Jia Hui Tan 1 , Yee Ling Lau 2 *
Correspondence: lauyeeling@um.edu.my
DOI: https://doi.org/10.55976/dt.1202216411-22
Show More
[1]World Health Organization. World malaria report 2021. 2021.
[2]Eyles D, Laing A, Warren M et al. Malaria parasites of the Malayan leaf monkeys of the genus Presbytis. Medical Journal of Malaya. 1962;17:85-86.
[3]Knowles R and Gupta ASBD. A study of monkey-malaria, and its experimental transmission to man. The Indian Medical Gazette. 1932;67(6):301. Available from: PMID: 29010910.
[4]Eyles DE, Laing A, and Dobrovolny C. The malaria parasites of the pig-tailed macaque, Macaca nemestrina nemestrina (Linnaeus), in Malaya. Indian Journal of Malariology. 1962;16(3):285-298.
[5]Singh B and Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews. 2013;26(2):165-184. doi: 10.1128/CMR.00079-12.
[6]William T, Menon J, Rajahram G et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerging Infectious Diseases. 2011;17(7):1248. doi: 10.3201/eid1707.101017.
[7]Daneshvar C, Davis TM, Cox-Singh J et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases. 2009;49(6):852-860. doi: 10.1086/605439.
[8]Rajahram GS, Cooper DJ, William T et al. Deaths from Plasmodium knowlesi malaria: case series and systematic review. Clinical Infectious Diseases. 2019;69(10):1703-1711. doi: 10.1093/cid/ciz011.
[9]World Health Organization. Microscopy examination of thick and thin blood films for identification of malaria parasites. 2016. Available from: https://www.who.int/publications/i/item/HTM-GMP-MM-SOP-08.
[10]World Health Organization. Giemsa staining of malaria blood films. 2016. Available from: https://www.who.int/publications/i/item/HTM-GMP-MM-SOP-07a.
[11]Milne L, Kyi M, Chiodini P et al. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. Journal of Clinical Pathology. 1994;47(8):740-742. doi: 10.1136/jcp.47.8.740.
[12]Moody A. Rapid diagnostic tests for malaria parasites. Clinical Microbiology Reviews. 2002;15(1):66-78. doi: 10.1128/CMR.15.1.66-78.2002.
[13]Lee K-S, Cox-Singh J, and Singh B. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malaria Journal. 2009;8(1):1-10. doi: 10.1186/1475-2875-8-73.
[14]Mahittikorn A, Masangkay FR, Kotepui KU et al. Quantification of the misidentification of Plasmodium knowlesi as Plasmodium malariae by microscopy: an analysis of 1569 P. knowlesi cases. Malaria Journal. 2021;20(1):1-11. doi: 10.1186/s12936-021-03714-1.
[15]Singh B, Sung LK, Matusop A et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. The Lancet. 2004;363(9414):1017-1024. doi: 10.1016/S0140-6736(04)15836-4.
[16]Barber BE, William T, Grigg MJ et al. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malaria Journal. 2013;12(1):1-6. doi: 10.1186/1475-2875-12-8.
[17]Arwati H, Yotopranoto S, Rohmah EA et al. Submicroscopic malaria cases play role in local transmission in Trenggalek district, East Java Province, Indonesia. Malaria Journal. 2018;17(1):1-6. doi: 10.1186/s12936-017-2147-7.
[18]Okell LC, Bousema T, Griffin JT et al. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nature Communications. 2012;3(1):1-9. doi: 10.1038/ncomms2241.
[19]Fornace KM, Nuin NA, Betson M et al. Asymptomatic and submicroscopic carriage of Plasmodium knowlesi malaria in household and community members of clinical cases in Sabah, Malaysia. The Journal of Infectious Diseases. 2016;213(5):784-787. doi: 10.1093/infdis/jiv475.
[20]Maltha J, Gillet P, and Jacobs J. Malaria rapid diagnostic tests in endemic settings. Clinical Microbiology and Infection. 2013;19(5):399-407. doi: 10.1111/1469-0691.12151.
[21]van Hellemond JJ, Rutten M, Koelewijn R et al. Human Plasmodium knowlesi infection detected by rapid diagnostic tests for malaria. Emerging Infectious Diseases. 2009;15(9):1478. doi: 10.3201/eid1509.090358.
[22]Bronner U, Divis P, Färnert A et al. Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malaria Journal. 2009;8(1):1-5. doi: 10.1186/1475-2875-8-15.
[23]Link L, Bart A, Verhaar N et al. Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR. Journal of Clinical Microbiology. 2012;50(7):2523-2524. doi: 10.1128/JCM.06859-11.
[24]Ong CW, Lee SY, Koh WH et al. Monkey malaria in humans: a diagnostic dilemma with conflicting laboratory data. The American Journal of Tropical Medicine and Hygiene. 2009;80(6):927-928. Available from: PMID: 19478250
[25]Foster D, Cox-Singh J, Mohamad DS et al. Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi. Malaria Journal. 2014;13(1):1-7. doi: 10.1186/1475-2875-13-60.
[26]Barber BE, William T, Grigg MJ et al. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. Journal of Clinical Microbiology. 2013;51(4):1118-1123. doi: 10.1128/JCM.03285-12.
[27]Yerlikaya S, Campillo A, and Gonzalez IJ. A systematic review: performance of rapid diagnostic tests for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale monoinfections in human blood. The Journal of Infectious Diseases. 2018;218(2):265-276. doi: 10.1093/infdis/jiy150.
[28]Krause RG, Hurdayal R, Choveaux D et al. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: a potential malaria diagnostic target. Experimental Parasitology. 2017;179:7-19. doi: 10.1016/j.exppara.2017.05.007.
[29]Krause RG and Goldring JD. Phosphoethanolamine-N-methyltransferase is a potential biomarker for the diagnosis of P. knowlesi and P. falciparum malaria. Plos One. 2018;13(3):e0193833. doi: 10.1371/journal.pone.0193833.
[30]Snounou G, Viriyakosol S, Jarra W et al. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Molecular and Biochemical Parasitology. 1993;58(2):283-292. doi: 10.1016/0166-6851(93)90050-8.
[31]Kamau E, Tolbert LS, Kortepeter L et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of plasmodium by amplifying RNA and DNA of the 18S rRNA genes. Journal of Clinical Microbiology. 2011;49(8):2946-2953. doi: 10.1128/JCM.00276-11.
[32]Snounou G, Viriyakosol S, Zhu XP et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology. 1993;61:315-320. doi: 10.1016/0166-6851(93)90077-b.
[33]Imwong M, Tanomsing N, Pukrittayakamee S et al. Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. Journal of Clinical Microbiology. 2009;47(12):4173-4175. doi: 10.1128/JCM.00811-09.
[34]Snounou G and Singh B. Nested PCR analysis of Plasmodium parasites. Malaria Methods and Protocols. 2002;72:189-203. doi: 10.1385/1-59259-271-6:189.
[35]Miguel-Oteo M, Jiram AI, Ta-Tang TH et al. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pacific Journal of Tropical Medicine. 2017;10(3):299-304. Available from: 10.1016/j.apjtm.2017.03.014.
[36]Komaki-Yasuda K, Vincent JP, Nakatsu M et al. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi. Plos one. 2018;13(1):e0191886. doi: 10.1371/journal.pone.0191886.
[37]de Monbrison F, Angei C, Staal A et al. Simultaneous identification of the four human Plasmodium species and quantification of Plasmodium DNA load in human blood by real-time polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2003;97(4):387-390. doi: 10.1016/s0035-9203(03)90065-4.
[38]Babady NE, Sloan LM, Rosenblatt JE et al. Detection of Plasmodium knowlesi by real-time polymerase chain reaction. The American Journal of Tropical Medicine and Hygiene. 2009;81(3):516-518. Available from: PMID: 19706924.
[39]Schneider R, Lamien-Meda A, Auer H et al. Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites. Plos One. 2021;16(6):e0252887. doi: 10.1371/journal.pone.0252887.
[40]Divis PC, Shokoples SE, Singh B et al. A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi. Malaria Journal. 2010;9(1):1-7. doi: 10.1186/1475-2875-9-344.
[41]Rougemont M, Van Saanen M, Sahli R et al. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. Journal of Clinical Microbiology. 2004;42(12):5636-5643. doi: 10.1128/JCM.42.12.5636-5643.2004.
[42]Calderaro A, Piccolo G, Gorrini C et al. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi. Malaria Journal. 2013;12(1):1-6. doi: 10.1186/1475-2875-12-321.
[43]Lamien-Meda A, Fuehrer H-P, Leitsch D et al. A powerful qPCR-high resolution melting assay with taqman probe in Plasmodium species differentiation. Malaria Journal. 2021;20(1):1-8. doi: 10.1186/s12936-021-03662-w.
[44]Wittwer CT, Herrmann MG, Moss AA et al. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22(1):130-138. doi: 10.2144/97221bi01.
[45]Oddoux O, Debourgogne A, Kantele A et al. Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction. European journal of clinical microbiology & infectious diseases. 2011;30(4):597-601. doi: 10.1007/s10096-010-1126-5.
[46]Reller ME, Chen WH, Dalton J et al. Multiplex 5′ nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi. Journal of Clinical Microbiology. 2013;51(9):2931-2938. doi: 10.1128/JCM.00958-13.
[47]Frickmann H, Wegner C, Ruben S et al. Evaluation of the multiplex real-time PCR assays RealStar malaria S&T PCR kit 1.0 and FTD malaria differentiation for the differentiation of Plasmodium species in clinical samples. Travel Medicine and Infectious Disease. 2019;31:101442. doi: 10.1016/j.tmaid.2019.06.013.
[48]Ramírez AM, Tang THT, Suárez ML et al. Assessment of Commercial Real-Time PCR Assays for Detection of Malaria Infection in a Non-Endemic Setting. The American Journal of Tropical Medicine and Hygiene. 2021;1(aop). doi: 10.4269/ajtmh.21-0406.
[49]Nuin NA, Tan AF, Lew YL et al. Comparative evaluation of two commercial real-time PCR kits (QuantiFast™ and abTES™) for the detection of Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia. Malaria Journal. 2020;19(1):1-11. doi: 10.1186/s12936-020-03379-2.
[50]van Bergen K, Stuitje T, Akkers R et al. Evaluation of a novel real-time PCR assay for the detection, identification and quantification of Plasmodium species causing malaria in humans. Malaria Journal. 2021;20(1):1-12. doi: 10.1186/s12936-021-03842-8.
[51]Van Hong N, Van den Eede P, Van Overmeir C et al. A modified semi-nested multiplex malaria PCR (SnM-PCR) for the identification of the five human Plasmodium species occurring in Southeast Asia. The American Journal of Tropical Medicine and Hygiene. 2013;89(4):721. doi: 10.4269/ajtmh.13-0027.
[52]Rubio J, Post R, van Leeuwen WD et al. Alternative polymerase chain reaction method to identify Plasmodium species in human blood samples: the semi-nested multiplex malaria PCR (SnM-PCR). Transactions of the Royal Society of Tropical Medicine and Hygiene. 2002;96:S199-S204. doi: 10.1016/s0035-9203(02)90077-5.
[53]Lubis IN, Wijaya H, Lubis M et al. Contribution of Plasmodium knowlesi to multispecies human malaria infections in North Sumatera, Indonesia. The Journal of Infectious Diseases. 2017;215(7):1148-1155. doi: 10.1093/infdis/jix091.
[54]Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry. 2011;83(22):8604-8610. doi: 10.1021/ac202028g.
[55]Mahendran P, Liew JWK, Amir A et al. Droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malaria Journal. 2020;19(1):1-10. doi: 10.1186/s12936-020-03314-5.
[56]Notomi T, Okayama H, Masubuchi H et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000;28(12):e63-e63. doi: 10.1093/nar/28.12.e63.
[57]Mori Y, Nagamine K, Tomita N et al. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications. 2001;289(1):150-154. doi: 10.1006/bbrc.2001.5921.
[58]Nagamine K, Hase T, and Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes. 2002;16(3):223-229. doi: 10.1006/mcpr.2002.0415.
[59]Iseki H, Kawai S, Takahashi N et al. Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi. Journal of Clinical Microbiology. 2010;48(7):2509-2514. doi: 10.1128/JCM.00331-10.
[60]Lau Y-L, Fong M-Y, Mahmud R et al. Specific, sensitive and rapid detection of human Plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples. Malaria Journal. 2011;10(1):1-6. doi: 10.1186/1475-2875-10-197.
[61]Lau Y-L, Lai M-Y, Fong M-Y et al. Loop-mediated isothermal amplification assay for identification of five human Plasmodium species in Malaysia. The American Journal of Tropical Medicine and Hygiene. 2016;94(2):336. doi: 10.4269/ajtmh.15-0569.
[62]Britton S, Cheng Q, Grigg MJ et al. A sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay for the detection of Plasmodium knowlesi. The American Journal of Tropical Medicine and Hygiene. 2016;95(1):120. doi: 10.1371/journal.pntd.0004443.
[63]Mallepaddi PC, Lai M-Y, Podha S et al. Development of loop-mediated isothermal amplification–based lateral flow device method for the detection of malaria. The American journal of tropical medicine and hygiene. 2018;99(3):704. doi: 10.4269/ajtmh.18-0177.
[64]Otten M, Cibulskis RE, Williams R et al. World Malaria Report 2009. 2009. World Health Organization. Available from: https://www.who.int/publications/i/item/9789241563901.
[65]Kersting S, Rausch V, Bier FF et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal. 2014;13(1):1-9. doi: 10.1186/1475-2875-13-99.
[66]Lai M-Y, Ooi C-H, and Lau Y-L. Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay. The American Journal of Tropical Medicine and Hygiene. 2017;97(5):1597. doi: 10.4269/ajtmh.17-0427.
[67]Lai MY and Lau YL. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I. Acta Tropica. 2020;208:105511. doi: 10.1016/j.actatropica.2020.105511.
[68]Piepenburg O, Williams CH, Stemple DL et al. DNA detection using recombination proteins. PLoS Biology. 2006;4(7):e204. doi: 10.1371/journal.pbio.0040204.
[69]Lai M-Y, Ooi C-H, and Lau Y-L. Recombinase polymerase amplification combined with a lateral flow strip for the detection of Plasmodium knowlesi. The American Journal of Tropical Medicine and Hygiene. 2018;98(3):700. doi: 10.4269/ajtmh.17-0738.
[70]Kotepui M, Kotepui KU, Milanez GD et al. Prevalence of severe Plasmodium knowlesi infection and risk factors related to severe complications compared with non-severe P. knowlesi and severe P. falciparum malaria: A systematic review and meta-analysis. Infectious Diseases of Poverty. 2020;9(1):1-14. doi: 10.1186/s40249-020-00727-x.
[71]Rizvi I, Tripathi DK, Chughtai AM et al. Complications associated with Plasmodium vivax malaria: a retrospective study from a tertiary care hospital based in Western Uttar Pradesh, India. Annals of African Medicine. 2013;12(3):155. doi: 10.4103/1596-3519.117624.
[72]Satpathy S, Mohanty N, Nanda P et al. Severe falciparum malaria. The Indian Journal of Pediatrics. 2004;71(2):133-135.
[73]Zen L, Lai MY, and Lau YL. Elimination of contamination in loop-mediated isothermal amplification assay for detection of human malaria. Tropical Biomedicine. 2020;37(4):1124-1128. doi: 10.47665/tb.37.4.1124.
[74]Lee RA, De Puig H, Nguyen PQ et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proceedings of the National Academy of Sciences. 2020;117(41):25722-25731. doi: 10.1073/pnas.2010196117.
[75]Cunningham CH, Hennelly CM, Lin JT et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine. 2021;68:103415. doi: 10.1016/j.ebiom.2021.103415.
[76]McConnell EM, Holahan MR, and DeRosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Therapeutics. 2014;24(6):388-404. doi: 10.1089/nat.2014.0492.
[77]Yüce M, Ullah N, and Budak H. Trends in aptamer selection methods and applications. Analyst. 2015;140(16):5379-5399. doi: 10.1039/c5an00954e.
[78]Cheung Y-W, Dirkzwager RM, Wong W-C et al. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie. 2018;145:131-136. doi: 10.1016/j.biochi.2017.10.017.
[79]Frith K-A, Fogel R, Goldring JD et al. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malaria Journal. 2018;17(1):1-16. doi: 10.1186/s12936-018-2336-z.
[80]Oliveira AD, Prats C, Espasa M et al. The malaria system microApp: a new, mobile device-based tool for malaria diagnosis. JMIR Research Protocols. 2017;6(4):e6758. doi: 10.2196/resprot.6758.
[81]Yang F, Poostchi M, Yu H et al. Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE Journal of Biomedical and Health Informatics. 2019;24(5):1427-1438. doi: 10.1109/JBHI.2019.2939121.
Copyright © 2022 Jia Hui Tan, Yee Ling Lau
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn