Make Knowledge Veritable, Visible and Valuable.

The biology of uveal melanoma – next challenges

Francesco Reggiani 1 , Marianna Ambrosio 2 , Alessandra Forlani 3 , Anna Morabito 4 , Adriana Amaro 5 , Ulrich Pfeffer 6 *

  • 1. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
  • 2. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
  • 3. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
  • 4. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
  • 5. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
  • 6. Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy

Correspondence: ulrich.pfeffer@hsanmartino.it

DOI: https://doi.org/10.55976/dt.120221702-5

  • Received

    24 April 2022

  • Revised

    30 April 2022

  • Accepted

    06 May 2022

  • Published

    12 May 2022

Show More


References
V

[1]Jager MJ, Shields CL, Cebulla CM, et al. Uveal melanoma. Nature Reviews Disease Primers. 2020;6(1):24. Available from: doi: 10.1038/s41572-020-0158-0.

[2]Amaro A, Gangemi R, Piaggio F, et al. The biology of uveal melanoma. Cancer and Metastasis Review. 2017;36(1):109-40. Available from: doi: 10.1007/s10555-017-9663-3.

[3]Dono M, Angelini G, Cecconi M, et al. Mutation frequencies of GNAQ, GNA11, BAP1, SF3B1, EIF1AX and TERT in uveal melanoma: Detection of an activating mutation in the TERT gene promoter in a single case of uveal melanoma. British Journal of Cancer. 2014;110(4):1058-65. Available from: doi: 10.1038/bjc.2013.804.

[4]Van Raamsdonk CD, Bezrookove V, Green G,et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599-602. Available from: doi: 10.1038/nature07586.

[5]Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in Uveal Melanoma. The New England Journal of Medicine. 2010;363(23):2191-9. Available from: doi: 10.1056/nejmoa1000584.

[6]Moore AR, Ceraudo E, Sher JJ, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nature Genetics. 2016;48(6):675-80. Available from: doi: 10.1038/ng.3549.

[7]Johansson P, Aoude LG, Wadt K, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7(4):4624-31. Available from: doi: 10.18632/oncotarget.6614.

[8]Harbour JW, Onken MD, Roberson EDO, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410-3.Available from: doi: 10.1126/science.1194472.

[9]Harbour JW, Roberson EDO, Anbunathan H, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genetics. 2013;45(2):133-5. Available from: doi: 10.1038/ng.2523.

[10]Martin M, Maßhöfer L, Temming P, et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics. 2013;45(8):933-6. Available from: doi: 10.1038/ng.2674.

[11]Prescher G, Bornfeld N, Hirche H, et al. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996;347(9010):1222-5. Available from: doi: 10.1016/S0140-6736(96)90736-9.

[12]Prescher G, Bornfeld N, Becher R. Two subclones in a case of uveal melanoma. Relevance of monosomy 3 and multiplication of chromosome 8q. Cancer Genetics and Cytogenetics. 1994;77(2):144-6. Available from: doi: 10.1016/0165-4608(94)90230-5.

[13]Parrella P, Sidransky D, Merbs SL. Allelotype of posterior uveal melanoma: Implications for a bifurcated tumor progression pathway. Cancer Research. 1999;59(13):3032-7.

[14]Onken MD, Worley LA, Tuscan MD, et al. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. The Journal of Molecular Diagnostics. 2010;12(4):461-8. Available from: doi: 10.2353/jmoldx.2010.090220.

[15]Robertson AG, Shih J, Yau C, et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 2018;33(1):151. Available from: doi: 10.1016/j.ccell.2017.12.013.

[16]Pfeffer M, Uschmajew A, Amaro A, et al. Data Fusion Techniques for the Integration of Multi-Domain Genomic Data from Uveal Melanoma. Cancers (Basel). 2019;11(10):1434. Available from: doi: 10.3390/cancers11101434.

[17]Durante MA, Rodriguez DA, Kurtenbach S, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nature Communications. 2020;11(1):496. Available from: doi: 10.1038/s41467-019-14256-1.

[18]Piaggio F, Tozzo V, Bernardi C, et al. Secondary somatic mutations in g-protein-related pathways and mutation signatures in Uveal melanoma. Cancers (Basel). 2019;11(11):1688. Available from: doi: 10.3390/cancers11111688.

[19]Rodriguez DA, Yang J, Durante MA, et al. Multiregional genetic evolution of metastatic uveal melanoma. npj Genomic Medicine. 2021;6(1):70. Available from: doi: 10.1038/s41525-021-00233-5.

[20]Sottoriva A, Kang H, Ma Z, et al. A big bang model of human colorectal tumor growth. Nature Genetics. 2015;47(3):209-16. Available from: doi: 10.1038/ng.3214.

[21]Amaro A, Chiara S, Pfeffer U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer and Metastasis Reviews. 2016;35(1):63-74. Available from: doi: 10.1007/s10555-016-9606-4.

[22]Lalonde E, Ewens K, Richards-Yutz J, et al. Improved Uveal Melanoma Copy Number Subtypes Including an Ultra-High-Risk Group. Ophthalmology Science. 2022;2(2):100121. Available from: doi: 10.1016/j.xops.2022.100121.

[23]Tschentscher F, Prescher G, Horsman DE, et al. Partial deletions of the long and short arm of chromosome 3 point to two tumor suppressor genes in uveal melanoma. Cancer Research. 2001;61(8):3439-42.

[24]Shields CL, Ganguly A, Bianciotto CG, et al. Prognosis of uveal melanoma in 500 cases using genetic testing of fine-needle aspiration biopsy specimens. Ophthalmology. 2011;118(2):396-401. Available from: doi: 10.1016/j.ophtha.2010.05.023.

[25]Ehlers JP, Worley L, Onken MD, et al. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clinical Cancer Research. 2005;11(10):3609-13. Available from: doi: 10.1158/1078-0432.CCR-04-1941.

[26]Piaggio F, Tozzo V, Bernardi C,.et al. How many mutations does it take to make a uveal melanoma? Archives of Clinical and Experimental Ophthalmology. 2019;1(1):6-11. Available from: doi: 10.46439/ophthalmology.1.003

[27]Jager MJ, Hurks HM, Levitskaya J, et al. HLA expression in uveal melanoma: There is no rule without some exception. Human Immunology. 2002;63(6):444-51. Available from: doi: 10.1016/S0198-8859(02)00389-0.

[28]Beenakker J-WM, Brouwer NJ, Chau C, et al. Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Research. 2022. Available from: doi: 10.1159/000524372.

[29]Piaggio F, Croce M, Reggiani F, et al. In uveal melanoma Gα-protein GNA11 mutations convey a shorter disease-specific survival and are more strongly associated with loss of BAP1 and chromosomal alterations than Gα-protein GNAQ mutations. European Journal of Cancer. 2022. In presss.

[30]Barbagallo C, Platania CBM, Drago F, et al. Do extracellular RNAs provide insight into uveal melanoma biology? Cancers (Basel). 2021;13(23):5919. Available from: doi: 10.3390/cancers13235919.

[31]Croce M, Ferrini S, Pfeffer U, et al. Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers (Basel). 2019;11(6):846. Available from: doi: 10.3390/cancers11060846.

[32]Marseglia M, Amaro A, Solari N, et al. How to make immunotherapy an effective therapeutic choice for uveal melanoma. Cancers (Basel). 2021;13(9):2043. Available from: doi: 10.3390/cancers13092043.

[33]Damato BE, Dukes J, Goodall H, et al. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers (Basel). 2019;11(7):971. Available from: doi: 10.3390/cancers11070971.

[34]Lapadula D, Farias E, Randolph CE, et al. Effects of oncogenic Gαq and Gα11 inhibition by FR900359 in uveal melanoma. Molecular Cancer Research. 2019;17(4):963-73. Available from: doi: 10.1158/1541-7786.MCR-18-0574.

[35]Schrage R, Schmitz AL, Gaffal E, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications. 2015;6:10156. Available from: doi: 10.1038/ncomms10156.

[36]Onken MD, Makepeace CM, Kaltenbronn KM, et al. Targeting nucleotide exchange to inhibit constitutively active G protein a subunits in cancer cells. Science Signaling. 2018;11(546):eaao6852. Available from: doi: 10.1126/scisignal.aao6852.

[37]Rossi E, Croce M, Reggiani F, Schinzari G, et al. Uveal melanoma metastasis. Cancers (Basel). 2021;13(22):5684. Available from: doi: 10.3390/cancers13225684.

How to Cite

Reggiani, F., M. Ambrosio, A. Forlani, A. Morabito, A. Amaro, and U. Pfeffer. “The Biology of Uveal Melanoma – Next Challenges”. Diagnostics and Therapeutics, vol. 1, no. 1, May 2022, pp. 2-5, doi:10.55976/dt.120221702-5.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.