Make Knowledge Veritable, Visible and Valuable.

Diagnostic methods for Plasmodium knowlesi: performance, limitations and recommendations

Jia Hui Tan 1 , Yee Ling Lau 2 *

  • 1. Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur , Malaysia
  • 2. Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur , Malaysia

Correspondence: lauyeeling@um.edu.my

DOI: https://doi.org/10.55976/dt.1202216411-22

  • Received

    13 April 2022

  • Revised

    31 May 2022

  • Accepted

    06 June 2022

  • Published

    17 June 2022

Malaria Plasmodium knowlesi Point-of-care diagnosis Loop-mediated isothermal amplification CRISPR

Show More

Abstract


References
V

[1]World Health Organization. World malaria report 2021. 2021.

[2]Eyles D, Laing A, Warren M et al. Malaria parasites of the Malayan leaf monkeys of the genus Presbytis. Medical Journal of Malaya. 1962;17:85-86.

[3]Knowles R and Gupta ASBD. A study of monkey-malaria, and its experimental transmission to man. The Indian Medical Gazette. 1932;67(6):301. Available from: PMID: 29010910.

[4]Eyles DE, Laing A, and Dobrovolny C. The malaria parasites of the pig-tailed macaque, Macaca nemestrina nemestrina (Linnaeus), in Malaya. Indian Journal of Malariology. 1962;16(3):285-298.

[5]Singh B and Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews. 2013;26(2):165-184. doi: 10.1128/CMR.00079-12.

[6]William T, Menon J, Rajahram G et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerging Infectious Diseases. 2011;17(7):1248. doi: 10.3201/eid1707.101017.

[7]Daneshvar C, Davis TM, Cox-Singh J et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases. 2009;49(6):852-860. doi: 10.1086/605439.

[8]Rajahram GS, Cooper DJ, William T et al. Deaths from Plasmodium knowlesi malaria: case series and systematic review. Clinical Infectious Diseases. 2019;69(10):1703-1711. doi: 10.1093/cid/ciz011.

[9]World Health Organization. Microscopy examination of thick and thin blood films for identification of malaria parasites. 2016. Available from: https://www.who.int/publications/i/item/HTM-GMP-MM-SOP-08.

[10]World Health Organization. Giemsa staining of malaria blood films. 2016. Available from: https://www.who.int/publications/i/item/HTM-GMP-MM-SOP-07a.

[11]Milne L, Kyi M, Chiodini P et al. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. Journal of Clinical Pathology. 1994;47(8):740-742. doi: 10.1136/jcp.47.8.740.

[12]Moody A. Rapid diagnostic tests for malaria parasites. Clinical Microbiology Reviews. 2002;15(1):66-78. doi: 10.1128/CMR.15.1.66-78.2002.

[13]Lee K-S, Cox-Singh J, and Singh B. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malaria Journal. 2009;8(1):1-10. doi: 10.1186/1475-2875-8-73.

[14]Mahittikorn A, Masangkay FR, Kotepui KU et al. Quantification of the misidentification of Plasmodium knowlesi as Plasmodium malariae by microscopy: an analysis of 1569 P. knowlesi cases. Malaria Journal. 2021;20(1):1-11. doi: 10.1186/s12936-021-03714-1.

[15]Singh B, Sung LK, Matusop A et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. The Lancet. 2004;363(9414):1017-1024. doi: 10.1016/S0140-6736(04)15836-4.

[16]Barber BE, William T, Grigg MJ et al. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malaria Journal. 2013;12(1):1-6. doi: 10.1186/1475-2875-12-8.

[17]Arwati H, Yotopranoto S, Rohmah EA et al. Submicroscopic malaria cases play role in local transmission in Trenggalek district, East Java Province, Indonesia. Malaria Journal. 2018;17(1):1-6. doi: 10.1186/s12936-017-2147-7.

[18]Okell LC, Bousema T, Griffin JT et al. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nature Communications. 2012;3(1):1-9. doi: 10.1038/ncomms2241.

[19]Fornace KM, Nuin NA, Betson M et al. Asymptomatic and submicroscopic carriage of Plasmodium knowlesi malaria in household and community members of clinical cases in Sabah, Malaysia. The Journal of Infectious Diseases. 2016;213(5):784-787. doi: 10.1093/infdis/jiv475.

[20]Maltha J, Gillet P, and Jacobs J. Malaria rapid diagnostic tests in endemic settings. Clinical Microbiology and Infection. 2013;19(5):399-407. doi: 10.1111/1469-0691.12151.

[21]van Hellemond JJ, Rutten M, Koelewijn R et al. Human Plasmodium knowlesi infection detected by rapid diagnostic tests for malaria. Emerging Infectious Diseases. 2009;15(9):1478. doi: 10.3201/eid1509.090358.

[22]Bronner U, Divis P, Färnert A et al. Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malaria Journal. 2009;8(1):1-5. doi: 10.1186/1475-2875-8-15.

[23]Link L, Bart A, Verhaar N et al. Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR. Journal of Clinical Microbiology. 2012;50(7):2523-2524. doi: 10.1128/JCM.06859-11.

[24]Ong CW, Lee SY, Koh WH et al. Monkey malaria in humans: a diagnostic dilemma with conflicting laboratory data. The American Journal of Tropical Medicine and Hygiene. 2009;80(6):927-928. Available from: PMID: 19478250

[25]Foster D, Cox-Singh J, Mohamad DS et al. Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi. Malaria Journal. 2014;13(1):1-7. doi: 10.1186/1475-2875-13-60.

[26]Barber BE, William T, Grigg MJ et al. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. Journal of Clinical Microbiology. 2013;51(4):1118-1123. doi: 10.1128/JCM.03285-12.

[27]Yerlikaya S, Campillo A, and Gonzalez IJ. A systematic review: performance of rapid diagnostic tests for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale monoinfections in human blood. The Journal of Infectious Diseases. 2018;218(2):265-276. doi: 10.1093/infdis/jiy150.

[28]Krause RG, Hurdayal R, Choveaux D et al. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: a potential malaria diagnostic target. Experimental Parasitology. 2017;179:7-19. doi: 10.1016/j.exppara.2017.05.007.

[29]Krause RG and Goldring JD. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria. Plos One. 2018;13(3):e0193833. doi: 10.1371/journal.pone.0193833.

[30]Snounou G, Viriyakosol S, Jarra W et al. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Molecular and Biochemical Parasitology. 1993;58(2):283-292. doi: 10.1016/0166-6851(93)90050-8.

[31]Kamau E, Tolbert LS, Kortepeter L et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of plasmodium by amplifying RNA and DNA of the 18S rRNA genes. Journal of Clinical Microbiology. 2011;49(8):2946-2953. doi: 10.1128/JCM.00276-11.

[32]Snounou G, Viriyakosol S, Zhu XP et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology. 1993;61:315-320. doi: 10.1016/0166-6851(93)90077-b.

[33]Imwong M, Tanomsing N, Pukrittayakamee S et al. Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. Journal of Clinical Microbiology. 2009;47(12):4173-4175. doi: 10.1128/JCM.00811-09.

[34]Snounou G and Singh B. Nested PCR analysis of Plasmodium parasites. Malaria Methods and Protocols. 2002;72:189-203. doi: 10.1385/1-59259-271-6:189.

[35]Miguel-Oteo M, Jiram AI, Ta-Tang TH et al. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pacific Journal of Tropical Medicine. 2017;10(3):299-304. Available from: 10.1016/j.apjtm.2017.03.014.

[36]Komaki-Yasuda K, Vincent JP, Nakatsu M et al. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi. Plos one. 2018;13(1):e0191886. doi: 10.1371/journal.pone.0191886.

[37]de Monbrison F, Angei C, Staal A et al. Simultaneous identification of the four human Plasmodium species and quantification of Plasmodium DNA load in human blood by real-time polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2003;97(4):387-390. doi: 10.1016/s0035-9203(03)90065-4.

[38]Babady NE, Sloan LM, Rosenblatt JE et al. Detection of Plasmodium knowlesi by real-time polymerase chain reaction. The American Journal of Tropical Medicine and Hygiene. 2009;81(3):516-518. Available from: PMID: 19706924.

[39]Schneider R, Lamien-Meda A, Auer H et al. Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites. Plos One. 2021;16(6):e0252887. doi: 10.1371/journal.pone.0252887.

[40]Divis PC, Shokoples SE, Singh B et al. A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi. Malaria Journal. 2010;9(1):1-7. doi: 10.1186/1475-2875-9-344.

[41]Rougemont M, Van Saanen M, Sahli R et al. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. Journal of Clinical Microbiology. 2004;42(12):5636-5643. doi: 10.1128/JCM.42.12.5636-5643.2004.

[42]Calderaro A, Piccolo G, Gorrini C et al. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi. Malaria Journal. 2013;12(1):1-6. doi: 10.1186/1475-2875-12-321.

[43]Lamien-Meda A, Fuehrer H-P, Leitsch D et al. A powerful qPCR-high resolution melting assay with taqman probe in Plasmodium species differentiation. Malaria Journal. 2021;20(1):1-8. doi: 10.1186/s12936-021-03662-w.

[44]Wittwer CT, Herrmann MG, Moss AA et al. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22(1):130-138. doi: 10.2144/97221bi01.

[45]Oddoux O, Debourgogne A, Kantele A et al. Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction. European journal of clinical microbiology & infectious diseases. 2011;30(4):597-601. doi: 10.1007/s10096-010-1126-5.

[46]Reller ME, Chen WH, Dalton J et al. Multiplex 5′ nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi. Journal of Clinical Microbiology. 2013;51(9):2931-2938. doi: 10.1128/JCM.00958-13.

[47]Frickmann H, Wegner C, Ruben S et al. Evaluation of the multiplex real-time PCR assays RealStar malaria S&T PCR kit 1.0 and FTD malaria differentiation for the differentiation of Plasmodium species in clinical samples. Travel Medicine and Infectious Disease. 2019;31:101442. doi: 10.1016/j.tmaid.2019.06.013.

[48]Ramírez AM, Tang THT, Suárez ML et al. Assessment of Commercial Real-Time PCR Assays for Detection of Malaria Infection in a Non-Endemic Setting. The American Journal of Tropical Medicine and Hygiene. 2021;1(aop). doi: 10.4269/ajtmh.21-0406.

[49]Nuin NA, Tan AF, Lew YL et al. Comparative evaluation of two commercial real-time PCR kits (QuantiFast™ and abTES™) for the detection of Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia. Malaria Journal. 2020;19(1):1-11. doi: 10.1186/s12936-020-03379-2.

[50]van Bergen K, Stuitje T, Akkers R et al. Evaluation of a novel real-time PCR assay for the detection, identification and quantification of Plasmodium species causing malaria in humans. Malaria Journal. 2021;20(1):1-12. doi: 10.1186/s12936-021-03842-8.

[51]Van Hong N, Van den Eede P, Van Overmeir C et al. A modified semi-nested multiplex malaria PCR (SnM-PCR) for the identification of the five human Plasmodium species occurring in Southeast Asia. The American Journal of Tropical Medicine and Hygiene. 2013;89(4):721. doi: 10.4269/ajtmh.13-0027.

[52]Rubio J, Post R, van Leeuwen WD et al. Alternative polymerase chain reaction method to identify Plasmodium species in human blood samples: the semi-nested multiplex malaria PCR (SnM-PCR). Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002;96:S199-S204. doi: 10.1016/s0035-9203(02)90077-5.

[53]Lubis IN, Wijaya H, Lubis M et al. Contribution of Plasmodium knowlesi to multispecies human malaria infections in North Sumatera, Indonesia. The Journal of Infectious Diseases. 2017;215(7):1148-1155. doi: 10.1093/infdis/jix091.

[54]Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry. 2011;83(22):8604-8610. doi: 10.1021/ac202028g.

[55]Mahendran P, Liew JWK, Amir A et al. Droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malaria Journal. 2020;19(1):1-10. doi: 10.1186/s12936-020-03314-5.

[56]Notomi T, Okayama H, Masubuchi H et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000;28(12):e63-e63. doi: 10.1093/nar/28.12.e63.

[57]Mori Y, Nagamine K, Tomita N et al. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications. 2001;289(1):150-154. doi: 10.1006/bbrc.2001.5921.

[58]Nagamine K, Hase T, and Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes. 2002;16(3):223-229. doi: 10.1006/mcpr.2002.0415.

[59]Iseki H, Kawai S, Takahashi N et al. Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi. Journal of Clinical Microbiology. 2010;48(7):2509-2514. doi: 10.1128/JCM.00331-10.

[60]Lau Y-L, Fong M-Y, Mahmud R et al. Specific, sensitive and rapid detection of human Plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples. Malaria Journal. 2011;10(1):1-6. doi: 10.1186/1475-2875-10-197.

[61]Lau Y-L, Lai M-Y, Fong M-Y et al. Loop-mediated isothermal amplification assay for identification of five human Plasmodium species in Malaysia. The American Journal of Tropical Medicine and Hygiene. 2016;94(2):336. doi: 10.4269/ajtmh.15-0569.

[62]Britton S, Cheng Q, Grigg MJ et al. A sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay for the detection of Plasmodium knowlesi. The American Journal of Tropical Medicine and Hygiene. 2016;95(1):120. doi: 10.1371/journal.pntd.0004443.

[63]Mallepaddi PC, Lai M-Y, Podha S et al. Development of loop-mediated isothermal amplification–based lateral flow device method for the detection of malaria. The American journal of tropical medicine and hygiene. 2018;99(3):704. doi: 10.4269/ajtmh.18-0177.

[64]Otten M, Cibulskis RE, Williams R et al. World Malaria Report 2009. 2009. World Health Organization. Available from: https://www.who.int/publications/i/item/9789241563901.

[65]Kersting S, Rausch V, Bier FF et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal. 2014;13(1):1-9. doi: 10.1186/1475-2875-13-99.

[66]Lai M-Y, Ooi C-H, and Lau Y-L. Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay. The American Journal of Tropical Medicine and Hygiene. 2017;97(5):1597. doi: 10.4269/ajtmh.17-0427.

[67]Lai MY and Lau YL. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I. Acta Tropica. 2020;208:105511. doi: 10.1016/j.actatropica.2020.105511.

[68]Piepenburg O, Williams CH, Stemple DL et al. DNA detection using recombination proteins. PLoS Biology. 2006;4(7):e204. doi: 10.1371/journal.pbio.0040204.

[69]Lai M-Y, Ooi C-H, and Lau Y-L. Recombinase polymerase amplification combined with a lateral flow strip for the detection of Plasmodium knowlesi. The American Journal of Tropical Medicine and Hygiene. 2018;98(3):700. doi: 10.4269/ajtmh.17-0738.

[70]Kotepui M, Kotepui KU, Milanez GD et al. Prevalence of severe Plasmodium knowlesi infection and risk factors related to severe complications compared with non-severe P. knowlesi and severe P. falciparum malaria: A systematic review and meta-analysis. Infectious Diseases of Poverty. 2020;9(1):1-14. doi: 10.1186/s40249-020-00727-x.

[71]Rizvi I, Tripathi DK, Chughtai AM et al. Complications associated with Plasmodium vivax malaria: a retrospective study from a tertiary care hospital based in Western Uttar Pradesh, India. Annals of African Medicine. 2013;12(3):155. doi: 10.4103/1596-3519.117624.

[72]Satpathy S, Mohanty N, Nanda P et al. Severe falciparum malaria. The Indian Journal of Pediatrics. 2004;71(2):133-135.

[73]Zen L, Lai MY, and Lau YL. Elimination of contamination in loop-mediated isothermal amplification assay for detection of human malaria. Tropical Biomedicine. 2020;37(4):1124-1128. doi: 10.47665/tb.37.4.1124.

[74]Lee RA, De Puig H, Nguyen PQ et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proceedings of the National Academy of Sciences. 2020;117(41):25722-25731. doi: 10.1073/pnas.2010196117.

[75]Cunningham CH, Hennelly CM, Lin JT et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine. 2021;68:103415. doi: 10.1016/j.ebiom.2021.103415.

[76]McConnell EM, Holahan MR, and DeRosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Therapeutics. 2014;24(6):388-404. doi: 10.1089/nat.2014.0492.

[77]Yüce M, Ullah N, and Budak H. Trends in aptamer selection methods and applications. Analyst. 2015;140(16):5379-5399. doi: 10.1039/c5an00954e.

[78]Cheung Y-W, Dirkzwager RM, Wong W-C et al. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie. 2018;145:131-136. doi: 10.1016/j.biochi.2017.10.017.

[79]Frith K-A, Fogel R, Goldring JD et al. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malaria Journal. 2018;17(1):1-16. doi: 10.1186/s12936-018-2336-z.

[80]Oliveira AD, Prats C, Espasa M et al. The malaria system microApp: a new, mobile device-based tool for malaria diagnosis. JMIR Research Protocols. 2017;6(4):e6758. doi: 10.2196/resprot.6758.

[81]Yang F, Poostchi M, Yu H et al. Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE Journal of Biomedical and Health Informatics. 2019;24(5):1427-1438. doi: 10.1109/JBHI.2019.2939121.

How to Cite

Tan, J. H., and Y. L. Lau. “Diagnostic Methods for Plasmodium Knowlesi: Performance, Limitations and Recommendations”. Diagnostics and Therapeutics, vol. 1, no. 1, June 2022, pp. 13-24, doi:10.55976/dt.1202216411-22.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.