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Abstract: The tumor microenvironment is an important regulator in the progression of brain tumors. In the present 
review, we discussed the roles of various non-cancer cellular components, tumor vessels, and the extracellular matrix 
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overview on the unique and highly complex tissue microenvironment, we hope to support other research groups in 
finding more available treatment strategies and improving treatment outcomes.
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Introduction

   Glioma is the most common form of brain cancer. 
Despite surgical resection, radiation therapy and 
temozolomide,  as  well  as  targeted therapy and 
immunotherapy, the overall survival rate (OS) of patients 
remains poor [1,2]. The interplay between cancer cells 
and the tumor microenvironment (TME) is known to play 
a pivotal role in tumor progression, tumor angiogenesis 
and immune sequestration. Distinguished from other 
tumor tissues, the brain TME possesses unique tissue-
resident cell types, including microglia, astrocytes and 
neurons, and is characterized by the distinct blood–brain 

barrier (BBB) .
   The WHO used to divide gliomas into the following 
groups based on their histopathological characteristics: 
low-grade gliomas (LGGs, grades I and II) that are well-
differentiated and slow-growing tumors, while high-
grade gliomas (HGGs, grades III and IV) that are less-
differentiated and evidently infiltrate brain parenchyma 
[3]. In 2016, WHO classification of tumors of the central 
nervous system (CNS) was changed into molecular 
categorization based on genetic and epigenetic features [4]. 
Mutation of isocitrate dehydrogenase gene (IDHmut) and 
codeletion of 1p/19q have become the primary factors by 
which gliomas are classified. Tissue-resident microglias 
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(MGs), bone marrow-derived macrophages (BMDMs), 
neutrophils and T cells are the main immune cell types in 
the microenvironment of brain tumors [5,6]. IDHmut gliomas 
are mainly composed of MGs and a few immune cells; 
IDH wild-type (IDHwt) gliomas are enriched with BMDMs 
and a few neutrophils; a small proportion of gliomas are 
well populated with immune cells, accompanied by the 
infiltration of T cells and neutrophils [5,6].
   In this review, we expound the latest advances in glioma 
TME and related treatments, aiming to outline a profound 
and comprehensive picture of TME and provide new 
insights into the development of alternative treatments to 
improve the therapeutic efficacy of patients.

Tumor-associated macrophages

   Tumor-associated macrophages (TAMs) are the major 
immune cells in brain tumors, often accounting for up to 
30% of the tumor mass [7] TAMs in gliomas include MGs 
and BMDMs recruited from the peripheral circulation. 
MGs are derived from RUNX1+ yolk sac progenitors and 
maintain locally through self-renewal, serving as both 
immune sentinels and homeostatic regulators [8], while 
BMDMs are replenished through peripheral monocytosis 
[9]. MGs mainly localize in peritumoral regions, whereas 
BMDMs preferentially in perivascular areas and necrotic 
foci where TAMs induce angiogenesis [10,11]. Besides, 
MGs are predominant in LGGs, while BMDMs prevail 
in HGGs [6,10,12]. Therefore, BMDMs are more closely 
related to glioma progression than MGs [12].
   Conventionally, TAMs are divided into two phenotypes: 
M1 and M2 phenotypes. M1 TAMs produce pro-
inflammatory mediators including tumor necrosis factor 
(TNF), interleukin-1β (IL-1β), nitric oxide (NO), and 
reactive oxygen species (ROS) [13]. M2 TAMs generate 
anti-inflammatory and immunosuppressive factors, such as 
IL-6, IL-10 and transforming growth factor-β (TGF-β) [14-
16]. IL-6 promotes the phosphorylation of phosphoglycerate 
kinase 1 in tumor cells, thus facilitating glycolysis and 
tumorigenesis [16].Oncostatin M (OSM) from TAMs can 
induce glioblastoma (GBM) cells into mesenchymal-like 
(MES-like) states [17]. CCL5 from TAMs regulates the 
migration and invasion of glioma cells via the calcium-
dependent matrix metalloproteinase (MMP) 2 [18]. As the 
malignant degree of glioma increases, the proportion of M2 
TAMs increases and the proportion of M1 TAMs decreases 
[19]. IDHmut patients show lower proportions of M2 TAMs 
in 1p/19q codeletion LGGs compared with that in non-
codeletion LGGs [20].
   TAMs secrete pleiotrophin (PTN) and TGF-β1 to 
promote the maintenance and invasion of glioma stem cell 
(GSC) [21,22]. MARCOhigh BMDMs promote the shift of 
phenotype towards the MES cellular state of GSCs [23]. 

Extracellular vesicles (EVs) from BMDMs transfer miR-
27a-3p, miR-22-3p and miR-221-3p to GSCs, inducing 
differentiation towards a MES phenotype in proneural 
(PN) GSCs [24]. In turn, GSCs enhance TAM trafficking 
and M2 polarization through paracrine periostin and 
osteopontin [25-27]. Moreover, Wnt-induced signaling 
protein 1 (WISP1) and prostaglandin E2 (PGE2) from 
GSCs are critical for GSC maintenance and M2-like TAM 
polarization [28,29].
   Due to the abundance, TAMs are thought to be promising 
therapeutic targets. Molecules such as CCL2, CCL5, 
CXCL12, colony-stimulating factor-1 (CSF-1), periostin 
and osteopontin contribute to macrophage infiltration 
into the tumor site [15]. Inhibitors or antibodies targeting 
these molecules or their receptors can inhibit macrophage 
recruitment.
   The reprogramming of phenotypes would be a more 
effective way than the reduction of TAM numbers [30]. 
CSF-1 released by glioma cells, is a stimulus of the 
differentiation, polarization, survival, and recruitment 
of TAMs [31]. An inhibitor of CSF-1 receptor (CSF-1R) 
markedly mediates macrophage polarization in a GBM 
mouse model, suppressing the expression of M2 markers 
without depleting TAMs [30]. Although CSF-1R blockage 
prolonges mice survival time in a GBM mouse model, over 
50% of them relapse inevitably, which is attributed to the 
elevated PI3K activity in tumors, driven by macrophage-
secreted insulin-like growth factor 1 (IGF-1) [32]. Besides, 
Bao et al. found that inhibition of β-site amyloid precursor 
protein cleaving enzyme 1 (BACE1) with MK-893 could 
reprogram M2 into M1 and promote the macrophage 
phagocytosis of tumor cells because BACE1-mediated 
STAT3 activation is required for maintaining M2 [33].
   Cancer cells can keep from phagocytosis by upregulating 
the anti-phagocytic molecule CD47, but CD47 blockage 
alone is inefficient in activating glioma cell phagocytosis 
[34]. However, combining CD47 blockage with 
temozolomide results in a notable pro-phagocytic effect 
due to the latter's ability to induce endoplasmic reticulum 
stress [34]. Increased tumor cell phagocytosis therefore 
promotes antigen cross-presentation and activation of 
cyclic GMP-AMP synthase-stimulator of interferon (IFN) 
genes in antigen-presenting cells (APCs), resulting in more 
T cell priming [34].
   Chimeric antigen receptor (CAR) macrophages have been 
used to enhance tumoricidal function. Characterization of 
CAR macrophage activity shows that CAR macrophages 
secrete pro-inflammatory cytokines and chemokines, 
induce the transformation of bystander M2 macrophages 
into M1, upregulate antigen presentation, recruit and 
present antigens to T cells, as well as resist the effects of 
immunosuppressive cytokines [35].

Lymphocytes
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   T cell, an important anti-tumor component, is usually 
rare in gliomas and shows impaired effector function. [36]. 
GBM is called "cold tumor", referring to the low number 
of immune cells and insensitivity to immunotherapy 
[37]. In the setting of intracranial tumors, loss of surface 
sphingosine-1-phosphate receptor 1 (S1PR1) on T cells 
directs their sequestration in bone marrow, resulting in a 
scarcity of infiltrating T cells at the tumor site [38]. Though 
T cells have successfully reached the tumor site, they are 
subject to further suppressive influences, such as inhibitory 
checkpoint molecules. When cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) interacts with CD80/CD86, 
T cells will get anergic [39]. The interaction between the 
receptor programmed cell death-1 (PD-1) and the PD-1 
ligand (PD-L1) expressed on cancer cells, TAMs, etc., 
suppresses T cells' functions and its proliferation, but has a 
promoting effect on the proliferation of regulatory T cells 
(Tregs) [40]. Besides, dendritic cells (DCs) upregulate 
PD-L1 upon antigen uptake [41]. Other characterized 
checkpoints are T cell immunoglobulin-3 (TIM-3), Lag-
3 (CD223), B- and T-lymphocyte attenuator (BTLA), 
2B4 (CD244), CD160, T cell immunoglobulin and ITIM 
domain (TIGIT), and CD39 [36]. Moreover, Tregs inhibit 
the activation and differentiation of CD4+ and CD8+ T cells 
and their reactivity against autologous and tumor-expressed 
antigens [42]. The TME favors the recruitment and survival 
of Tregs by CCL2 and indoleamine 2,3-dioxygenase (IDO) 
[42,43].
   In a variety of solid tumors, immune checkpoint blockage 
targeting the PD-1/PD-L1 or CTLA-4 has achieved great 
success in a subset of patients. However, in a clinical trial, 
CheckMate 143 PD-1 blockage in cancer treatment for 
patients with rGBM failed compared with treating with 
bevacizumab [44]. The failure of PD-1/PD-L1 monoclonal 
antibody (mAb) is related to many factors, such as PD-
L1 expression intensity, the number of tumor-infiltrating 
lymphocytes (TILs), the tumor mutation burden, 
microsatellite instability (MSI), and mismatch repair 
deficiency (MMR).
   The existence of TILs is fundamental to the success of 
immune checkpoint inhibitors. For example, melanoma 
brain metastases that harbor a large number of T 
cells actively respond to checkpoint blockage [5,45]. 
Additionally, in patients who are insensitive to immune 
checkpoint blockage (non-responders), PD-1high T cells 
may be in a fixed dysfunctional condition, contrary to 
responders whose PD-1high T cells are in a plastic state, 
amenable to reprogramming [46]. Tumors with TMB and 
high antigen load are more likely to stimulate immunity. 
A study showed that a hyper-mutated subgroup identified 
among IDHwt GBM patients has a better prognosis, and 
two ultra-mutated cases are characterized by the presence 
of at least 25% giant cells, MMR mutations, and MSI [47]. 
Moreover, the existence and upregulation of other immune  
checkpoints can impair the efficacy of PD-1/PD-L1 mAb. 
It has been reported that PD-L1 and B7-H4 may serve as 

complementary immune checkpoint molecules in gliomas 
[48]. Recently, CD161 expressed on T cells was identified 
as a new immunotherapy target [49]. Notably, neoadjuvant 
administration of PD-1 inhibitors enhances anti-tumor 
immune response locally and systemically, with an 
upregulation of T cells and IFN-γ-related gene expression 
and a downregulation of cell cycle-related gene expression 
within the tumor [50, 51], indicating that drugs given before 
surgery are more likely to provoke the immune response.
   In adoptive immunotherapy, the patient's lymphocytes or 
Dendritic cells (DCs) are artificially activated to elicit the 
anti-tumor response, and it can obviate the multiple steps in 
stimulating the primary anti-tumor immune response. The 
redirection of CAR-T cells has been the most pioneering and 
successful work for redirected adoptive immunotherapy. 
CAR-T cell therapy has shown safety and feasibility in 
clinical practice for GBM, but its overall results are still 
unsatisfactory [52,53]. A group investigated the decisive 
molecules of CAR-mediated GBM cell killing via whole-
genome CRISPR screens in both CAR-T cells and patient-
derived GSCs [54]. The screening of CAR-T cells identifies 
dependencies on effector functions, including TLE4 and 
IKZF2, the knockout of which enhances CAR-T cell 
effector functions and inhibits the exhaustion responses 
[54]. Reciprocal screening of GSCs identifies the genes 
mediating resistance to CAR-T cells, including RELA and 
NPLOC4, the knockout of which alters tumor-immune 
signaling and increases the sensitivity of CAR therapy 
[54]. The high-throughput screening platform established 
in this study can be extended to CAR-T cells with different 
targets and other adoptive cell transfer therapies to obtain 
reliable targets with clinical potential.

Tumor-associated neutrophils

   Neutrophils act as key players in defending against 
infection and in activating and regulating the innate and 
adaptive immunity. Under different TME conditions, 
tumor-associated neutrophils (TANs) can be polarized 
into two distinct functional phenotypes: the anti-tumoral 
phenotype N1, mostly induced by IFN-β, and the tumor-
promoting phenotype N2, elicited by TGF-β1, granulocyte 
colony-stimulating factor (G-CSF), and IL-6 [55]. N1 TANs 
mediate anti-tumor reactions by directly killing tumor 
cells and participating in cellular networks that induce 
anti-tumor resistance [56]. N2 TANs can be part of tumor-
promoting inflammation by driving the angiogenesis, ECM 
remodeling, metastasis, and immunosuppression [56]. 
The number of infiltrating TANs is positively correlated 
with the tumor progression [57,58]. IDHmut gliomas, less 
aggressive than IDHwt tumors, exhibit low TAN infiltration     
[59]. Among the molecular subtypes of GBM, MES tumors 
with poor survival time have higher numbers of TANs than 
those of other subtypes, including PN, classical, and neural 
[60].
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   TANs stimulate the glioma progression through the 
upregulation of S100A4 expression, supporting cancer 
invasion and resistance to vascular endothelial growth factor 
(VEGF) therapies [61]. Increased neutrophil degranulation 
leads to higher levels of circulating arginase 1 (Arg1) that 
can potently and rapidly deplete extracellular L-arginine, 
resulting in T cell anergy and immune dysfunction [62]. 
TANs can be recruited and can transfer myeloperoxidase 
(MPO)-containing granules into tumor cells which 
induce ferroptosis, causing tumor necrosis, indicating a 
poor prognosis, and the inflammation induced by tumor 
necrosis will recruit more TANs [57]. Besides, ferroptosis 
is associated with MES transition and positively correlated 
with tumor aggressiveness in GBM [57].
   Researchers designed some treatment strategies based 
on intrinsic inflammatory chemotaxis and the excellent 
BBB-crossing capability of neutrophils. A neutrophil-
based microrobot ("neutrobot") has been reported to 
actively deliver cargo to malignancies in vivo, exhibiting 
the biological characteristics and functions of natural 
neutrophils that are currently unmatched by artificial 
microrobots [63]. A bioinspired neutrophil exosomes 
(NEs-Exos) system for delivering anti-tumor drugs to treat 
glioma has been developed. The mouse model showed 
that NEs-Exos carrying the drug efficiently penetrated the 
BBB and migrated into the inflamed brain. Then NEs-Exos 
showed chemotactic response to inflammatory stimuli 
and targeted tumor cells in inflamed brain tumors, thus 
efficiently suppressing the tumor growth [64].

Dendritic cells

   DCs are the most effective dedicated Antigen Presenting 
Cells (APCs). DCs process antigens and present them to 
T cells and B cells, connecting the innate and adaptive 
immune systems. In glioma microenvironment, DCs 
increase the expression of nuclear erythroid 2 p45-related 
factor 2 (Nrf2) and inhibit their maturation [65]. Besides, 
fibrinogen-like protein 2 (FGL2) from GSCs and primary 
GBM cells inhibits granulocyte-macrophage colony-
stimulating factor (GM-CSF)-induced DC differentiation 
that is necessary for triggering the activation of killer T 
cells [66]. Blocking FGL2 prolongs the survival time, and 
reduces the infiltration of Tregs and M2 macrophages and 
decrease the expressions of immune checkpoints CD39 
and PD-1 [67].
   DC vaccination is a promising approach for specific 
active immunotherapy, showing an excellent safety profile 
[68,69]. A phase III trial of an autologous tumor lysate-
pulsed DC vaccine to standard treatment of newly 
diagnosed GBM (nGBM) showed significant survival 
benefits in patients, especially those with an MGMT 
mutation [68]. In a phase II clinical trial, GBM patients 
with IDH1wt TERTmut and low B7-H4 expression are more 
responsive to DC vaccines loaded with GSC antigens [69]. 

There are many factors that can be taken into consideration 
to improve the effectiveness of DC vaccines, including 
the origin of vaccine cells, vaccine antigen and adjuvant 
selection, vaccine targeting optimization, and migration 
restriction. Co-delivery of tumor-derived exosomes 
and α-galactosylceramide (α-GalCer)-pulsed DCs and 
invariant natural killer T (iNKT) cell adjuvant showed 
powerful effects in a mouse model [70]. Exosomes were 
utilized as more potent antigens to load DCs. iNKT cell, 
as an effective cellular adjuvant activated by α-GalCer, 
strengthens antigen presentation through their interaction 
with DCs [70]. Additionally, patients given tetanus toxoid 
prior to vaccination with cytomegalovirus antigen-loaded 
DCs exhibit enhanced DC migration bilaterally [71].

Mast cells

   Early mast cell (MC) infiltration is crucial in shaping the 
TME by direct cell-to-cell interaction or releases a range 
of mediators to remodel the TME [72]. The interactions 
among MCs, other infiltrated immune cells, tumor cells 
and the ECM actively promote the angiogenesis and tumor 
invasion [72]. MCs have been reported on the involvement 
in glioma, where HGG contains significantly more MCs 
than LGG [73-76]. MC recruitment may occur nearby 
glioma-associated vessels and within the tumor mass, 
where the strong secretion of stem cell factor (SCF), the 
main growth factor of MCs, can be detected [73]. According 
to the finding, the detection of MC proliferation in glioma 
suggests that the expansion of the local MC population 
results in the MC infiltration in glioma microenvironment 
[73]. Increased expressions of pro-tumorigenic mediators 
such as CXCL12, PAI-1/SERPINE1 serglycin and 
macrophage migration inhibitory factor (MIF) were also 
found to be positively correlated with MC accumulation 
[73-76]. Cellular crosstalk between MCs and glioma cells 
reveals that MCs activated by glioma cells, called "tumor 
educated" MCs, release mediators to reduce the stemness 
and inhibit glioma cell proliferation and migration, but in 
turn induce glioma cell differentiation [77]. However, there 
are still relatively few studies relevant to targeting MCs to 
treat glioma.

 Astrocytes

   Astrocytes are the most abundant cells in the CNS and 
fulfill a range of other homeostasis, with functions of 
maintaining BBB integrity, the extracellular ion balance and 
synaptic neurotransmitter levels, releasing neurotrophic 
factors, affecting the synaptic plasticity, and transmitting 
information through gap junctions [78]. In response to 
threats such as trauma, infection, inflammation, and tumors, 
astrocytes go through specific molecular, cellular and functional 
alterations, resulting in so-called reactive astrocytes (RAs) [79].
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   At an early stage in glioma development, astrocytes have 
neuronal protective and anti-tumorigenic properties, such 
as buffering glutamate [80]. Glutamate causes cytotoxicity 
when its extracellular concentration is too high [81]. In 
the context of gliomas, the voltage-gated K+ channel 
Kv1.3 that regulates glutamate buffering within astrocytes 
becomes more active, which disturbs the homeostatic 
properties of astrocytes [82]. Ammonia released partly by 
glioma cells induces astrocyte swelling and dysfunction of 
glutamate uptake [80]. As the glioma develops, astrocytes 
change towards a pro-tumorigenic RA phenotype. A study 
showed that a distinct astrocytic phenotype is caused by 
the coexistence of microglia and astrocytes in the tumor 
environment, which leads to a large release of anti-
inflammatory cytokines such as TGF-β, IL-10 and G-CSF 
[83]. RAs increase the expression levels of MMP9, which 
promotes the tumor invasiveness by breaking down the 
ECM [84]. After radiation, RAs will increase the secretion 
of transglutaminase 2 (TG2), which triggers the MES 
trans-differentiation of GSCs [85,86]. In view of the 
tumor-promoting property of RAs, blocking the signaling 
of RAs would suppress the tumor growth. A JAK inhibitor 
has been shown to reduce the number of RAs, impair the 
recruitment of myeloid cells, and inhibit the tumor growth 
[83,87].

Neurons

   Neurons, a highly specialized cell type, provide 
mitogenic signals to stimulate the growth of neuronal 
and oligodendroglial precursor cells within the brain 
microenvironment. Recent studies uncovered the 
interactions between neurons and glioma cells, and a new 
concept of "tumor neuroscience" was proposed [88].
   Venkatesh et al. found that activity-dependent cleavage and 
secretion of the synaptic adhesion molecule neuroligin-3 
(NLGN3) stimulates several oncogenic pathways, induces 
the upregulation of several synapse-related genes in 
glioma cells, and facilitates glioma cell proliferation [89, 
90]. Recently, a group demonstrated that Nf1 mutation can 
drive the tumor progression in a mouse model of optic 
pathway glioma by the aberrantly increased shedding 
of NLGN3 within the optic nerve in response to retinal 
neuronal activity [91]. In 2019, the synaptic transmission 
between glioma and neurons was identified, where neurons 
release glutamate to activate AMPA receptors on glioma 
cells, stimulating glioma cell invasion and growth [92]. 
Incredibly, neural activity-dependent, non-synaptic potassium 
currents depolarize electrically coupled glioma cell networks, and 
this depolarization intensifies cancer cell proliferation [93].
   Therefore, interrupting the connection between neurons 
and cancer cells emerges as a potential therapeutic 
approach. Recent studies have shown several potential 
therapeutic targets. Some novel driver variants of PIK3CA 
have been uncovered in a GBM mouse model. These 

variant-driven tumors upregulate neuronal excitability 
by secreting glypican-3 (GPC3), thus driving glioma 
tumorigenesis, network hyperexcitability, and synapse 
formation [94]. A study reported that olfactory sensory 
experience directs the gliomagenesis by their corresponding 
sensory neuronal circuits where insulin-like growth factor 
1 (IGF1) from mitral and tufted (M/T) cells is shown to be 
the key cytokine [95]. However, the selected target should 
be as tumor-specific as possible to minimize the impact on 
normal neuronal circuits.

Blood–brain barrier

   The BBB is composed of endothelial cells (ECs) 
connected by tight junctions (TJs) and adherens junctions 
(AJs), supported by a basal lamina embedded by astrocyte 
projections and pericytes and sparsely interconnected by 
neuronal endings and microglia [96], which is important 
for maintaining CNS surveillance and homeostasis [97]. 
With the evolution of brain tumors, the blood-tumor 
barrier (BTB) displays integrity loss, resulting in leakiness, 
particularly in the high-grade brain tumor (GBM) [98]. 
However, different types of gliomas and even different 
regions of the tumor show heterogeneous permeability. 
WNT-activated medulloblastoma (MB) induces an aberrant 
and extensively fenestrated vasculature that allows the 
accumulation of high levels of chemotherapeutic agents in 
the brain, showing the best response to treatment, whereas 
SHH MB presents an intact BBB with poor treatment effect 
[99]. The hypoxic center of the glioma shows a higher 
degree of BTB leakage than that of the marginal area [100]
   Compared to the BBB, the BTB's structural changes 
generally include astrocyte endfeet displacement, 
neurovascular decoupling, altered pericyte populations, 
loss of EC tight junctions and changed transcytosis 
mechanisms, but the BTB retains the critical expression 
of active efflux transporters such as ATP-binding cassette 
transporters in ECs and cancer cells [97,101]. Besides, 
the BTB shows distinct fenestration of endothelium and 
basal membrane [100]. Notably, pericyte coverage is 
negatively correlated with the prognosis of GBM patients, 
and targeting GSC-derived pericytes selectively disrupts 
the BTB, impairs BTB TJs, and increases vascular 
permeability to specifically enhance drug delivery 
to the tumor site [102]. The loss of BTB integrity is 
mainly provoked by the upregulation of VEGF through 
hypoxia-inducible factor-1α (HIF-1α). VEGF induces the 
permeability of blood vessels, and disrupts the expression 
and distribution of aquaporin-4 (AQP4) in the astrocytic 
endfeet, causing extravascular edema and hypoxia [100]. 
However, high doses of anti-angiogenic drugs may reduce 
BTB permeability, which may interfere with the delivery 
of other therapies [103, 104]. Thus, it is a challenge to 
balance the dose of anti-angiogenic therapy.
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   In addition to increasing the accumulation of drugs in 
tumor foci, leaky BTB is also conducive to the infiltration 
of monocytic and lymphocytic cells, which may help the 
presentation of tumor-associated antigens [97,105]. Thus, 
one of the key points of treatment is to enhance BTB 
permeability. We look forward to the therapeutic benefits of 
new medical technologies, such as nano-pharmaceuticals 
and ultrasonic targeted microbubble destruction (UTMD) 
technology.

Angiogenesis

   Angiogenesis is the growth of new capillaries from 
preexisting blood vessels and is mediated by many 
angiogenic factors, including HIF-1α, VEGF, basic 
fibroblast growth factor (bFGF), hepatocyte growth factor 
(HGF), platelet-derived growth factor (PDGF), TGF-β, 
MMPs, and angiopoietins (Angs) [106]. Exosomes 
with miRNA-9 and miRNA-26a from glioma cells can 
be absorbed by vascular ECs, leading to an increase in 
angiogenesis [107,108]. Besides, induced by TGF-β, 
pericytes generated from GSCs support vessel function 
and tumor growth [109].
   Compared with LGGs, high tumor vascularity is a hallmark 
of GBM where the vascular network is disorganized and 
displays a high degree of microvascular proliferation [110]. 
IDHmut tumors show low VEGF expression compared with 
IDHwt in GBM [111]. High expression of the microtubule-
associated protein TAU (MAPT) in IDHmut tumors impairs 
the processes of angiogenesis and neovascularization 
through the stabilization of microtubules, favoring 
normalization of the glioma vasculature [112].
   The tumor vasculature supports the growth of cancer 
cells, but its aberrant structure often results in high 
interstitial fluid pressure, edema, hypoxia, and necrosis 
[113]. The use of antiangiogenic drugs inhibits the 
formation of complex vascular networks in tumors, makes 
their structure and blood flow resemble those of normal 
tissues more closely, and improves the supply of nutrients 
and oxygen, partly restoring the immune response 
and their sensitivity to chemotherapeutic drugs [114]. 
Bevacizumab against VEGFA has an inhibitory effect on 
tumor neovascularization. For glioma patients, especially 
those with a large edema range, bevacizumab improves 
progression-free survival and maintains the baseline 
quality of life and performance but does not improve the 
overall survival time [115-117].
   Vessel cooption is a non-angiogenic mechanism of tumor 
vascularization, which means that cancer cells utilize 
preexisting blood vessels instead of creating new blood 
vessels. This has been extensively demonstrated in brain 
metastases arising from melanoma, lung cancer, and breast 
cancer [118-121]. Vessel cooption is an intrinsic feature 
of or an adaptive ability of cancers to resist angiogenesis 
inhibitors, such as bevacizumab [122]. Besides, vasculogenic

 mimicry (VM) is another way that glioma improves brain 
blood supply, which mainly forms vascular-like channels 
independent of ECs and can be enhanced by TGF-β1 from 
astrocytes [123]. The "EC-like cells" are incompletely 
differentiated from GSCs, which can be induced by 
tenascin-C [124-127]. VM is thought to be the major 
blood supply in the early stages and tumor cells lining the 
wall of VM vessels are replaced by endothelium as the 
tumor progresses [128]. These mechanisms provide new 
perspectives on inhibiting the tumor angiogenesis.

Lymphatic vessels

   The lymphatic system is not only essential for maintaining 
fluid balance and internal homeostasis, but also plays an 
important role in immune surveillance. It was once widely 
believed that the brain lacked a lymphatic vessel system, 
so it was considered as a "immune privileged" organ. 
However, in 2015, the structure of meningeal lymphatic 
vessels (MLVs) was discovered in the outermost layer 
of the mouse's meningeal membrane, the dura mater. 
It is confirmed that these circuits can directly drain 
cerebrospinal fluid (CSF) to the peripheral deep cervical 
lymph nodes (DCLNs) [129,130]. Moreover, vascular 
endothelial growth factor-C (VEGF-C) and VEGFR3 are 
shown to be critical for the plasticity and regenerative 
potential of MLVs [131]. Subsequently, human and 
nonhuman primate meninges harboring lymphatic vessels 
were discovered by MRI [132] and immunohistochemical 
staining of human skull specimens showed that lymphatic 
vessels from within the skull passes through the dura 
mater around the jugular foramen and connects to the deep 
cervical lymphatic network [133].
   The discovery of MLVs has led researchers to actively 
explore the regulatory relationship between the brain 
tumor and MLVs. In 2020, two teams found that in mouse 
models, MLVs increase the anti-tumor immune response 
by promoting the migration of immune cells, improving the 
efficacy of anti-PD-1/CTLA-4 combined immunotherapy 
[134,135]. Besides, overexpression of VEGF-C enhances 
meningeal lymphangiogenesis, facilitating DC drainage to 
DCLNs, thereby exerting an antitumor effect [134,135]. 
Recently, Zhou et al. demonstrated the positive role of 
MLVs in radiotherapy-modulated anti-tumor immunity 
and highlighted the potential of VEGF-C-mRNA in 
combination with radiotherapy for the treatment of brain 
tumors [28].
   However, at present, the relevant research on the functions 
of MLVs is mostly limited to animal experiments and lacks 
clinical trial data. A lot of work is needed to explore the 
role and mechanism of MLVs in glioma.

Extracellular matrix (ECM)
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   Different from the ECM of other organs, the ECM in 
brain tissue only accounts for about 20% of the brain 
and it has the unique composition: glycosaminoglycans 
(GAGs) such as hyaluronic acid (HA, hyaluronan), 
proteoglycans such as chondroitin sulfate proteoglycan 
(CSPG) and glycoproteins without collagens [136]. Brain 
tumor ECM shares common components as brain tissue 
ECM, but glioma cells would overexpress some ECM 
components, such as HA, tenascin-C and fibronectin as 
well as specific integrins and other receptors interacting 
with ECM components [137]. In addition to providing 
structural and mechanical support and protection for cells, 
the ECM provides appropriate chemical and mechanical 
signaling, regulating cell proliferation and survival, cell 
fate determination, cell migration and invasion, and tissue 
morphogenesis [138]. Besides, macromolecules such as 
glycosaminoglycans can store heparin-binding angiogenic 
growth factors that can be released locally by heparinase 
[139]. Thus, the growth and metastasis of glioma are 
inextricably linked to ECM.
   The overexpression of HA, tenascin-C, fibronectin, and 
brevican drives ECM stiffness, but the rising presence 
of MMPs can erode ECM stiffness by matrix protein 
degradation [140]. The greater the stiffness of the ECM, 
the higher the malignancy of glioma, and IDHmut glioma 
presents decreased TNC expression, ECM stiffness, and 
mechano-signaling [141]. During the progression of 
glioma, abnormal mechanical hardness of tumor tissue 
triggers prominent PIEZO1-dependent currents, activating 
integrin-FAK signaling and causing increased tissue 
stiffness. In turn, a stiffer microenvironment elevates 
PIEZO1 expression, promoting the aggressiveness of 
glioma [142].
   The excessive deposition of ECM components reshapes 
a stiff ECM, preventing drugs from reaching the lesion, 
and rich ECM components will interact with the binding 
proteins of glioma cells, promoting the development of 
glioma. The highly expressed membrane protein molecules 
CD44 and RHAMM in glioma cells interact with HA 
overexpressed in the ECM, mediating the proliferation, 
migration and invasion of tumor cell [143]. Besides, the 
elevated CD151 and α3β1 integrin interact with laminins, 
which work synergistically with EGFR-dependent 
signaling pathways to accelerate tumor cell motility and 
invasiveness [144].
   In short, ECM alteration is critical for driving glioma 
progression and its invasiveness. In the future, it can be 
seen that many inhibitors will be screened out via the 
tumor models based on hydrogels.

Metabolism

   The metabolic pathways of glioma cells are abnormally 
activated or reprogrammed through direct or indirect mutagenic

effects, giving glioma cells malignant biological 
characteristics.
   As one of the signs of tumorigenesis, IDHmut is an 
independent prognostic factor for glioma and heralds 
a better survival [145,146]. IDH mutant results in the 
conversion of proteins from α-ketoglutaric acid (α-KG) 
to 2-hydroxyglutarate (2-HG) and contributes to genome-
wide histone and DNA methylation alterations [147,148]. 
IDHmut significantly upregulates HIF-1α expression that 
helps glioma tumorigenesis [149]. In addition, the effect 
of IDHmut on the immune microenvironment of glioma is 
complicated [150]. A study demonstrated that there are 
significantly fewer TAMs in IDHmut GBMs, but they are more 
pro-inflammatory [151]. However, another study showed 
that IDHmut glioma exhibits a more immunosuppressive 
phenotype than IDHwt glioma [152]. Compared to IDHwt 
tumors, IDHmut glioma shows a major reduction of Tregs, 
which may be related to the concomitant dearth of pro-
inflammatory cells [153]. Besides, the infiltration of NK 
cells in IDHmut glioma is higher than that of IDHwt and 
IDH mutant promotes the recruitment of NK cells through 
CX3CL1/CX3CR1 chemotaxis [154]. Counterintuitively, 
IDHmut in LGG suppresses the accumulation of CD4+T 
cells and CD8+T cells in tumor sites [153,155]. Tumor 
cell-derived R-2-HG is taken up by T cells where it can 
induce a perturbation of nuclear factor of activated T 
cells transcriptional activity and polyamine biosynthesis, 
resulting in suppression of T cell activity [156].
   Glioma cells often metabolize glucose into lactate to 
enable cancer cells to use glucose-derived carbons for 
the synthesis of essential cellular components, while still 
generating sufficient ATP [157], leading to a metabolite-
depleted, hypoxic, and acidic TME [158], which places 
infiltrating effector T cells in competition with the tumor 
for metabolites and renders them functionally impaired 
[159]. In GBM, glycolytic rate-limiting enzyme hexokinase 
2 and phosphofructokinase 1 platelet isoform are 
upregulated, enhancing lactate production and promoting 
tumor growth [160,161]. Tregs are able to maintain their 
tumor-suppressive identity by using lactate as fuel [162]. 
In addition, lactate induces TAM polarization into M2 
phenotype as well as the increase of Arg1 and VEGF 
expression of TAMs, which is mediated by HIF1α [163]. 
Due to the enhanced glycolytic activity of cancer cells 
and hypoxia in the TME, carbonic anhydrase IX (CAIX), 
which maintains intracellular pH, is highly expressed in 
GBM [164,165]. A study showed that anti-CAIX CAR T 
treatment is a promising strategy to treat GBM [166].
   Fatty acid oxidation (FAO), another energy-producing 
pathway, is also critical for the proliferation of glioma cells 
[167]. Carnitine palmitoylotransferase 1 (CPT1), as well 
as high-affinity carnitine transporter SLC22A5, affects the 
FAO rate, mediating glioma cell survival [168] .
   For amino acid metabolism, glutamine is a nitrogen and 
carbon source for the biosynthesis of nucleotides and amino acids, 
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which is indispensable for glioma growth [157,169]. When 
glioma cells are starved of glutamine, the conversion of 
glutamate into glutamine via upregulation of the enzyme 
glutamine synthetase is promoted [157]. Glutamine 
blockade in tumor-bearing mice suppresses the oxidative 
and glycolytic metabolism of cancer cells, accompanied 
by effector T cells with activated phenotype [170]. 
Besides, tryptophan catabolic route closely affects tumor 
development. Gliomas enhance cell motility by highly 
expressing IDO1, tryptophan-2,3-dioxgenase (TDO2) and 
interleukin-4-induced-1 (IL4I1), leveraging tryptophan 
catabolite (indole metabolites and kynurenic acid)-
mediated aryl hydrocarbon receptor (AHR) activation 
[171]. AHR activation in TAMs drives their recruitment via 
overexpressing CCL2, suppresses NF-κB activation, and 
increases their expression of the ectonucleotidase CD39 that 
prompts CD8+T cell dysfunction by producing adenosine in 
cooperation with CD73, which can be intensified by 2-HG 
and kynurenic from glioma [152,172].
   Cancer cells can increase the rate of autophagy to maximize 
their energy gains when they feel stressed in the TME [169, 
173]. Autophagy, the recycling of metabolic organelles, 
generally helps to meet the energy demands of cancer cells 
[174,175]. The nuclear hormone receptors REV-ERBα and 
REV-ERBβ are responsible for the synthesis of lipids and 
autophagy, controlling cellular energy metabolism [176]. 
REV-ERB agonists impair the GBM growth in vivo and 
improve the survival without causing overt toxicity in mice 
by blocking energy access [177].
   In summary, gliomas abnormally activate multiple 
metabolic pathways, which may compensate each other 
to meet metabolic requirements for energy. Therefore, for 
treating energy metabolism disorders, it is necessary to find 
out the key targets or choose the method of multi-target 
inhibition. Given the impact of metabolism on the immune 
microenvironment, treatment of targeted tumor metabolism 
combined with immunotherapy is also a good choice.

Conclusion

   We discuss recent advances in the research on the brain 
TME and related treatment strategies. The interaction 
between tumor and various elements in the TME deeply 
affects the initiation and development of tumor, local 
drug resistance, and immune escape. Intercellular 
communications, including secretory factors, EVs, 
direct contact and cell metabolism, strongly shaping an 
immunosuppressive TME. Adaptive immunity, including 
exposure of tumor antigens, antigen presentation by APCs, 
and activation of sufficient numbers of infiltrating T cells 
to kill tumor cells, plays an irreplaceable role in tumor 
suppression, and the meningeal lymphatic vessels as well 
as  normal drainage are necessary for this process.
   Though many studies of the TME have provided many 

therapeutic targets, many clinical trials failed due to 
significant intertumoral and intratumoral genetic instability 
and resultant heterogeneity, which generates diverse 
aberrant signaling pathways within and across tumors 
[178]. This forces scientists to develop new treatment 
strategies, such as tumor-treating fields (TTFields), 
multitarget therapy, and combination therapy. Clinical data 
have shown that patients can gain benefits from TTFields, 
a physical method affecting cancer cell mitosis by electric 
currents [179]. Regorafenib is an oral multifunctional 
inhibitor of angiogenic, stromal, and oncogenic receptor 
tyrosine kinases. The phase II clinical trial REGOMA 
shows an encouragingly beneficial effect of regorafenib on 
overall survival time in rGBM patients, and it is currently 
being tested in a phase III clinical trial [180]. Clinical 
trials of multi-peptide vaccines aimed at multiple glioma 
antigens have also been investigated. However, a phase III 
trial of personalized peptide vaccination for HLA-A24+ 
rGBM met neither the primary nor the secondary endpoints 
[181].
   Although current treatment approaches involving 
immunotherapy are often ineffective, some specific 
patients can benefit from them. A subgroup of patients with 
GBM with MGMT promoter methylation and no baseline 
corticosteroid dependence may be most likely to benefit 
from PD-1/PD-L1 immune checkpoint inhibitors [44]. 
Hence, it is beneficial to accurately identify the molecular 
subtypes of patients' pathological tissues. Besides, future 
studies to increase the local drug concentration, through 
local injection or nanoparticle delivery, are necessary. 
   In conclusion, our dissection of the TME in glioma 
has provided potential therapeutic targets from multiple 
perspectives, but the huge gap between fundamental 
research and clinical application needs to be bridged.
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