terms of (a) 
a positive or negative mention, (b) a current, historical, 
or hypothetical temporal reference, or (c) a patient or 
relative experience. Context plays a role in this annotation 
perspective that can help coders identify the final 
diagnosis for a patient.
   This approach is constrained by the selection of those 
text that correspond to ICD codes most closely related 
to the current diagnosis (or symptoms). It is allowed to 
make assumptions in terms of context to filter out those 
references that are not directly related to the patient, given 
in a negative expression (negations), and related to past 
or future (hypothetical) references in time. NLP design 
for this perspective is required to collect contextualized 
evidence in the text that can support the diagnosis. The 
output cardinality is document-centered with potentially 
multiple diagnoses per document. However, each 
identified possible diagnosis can be linked to a specific 
part of a document (sentence, partial sentence, multi-word 
phrases or even a single meaningful keyword).
   Considering  the  same  examples  presented  in  the 
semantic relatedness perspective, E1 and E2 could 
be associated with ICD-10 code R50.9. However, for 
example E3, more contextual data are needed to determine 
whether it is a current pregnancy or it refers to the 
patient's prenatal period in the past.

6.4.3 Advisory perspective

   This perspective is aware of the larger picture and is 
the closest to mimicking the coder task. In a consultative 
role, an NLP application must identify the most likely 
diagnoses and symptoms for a given patient, considering 
all documents regarding the patient's stay or course. 
This annotation perspective works as a coder: rather 
than generating text annotations, a consultative approach 
produces patient-centred diagnostic candidate. The 
approaches discussed in Section 3.2 mostly use machine 
learning techniques due to the complexity of this task.
   The consultative approach is not constrained by pieces 
of text and it can possibly consider the entire patient 
record. The possible ICD may result from a combination 
of different pieces of text from different sections or even 
different documents. NLP consultative applications 
are designed to identify the most likely ICD codes that 
correspond to patient diagnoses, and then to be accurately 
checked by an experienced coder. The output cardinality 
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is patient-centered, with possibly multiple diagnoses per 
stay, in which each diagnosis is not necessarily linked to a 
specific part of a document. In this case, the two examples 
discussed previously, E1 and E2 could be potentially 
identified as strong candidates, depending on all other 
possible diagnoses and whether those symptoms are 
relevant to the cause of admission.

7. Conclusions

   We explored the effectiveness of less complex baselines 
for solving the task of identifying ICD codes using 
patient discharge notes. Despite the widespread use 
of deep learning models, we demonstrate that simpler 
methods can achieve comparable results while requiring 
fewer computational resources. Our results highlight the 
importance of thoroughly evaluating the performance of 
different models and methods for different tasks to avoid 
over-reliance on a particular approach. By considering 
the importance of a vocabulary versus concept approach, 
researchers can improve the efficiency and practicality of 
their solutions while still achieving competitive results. 
By surpassing current baselines, the developed approach 
exhibits enhanced capabilities in capturing and extracting 
relevant information using a less computationally 
expensive method. This suggests that the proposed method 
possesses distinctive characteristics that make it well-
suited for handling the intricacies and challenges inherent 
to healthcare data.
   While deep learning methods have gained popularity 
and demonstrated success in various domains, their 
application to healthcare datasets often faces specific 
complexities, such as limited labeled data and the need for 
interpretations from medical professionals. In this regard, 
the results obtained highlight the potential of baseline 
approaches in accurately extracting valuable insights to 
ensure fairness when evaluating more sophisticated deep 
learning alternatives. These findings hold significant 
implications for advancing the state of the art in healthcare 
data analysis and decision making. By surpassing current 
baselines and outperforming deep learning approaches, 
the developed methodology contributes to the refinement 
of techniques that can effectively harness the potential 
of healthcare data sets for improved patient care, clinical 
decision support, and medical research.
   Less frequent ICD codes tend to be more specific, and 
baseline models designed on such imbalanced data may 
have difficulty capturing the nuances and specifics of 
rare diseases. Consequently, models with limited training 
samples may struggle to generalize well to rare classes 
[84], and imbalances between classes may lead to biased 
model performance, as models may prioritize accuracy 
on the majority class at the expense of the rare classes 
[85]. With less frequent ICD codes, the data may become 
sparser, as there are fewer examples available for the rare 
classes. We plan to extend our work by designing baseline 

models for rare diseases with less frequent ICD codes 
(less than 3 percent of the data), with some important 
considerations and potential impacts to be aware of.
   Most of the previously published coding work is 
based on ICD-9 evaluated on the MIMIC-III dataset. In 
contrast, results typically report model performance on 
real-world datasets that are proprietary and not publicly 
available. With the recent release of de-identified free text 
clinical notes as part of the MIMIC-IV dataset, we plan to 
incorporate this new dataset into your next endeavor by 
designing a more comprehensive hybrid approach to test 
on a larger dataset (MIMIC-IV), hoping to resolve coding 
even when ICD-9 and ICD-10 codes coexist and are 
concomitantly found in the same dataset.
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