Francesco Reggiani 1 , Marianna Ambrosio 2 , Alessandra Forlani 3 , Anna Morabito 4 , Adriana Amaro 5 , Ulrich Pfeffer 6 *
Correspondence: ulrich.pfeffer@hsanmartino.it
DOI: https://doi.org/10.55976/dt.120221702-5
Show More
[1]Jager MJ, Shields CL, Cebulla CM, et al. Uveal melanoma. Nature Reviews Disease Primers. 2020;6(1):24. Available from: doi: 10.1038/s41572-020-0158-0.
[2]Amaro A, Gangemi R, Piaggio F, et al. The biology of uveal melanoma. Cancer and Metastasis Review. 2017;36(1):109-40. Available from: doi: 10.1007/s10555-017-9663-3.
[3]Dono M, Angelini G, Cecconi M, et al. Mutation frequencies of GNAQ, GNA11, BAP1, SF3B1, EIF1AX and TERT in uveal melanoma: Detection of an activating mutation in the TERT gene promoter in a single case of uveal melanoma. British Journal of Cancer. 2014;110(4):1058-65. Available from: doi: 10.1038/bjc.2013.804.
[4]Van Raamsdonk CD, Bezrookove V, Green G,et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599-602. Available from: doi: 10.1038/nature07586.
[5]Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in Uveal Melanoma. The New England Journal of Medicine. 2010;363(23):2191-9. Available from: doi: 10.1056/nejmoa1000584.
[6]Moore AR, Ceraudo E, Sher JJ, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nature Genetics. 2016;48(6):675-80. Available from: doi: 10.1038/ng.3549.
[7]Johansson P, Aoude LG, Wadt K, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7(4):4624-31. Available from: doi: 10.18632/oncotarget.6614.
[8]Harbour JW, Onken MD, Roberson EDO, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410-3.Available from: doi: 10.1126/science.1194472.
[9]Harbour JW, Roberson EDO, Anbunathan H, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genetics. 2013;45(2):133-5. Available from: doi: 10.1038/ng.2523.
[10]Martin M, Maßhöfer L, Temming P, et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics. 2013;45(8):933-6. Available from: doi: 10.1038/ng.2674.
[11]Prescher G, Bornfeld N, Hirche H, et al. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996;347(9010):1222-5. Available from: doi: 10.1016/S0140-6736(96)90736-9.
[12]Prescher G, Bornfeld N, Becher R. Two subclones in a case of uveal melanoma. Relevance of monosomy 3 and multiplication of chromosome 8q. Cancer Genetics and Cytogenetics. 1994;77(2):144-6. Available from: doi: 10.1016/0165-4608(94)90230-5.
[13]Parrella P, Sidransky D, Merbs SL. Allelotype of posterior uveal melanoma: Implications for a bifurcated tumor progression pathway. Cancer Research. 1999;59(13):3032-7.
[14]Onken MD, Worley LA, Tuscan MD, et al. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. The Journal of Molecular Diagnostics. 2010;12(4):461-8. Available from: doi: 10.2353/jmoldx.2010.090220.
[15]Robertson AG, Shih J, Yau C, et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 2018;33(1):151. Available from: doi: 10.1016/j.ccell.2017.12.013.
[16]Pfeffer M, Uschmajew A, Amaro A, et al. Data Fusion Techniques for the Integration of Multi-Domain Genomic Data from Uveal Melanoma. Cancers (Basel). 2019;11(10):1434. Available from: doi: 10.3390/cancers11101434.
[17]Durante MA, Rodriguez DA, Kurtenbach S, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nature Communications. 2020;11(1):496. Available from: doi: 10.1038/s41467-019-14256-1.
[18]Piaggio F, Tozzo V, Bernardi C, et al. Secondary somatic mutations in g-protein-related pathways and mutation signatures in Uveal melanoma. Cancers (Basel). 2019;11(11):1688. Available from: doi: 10.3390/cancers11111688.
[19]Rodriguez DA, Yang J, Durante MA, et al. Multiregional genetic evolution of metastatic uveal melanoma. npj Genomic Medicine. 2021;6(1):70. Available from: doi: 10.1038/s41525-021-00233-5.
[20]Sottoriva A, Kang H, Ma Z, et al. A big bang model of human colorectal tumor growth. Nature Genetics. 2015;47(3):209-16. Available from: doi: 10.1038/ng.3214.
[21]Amaro A, Chiara S, Pfeffer U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer and Metastasis Reviews. 2016;35(1):63-74. Available from: doi: 10.1007/s10555-016-9606-4.
[22]Lalonde E, Ewens K, Richards-Yutz J, et al. Improved Uveal Melanoma Copy Number Subtypes Including an Ultra-High-Risk Group. Ophthalmology Science. 2022;2(2):100121. Available from: doi: 10.1016/j.xops.2022.100121.
[23]Tschentscher F, Prescher G, Horsman DE, et al. Partial deletions of the long and short arm of chromosome 3 point to two tumor suppressor genes in uveal melanoma. Cancer Research. 2001;61(8):3439-42.
[24]Shields CL, Ganguly A, Bianciotto CG, et al. Prognosis of uveal melanoma in 500 cases using genetic testing of fine-needle aspiration biopsy specimens. Ophthalmology. 2011;118(2):396-401. Available from: doi: 10.1016/j.ophtha.2010.05.023.
[25]Ehlers JP, Worley L, Onken MD, et al. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clinical Cancer Research. 2005;11(10):3609-13. Available from: doi: 10.1158/1078-0432.CCR-04-1941.
[26]Piaggio F, Tozzo V, Bernardi C,.et al. How many mutations does it take to make a uveal melanoma? Archives of Clinical and Experimental Ophthalmology. 2019;1(1):6-11. Available from: doi: 10.46439/ophthalmology.1.003
[27]Jager MJ, Hurks HM, Levitskaya J, et al. HLA expression in uveal melanoma: There is no rule without some exception. Human Immunology. 2002;63(6):444-51. Available from: doi: 10.1016/S0198-8859(02)00389-0.
[28]Beenakker J-WM, Brouwer NJ, Chau C, et al. Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Research. 2022. Available from: doi: 10.1159/000524372.
[29]Piaggio F, Croce M, Reggiani F, et al. In uveal melanoma Gα-protein GNA11 mutations convey a shorter disease-specific survival and are more strongly associated with loss of BAP1 and chromosomal alterations than Gα-protein GNAQ mutations. European Journal of Cancer. 2022. In presss.
[30]Barbagallo C, Platania CBM, Drago F, et al. Do extracellular RNAs provide insight into uveal melanoma biology? Cancers (Basel). 2021;13(23):5919. Available from: doi: 10.3390/cancers13235919.
[31]Croce M, Ferrini S, Pfeffer U, et al. Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers (Basel). 2019;11(6):846. Available from: doi: 10.3390/cancers11060846.
[32]Marseglia M, Amaro A, Solari N, et al. How to make immunotherapy an effective therapeutic choice for uveal melanoma. Cancers (Basel). 2021;13(9):2043. Available from: doi: 10.3390/cancers13092043.
[33]Damato BE, Dukes J, Goodall H, et al. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers (Basel). 2019;11(7):971. Available from: doi: 10.3390/cancers11070971.
[34]Lapadula D, Farias E, Randolph CE, et al. Effects of oncogenic Gαq and Gα11 inhibition by FR900359 in uveal melanoma. Molecular Cancer Research. 2019;17(4):963-73. Available from: doi: 10.1158/1541-7786.MCR-18-0574.
[35]Schrage R, Schmitz AL, Gaffal E, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications. 2015;6:10156. Available from: doi: 10.1038/ncomms10156.
[36]Onken MD, Makepeace CM, Kaltenbronn KM, et al. Targeting nucleotide exchange to inhibit constitutively active G protein a subunits in cancer cells. Science Signaling. 2018;11(546):eaao6852. Available from: doi: 10.1126/scisignal.aao6852.
[37]Rossi E, Croce M, Reggiani F, Schinzari G, et al. Uveal melanoma metastasis. Cancers (Basel). 2021;13(22):5684. Available from: doi: 10.3390/cancers13225684.
Copyright © 2022 Francesco Reggiani, Marianna Ambrosio, Alessandra Forlani, Anna Morabito, Adriana Amaro, Ulrich Pfeffer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn