Make Knowledge Veritable, Visible and Valuable.

Inulae Flos is a potential herbal medicine to treat glioma: a study based on gene expression profile analysis, network pharmacology and molecular docking

Qian Ying 1 , Yi Fang 2 * #

  • 1. Department of Oncology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University & Tumor Prevention and Treatment Center of three Gorges University & Cancer Research Institute of three Gorges University, Yichang 443003, China
  • 2. Department of Oncology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University & Tumor Prevention and Treatment Center of three Gorges University & Cancer Research Institute of three Gorges University, Yichang 443003, China

# Qian Ying, and Yi Fang contributed equally to this work

*Correspondence: 3288785378@qq.com

DOI: https://doi.org/10.55976/dt.32024132232-52

  • Received

    21 May 2024

  • Revised

    16 October 2024

  • Accepted

    30 November 2024

  • Published

    12 November 2024

Inulae Flos Glioma Network pharmacology Molecular docking

Show More

Abstract


References
V

[1]Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis. 2023 Apr 3;14(4):235. doi: 10.1038/s41419-023-05753-9.

[2]Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022 Feb 8;21(1):39. doi: 10.1186/s12943-022-01513-z.

[3]Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1-v100. doi: 10.1093/neuonc/noac202.

[4]Mitchell D, Shireman JM, Dey M. Surgical Neuro-Oncology: Management of Glioma. Neurol Clin. 2022 May;40(2):437-453. doi: 10.1016/j.ncl.2021.11.003.

[5]Huang Q, Pan X, Zhu W, Zhao W, Xu H, Hu K. Natural Products for the Immunotherapy of Glioma. Nutrients. 2023 Jun 19;15(12):2795. doi: 10.3390/nu15122795.

[6]Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019 Sep;20(9):1100-1109. doi: 10.1038/s41590-019-0433-y.

[7]Park SH, Lee DH, Kim MJ, Ahn J, Jang YJ, Ha TY, Jung CH. Inula Japonica Thunb. Flower Ethanol Extract Improves Obesity and Exercise Endurance in Mice Fed A High-Fat Diet. Nutrients. 2018 Dec 20;11(1):17. doi: 10.3390/nu11010017.

[8]Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, Kim YH, Kang SM, Lee IJ. Secondary metabolites from Inula britannica L. and their biological activities. Molecules. 2010 Mar 10;15(3):1562-77. doi: 10.3390/molecules15031562.

[9]Lu Y, Li X, Park YN, Kwon O, Piao D, Chang YC, Kim CH, Lee E, Son JK, Chang HW. Britanin Suppresses IgE/Ag-Induced Mast Cell Activation by Inhibiting the Syk Pathway. Biomol Ther (Seoul). 2014 May;22(3):193-9.doi: 10.4062/biomolther.2014.038.

[10]Kim YS, Lee JH, Song J, Kim H. Gastroprotective Effects of Inulae Flos on HCl/Ethanol-Induced Gastric Ulcers in Rats. Molecules. 2020 Nov 29;25(23):5623. doi: 10.3390/molecules25235623.

[11]Lu Y, Li Y, Jin M, Yang JH, Li X, Chao GH, Park HH, Park YN, Son JK, Lee E, Chang HW. Inula japonica extract inhibits mast cell-mediated allergic reaction and mast cell activation. J Ethnopharmacol. 2012 Aug 30;143(1):151-7. doi: 10.1016/j.jep.2012.06.015.

[12]Shan JJ, Zhang Y, Diao YL, Qu WS, Zhao XN. Effect of an antidiabetic polysaccharide from Inula japonica on constipation in normal and two models of experimental constipated mice. Phytother Res. 2010 Nov;24(11):1734-8. doi: 10.1002/ptr.3212.

[13]Zhao C, Diao Y, Wang C, Qu W, Zhao X, Ma H, Shan J, Sun G. Structural characters and protecting β-cells of a polysaccharide from flowers of Inula japonica. Int J Biol Macromol. 2017 Aug;101:16-23. doi: 10.1016/j.ijbiomac.2017.03.044.

[14]Feng J, Hu J, Xia Y. Identification of RAD54 homolog B as a promising therapeutic target for breast cancer. Oncol Lett. 2019 Nov;18(5):5350-5362. doi: 10.3892/ol.2019.10854.

[15]Du Y, Gong J, Tian X, Yan X, Guo T, Huang M, Zhang B, Hu X, Liu H, Wang Y, Li J, Li M. Japonicone A inhibits the growth of non-small cell lung cancer cells via mitochondria-mediated pathways. Tumour Biol. 2015 Sep;36(10):7473-82. doi: 10.1007/s13277-015-3439-6.

[16]Zhang Z, Ye C, Liu J, Xu W, Wu C, Yu Q, Xu X, Zeng X, Jin H, Wu Y, Yan H. Japonicone A induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKK. Cancer Biol Med. 2021 Sep 28;19(5):651–68. doi: 10.20892/j.issn.2095-3941.2020.0473.

[17]Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008 Nov;4(11):682-90. doi: https: 10.1038/nchembio.118.

[18]Liu Z, Huang H, Yu Y, Li L, Shi X, Wang F. Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology. J Cell Mol Med. 2023 Oct 4. doi: 10.1111/jcmm.17967

[19]Morrison C, Weterings E, Mahadevan D, Sanan A, Weinand M, Stea B. Expression Levels of RAD51 Inversely Correlate with Survival of Glioblastoma Patients. Cancers (Basel). 2021 Oct 26;13(21):5358. doi: 10.3390/cancers13215358.

[20]Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014 Apr 16;6:13. doi: 10.1186/1758-2946-6-13.

[21]Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364. doi: 10.1093/nar/gkz382.

[22]Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646. doi: 10.1093/nar/gkac1000.

[23]Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015 Jan;127:67-72. doi: 10.1016/j.biosystems.2014.11.005.

[24]Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 Jul 5;50(W1):W216-W221. doi: 10.1093/nar/gkac194.

[25]Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102. doi: 10.1093/nar/gkx247.

[26]Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010 May;24(5):417-22. doi: 10.1007/s10822-010-9352-6.

[27]Luo Z, Xia LY, Tang YQ, Huang L, Liu D, Huai WY, Zhang CJ, Wang YQ, Xie YM, Yin QZ, Chen YH, Zhang TE. Action Mechanism Underlying Improvement Effect of Fuzi Lizhong Decoction on Nonalcoholic Fatty Liver Disease: A Study Based on Network Pharmacology and Molecular Docking. Evid Based Complement Alternat Med. 2022 Jan 20;2022:1670014. doi: 10.1155/2022/1670014.

[28]Li S, Li S, Zhao Q, Huang J, Meng J, Yan W, Wang J, Ren C, Hao L. Mechanisms of Vitamin C Regulating Immune and Inflammation Associated with Neonatal Hypoxic-Ischemic Encephalopathy Based on Network Pharmacology and Molecular Simulation Technology. Evid Based Complement Alternat Med. 2022 Feb 14;2022:4904325. doi: 10.1155/2022/4904325.

[29]Mogwasi R. Bio-Accessibility of Iron and Copper from Seven Kenyan Anti-Anaemia Medicinal Plants. Diagnostics and Therapeutics. 2022 Sep; 2(1): 1-12,

[30]Tan Q, Lu J, Liang J, Zhou Y, Yang C, Zhang Z, Li C. A review of traditional Chinese medicine Curcumae Rhizoma for treatment of glioma. Int Rev Neurobiol. 2023;172:303-319. doi: 10.1016/bs.irn.2023.07.004.

[31]Li H, Li Y. Network Pharmacology Analysis of Molecular Mechanism of Curcuma longa L. Extracts Regulating Glioma Immune Inflammatory Factors: Implications for Precise Cancer Treatment. Current Topics in Medicinal Chemistry. 2022 Mar 4;22(4):259-267. doi: 10.2174/1568026621666210910123749.

[32]Yang X, Man D, Zhao P, Li X. Identification of the therapeutic mechanism of the saffron crocus on glioma through network pharmacology and bioinformatics analysis. Med Oncol. 2023 Sep 10;40(10):296. doi: 10.1007/s12032-023-02142-2.

[33]Zeng Q, Zeng Y, Nie X, Guo Y, Zhan Y. Britanin Exhibits Potential Inhibitory Activity on Human Prostate Cancer Cell Lines Through PI3K/Akt/NF-κB Signaling Pathways. Planta Med. 2020 Dec;86(18):1401-1410. doi: 10.1055/a-1211-4656.

[34]Shi K, Liu X, Du G, Cai X, Zhan Y. In vivo antitumour activity of Britanin against gastric cancer through nuclear factor-κB-mediated immune response. J Pharm Pharmacol. 2020 Apr;72(4):607-618. doi: 10.1111/jphp.13230.

[35]Li K, Zhou Y, Chen Y, Zhou L, Liang J. A novel natural product, britanin, inhibits tumor growth of pancreatic cancer by suppressing nuclear factor-κB activation. Cancer Chemother Pharmacol. 2020 Apr;85(4):699-709. doi: 10.1007/s00280-020-04052-w.

[36]Xu X, Guo Y, Du G, Liu H, Wang L, Chen D. Bioluminescence Imaging-Based Assessment of the Anti-Triple-Negative Breast Cancer and NF-Kappa B Pathway Inhibition Activity of Britanin. Front Pharmacol. 2020 May 5;11:575. doi:10.3389/fphar.2020.00575.

[37]Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA, Mubarak MS. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother. 2019 Apr;112:108612. doi: 10.1016/j.biopha.2019.108612.

[38]Zhengfu H, Hu Z, Huiwen M, Zhijun L, Jiaojie Z, Xiaoyi Y, Xiujun C. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling. Biochem Biophys Res Commun. 2015 Aug 21;464(2):422-7. doi: 10.1016/j.bbrc.2015.06.126.

[39]Wang F, Li H, Qiao JO. 1‑O‑acetylbritannilactone combined with gemcitabine elicits growth inhibition and apoptosis in A549 human non‑small cell lung cancer cells. Mol Med Rep. 2015 Oct;12(4):5568-72.doi: 10.3892/mmr.2015.4042.

[40]Han YY, Tang JJ, Gao RF, Guo X, Lei M, Gao JM. A new semisynthetic 1-O-acetyl-6-O-lauroylbritannilactone induces apoptosis of human laryngocarcinoma cells through p53-dependent pathway. Toxicol In Vitro. 2016 Sep;35:112-20. doi: 10.1016/j.tiv.2016.05.019.

[41]Huang LE, Cohen AL, Colman H, Jensen RL, Fults DW, Couldwell WT. IGFBP2 expression predicts IDH-mutant glioma patient survival. Oncotarget. 2017 Jan 3;8(1):191-202. doi: 10.18632/oncotarget.13329.

[42]Liu H, Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene. 2022 May 15;822:146325. doi: 10.1016/j.gene.2022.146325.

[43]Yang L, Zeng W, Sun H, Huang F, Yang C, Cai X, Lu Y, Zeng J, Yang K. Bioinformatical Analysis of Gene Expression Omnibus Database Associates TAF7/CCNB1, TAF7/CCNA2, and GTF2E2/CDC20 Pathways with Glioblastoma Development and Prognosis. World Neurosurg. 2020 Jun;138:e492-e514. doi: 10.1016/j.wneu.2020.02.159.

[44]Chen TC, Chuang JY, Ko CY, Kao TJ, Yang PY, Yu CH, Liu MS, Hu SL, Tsai YT, Chan H, Chang WC, Hsu TI. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol. 2020 Feb;30:101413. doi: 10.1016/j.redox.2019.101413.

[45]Li M, Xu H, Qi Y, Pan Z, Li B, Gao Z, Zhao R, Xue H, Li G. Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene. 2022 Oct;41(41):4618-4632. doi: 10.1038/s41388-022-02457-w.

[46]Xu P, Zhang G, Hou S, Sha LG. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway. Biomed Pharmacother. 2018 Oct;106:1419-1427. doi: 10.1016/j.biopha.2018.06.084.

[47]Xu Y, Sun Q, Yuan F, Dong H, Zhang H, Geng R, Qi Y, Xiong X, Chen Q, Liu B. RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway. J Exp Clin Cancer Res. 2020 Aug 31;39(1):174. doi: 10.1186/s13046-020-01671-2.

[48]Dunnett-Kane V, Burkitt-Wright E, Blackhall FH, Malliri A, Evans DG, Lindsay CR. Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts. Ann Oncol. 2020 Jul;31(7):873-883. doi: 10.1016/j.annonc.2020.03.291.

[49]Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E, Wang L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016 May 31;7(22):33440-50. doi: 10.18632/oncotarget.7961.

[50]Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther. 2024 Apr;30(4):e14717. doi: 10.1111/cns.14717.

[51]Du Y, Wang H, Chen L, Fang Q, Zhang B, Jiang L, Wu Z, Yang Y, Zhou Y, Chen B, Lyu J, Wang Z. Non-RBM Mutations Impaired SARS-CoV-2 Spike Protein Regulated to the ACE2 Receptor Based on Molecular Dynamic Simulation. Front Mol Biosci. 2021 Jul 27;8:614443. doi: 10.3389/fmolb.2021.614443.

How to Cite

Ying, Q. ., and Y. Fang. “Inulae Flos Is a Potential Herbal Medicine to Treat Glioma: A Study Based on Gene Expression Profile Analysis, Network Pharmacology and Molecular Docking”. Diagnostics and Therapeutics, vol. 3, no. 1, Nov. 2024, pp. 32-52, doi:10.55976/dt.32024132232-52.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.