Correspondence: fcczhoun@zzu.edu.cn
DOI: https://doi.org/10.55976/dt.120221606-12
Show More
[1]Breslin JW, Yang Y, Scallan JP, et al. Lymphatic Vessel Network Structure and Physiology. Comprehensive Physiology. 2018;9(1):207-299. Available from: doi: 10.1002/cphy.c180015
[2]Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560(7717):185-191. Available from: doi: 10.1038/s41586-018-0368-8.
[3]Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein. Translational neurodegeneration. 2019;8:7. Available from: doi: 10.1186/s40035-019-0147-y.
[4]Yanev P, Poinsatte K, Hominick D, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. Journal of Cerebral Blood Flow & Metabolism. 2020;40(2):263-275. Available from: doi: 10.1177/0271678X18822921.
[5]Bolte AC, Dutta AB, Hurt ME, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nature Communications. 2020;11(1):4524. Available from: doi: 10.1038/s41467-020-18113-4.
[6]van Zwam M, Huizinga R, Heijmans N, et al. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. Journal of pathology and translational medicine. 2009;217(4):543-51. Available from: doi: 10.1002/path.2476.
[7]Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Experimental Medicine. 2007;204(10):2349-62. Available from: doi: 10.1084/jem.20062596.
[8]Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21(st) Century: Novel Functional Roles in Homeostasis and Disease. Cell. 2020;182(2):270-296. Available from: doi: 10.1016/j.cell.2020.06.039.
[9]Muthuchamy M, Zawieja D. Molecular regulation of lymphatic contractility. Annals of the New York Academy of Sciences. 2008;1131:89-99. Available from: doi: 10.1196/annals.1413.008.
[10]Alitalo K. The lymphatic vasculature in disease. Nature Medicine. 2011;17(11):1371-80. Available from: doi: 10.1038/nm.2545.
[11]Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicologic Pathology. 2006;34(5):409-24. Available from: doi: 10.1080/01926230600867727.
[12]Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Traditional Medicine. 2012;4(147):147ra111. Available from: doi: 10.1126/scitranslmed.3003748.
[13]Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. Journal of neuroscience and rehabilitation. 2013;33(46):18190-9. Available from: doi: 10.1523/JNEUROSCI.1592-13.2013.
[14]Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications. 2018;9(1):4878. Available from: doi: 10.1038/s41467-018-07318-3.
[15]Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiological Reviews. 2013;93(4):1847-92. Available from: doi: 10.1152/physrev.00004.2013.
[16]Klarica M, Radoš M, Orešković D. The Movement of Cerebrospinal Fluid and Its Relationship with Substances Behavior in Cerebrospinal and Interstitial Fluid. Neuroscience. 2019;414:28-48. Available from: doi: 10.1016/j.neuroscience.2019.06.032.
[17]Cserr HF. Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Annals of the New York Academy of Sciences. 1988;529:9-20. Available from: doi: 10.1111/j.1749-6632.1988.tb51415.x.
[18]Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochemistry International. 2004;45(4):545-52. Available from: doi: 10.1016/j.neuint.2003.11.006.
[19]Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-41. Available from: doi: 10.1038/nature14432.
[20]Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. The Journal of experimental medicine. 2015;212(7):991-999. Available from: doi: 10.1084/jem.20142290.
[21]Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018;21(10):1380-1391. Available from: doi: 10.1038/s41593-018-0227-9.
[22]Logsdon AF, Lucke-Wold BP, Turner RC, et al. A mouse Model of Focal Vascular Injury Induces Astrocyte Reactivity, Tau Oligomers, and Aberrant Behavior. Archives of neuroscience. 2017;4(2):e44254. Available from: doi: 10.5812/archneurosci.44254.
[23]Small C, Dagra A, Martinez M, et al. Examining the role of astrogliosis and JNK signaling in post-traumatic epilepsy. Egyptian Journal of Neurosurgery. 2022;37:1. Available from: doi: 10.1186/s41984-021-00141-x.
[24]Chen J, He J, Ni R, et al. Cerebrovascular Injuries Induce Lymphatic Invasion into Brain Parenchyma to Guide Vascular Regeneration in Zebrafish. Developmental Cell. 2019;49(5):697-710.e5. Available from: doi: 10.1016/j.devcel.2019.03.022.
[25]Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-7. Available from: doi: 10.1126/science.1241224.
[26]Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Science Advances. 2019;5(2):eaav5447. Available from: doi: 10.1126/sciadv.aav5447.
[27]Ma Q, Decker Y, Müller A, et al. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. Journal of Experimental Medicine. 2019;216(11):2492-2502. Available from: doi: 10.1084/jem.20190351.
[28]Patel TK, Habimana-Griffin L, Gao X, et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Molecular Neurodegeneration. 2019;14(1):11. Available from: doi: 10.1186/s13024-019-0312-x.
[29]Kasi A, Liu C, Faiq MA, et al. Glymphatic imaging and modulation of the optic nerve. Neural Regeneration Reserach. 2022;17(5):937-947. Available from: doi: 10.4103/1673-5374.324829.
[30]Damasceno R, Barbosa J, Cortez L, et al. Orbital lymphatic vessels: immunohistochemical detection in the lacrimal gland, optic nerve, fat tissue, and extrinsic oculomotor muscles. Arquivos Brasileiros de Oftalmologia. 2021;84(3):209-213. Available from: doi: 10.5935/0004-2749.20210035.
[31]Trost A, Bruckner D, Kaser-Eichberger A, et al. Lymphatic and vascular markers in an optic nerve crush model in rat. Experimental Eye Research. 2017;159:30-39. Available from: doi: 10.1016/j.exer.2017.03.003.
[32]Trost A, Runge C, Bruckner D, et al. Lymphatic markers in the human optic nerve. Experimental Eye Research. 2018;173:113-120. Available from: doi: 10.1016/j.exer.2018.05.001.
[33]D'Andrea V, Panarese A, Taurone S, et al. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers. Lymphatic Research and Biology. 2015;13(3):170-5. Available from: doi: 10.1089/lrb.2015.0018.
[34]Mignini F, Sabbatini M, Coppola L, Cavallotti C. Analysis of nerve supply pattern in human lymphatic vessels of young and old men. Lymphatic Research and Biology. 2012;10(4):189-97. Available from: doi: 10.1089/lrb.2012.0013.
[35]Schwartz M, Sela BA, Eshhar N. Antibodies to gangliosides and myelin autoantigens are produced in mice following sciatic nerve injury. Journal of Neurochemistry. 1982;38(5):1192-1195. Available from: doi: 10.1111/j.1471-4159.1982.tb07890.x.
[36]Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of Immunology. 1985;135(2 Suppl):755s-765s. Available from: PMID: 2861231.
[37]Felten DL, Felten SY, Bellinger DL, et al. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunological Reviews. 1987;100:225-60. Available from: doi: 10.1111/j.1600-065x.1987.tb00534.x.
[38]Sloan EK, Capitanio JP, Tarara RP, et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. The Journal of Neuroscience. 2007;27(33):8857-65. Available from: doi: 10.1523/JNEUROSCI.1247-07.2007.
[39]Chen CS, Weber J, Holtkamp SJ, et al. Loss of direct adrenergic innervation after peripheral nerve injury causes lymph node expansion through IFN-γ. Journal of Experimental Medicine. 2021;218(8):e20202377. Available from: doi: 10.1084/jem.20202377.
[40]Caillaud M, Richard L, Vallat JM, et al. Peripheral nerve regeneration and intraneural revascularization. Neural Regeneration Research. 2019;14(1):24-33. Available from: doi: 10.4103/1673-5374.243699.
[41]Wong BW. Lymphatic vessels in solid organ transplantation and immunobiology. American journal of transplantation. 2020;20(8):1992-2000. Available from: doi: 10.1111/ajt.15806.
[42]Kataru RP, Lee YG, Koh GY. Interactions of immune cells and lymphatic vessels. Advances in anatomy, embryology, and cell biology. 2014;214:107-118. Available from: doi: 10.1007/978-3-7091-1646-3_9.
[43]Siqueira MB, Klauss M, Blanco M. Neurotrauma and Inflammation: CNS and PNS Responses. Mediators of inflammation. 2015;2015:1-14. Available from: doi: 10.1155/2015/251204.
[44]Bombeiro AL, Lima B, Bonfanti AP, et al. Improved mouse sciatic nerve regeneration following lymphocyte cell therapy. Molecular Immunology. 2020;121:81-91. Available from: doi: 10.1016/j.molimm.2020.03.003.
[45]Willison H, Stoll G, Toyka KV, et al. Autoimmunity and inflammation in the peripheral nervous system. Trends in neurosciences. 2002;25(3):127-9. Available from: doi: 10.1016/s0166-2236(00)02120-2.
[46]Stüve O, Zettl U. Neuroinflammation of the central and peripheral nervous system: an update. Clinical and Experimental Immunology. 2014;175(3):333-5. Available from: doi: 10.1111/cei.12260.
[47]Meng FW, Jing XN, Song GH, et al. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. Journal of Anatomy. 2020;237(5):933-940. Available from: doi: 10.1111/joa.13247.
[48]Furukawa M, Shimoda H, Kajiwara T, et al. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomedical Research. 2008;29(6):289-296. Available from: doi: 10.2220/biomedres.29.289.
[49]Volpi N, Guarna M, Lorenzoni P, et al. Characterization of lymphatic vessels in human peripheral neuropathies. Italian Journal of Anatomy and Embryology. 2013;117(2):12. Available from: https://oajournals.fupress.net/index.php/ijae/article/view/4198.
Copyright © 2022 Senrui Li, Nan Zhou
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn