Make Knowledge Veritable, Visible and Valuable.

Messenger ribonucleic acids (mRNA) technology for future applications in cancer treatment

Emmanuel Adebola Adebanjo 1 , Kafayat Motomori Bakare 2 , Victoria Enemona Oseni 3 , Ugochukwu Okwudili Matthew 4 *

  • 1. Public Health (MPH), University of New Haven, United States
  • 2. Public Health (MPH), University of New Haven, United States
  • 3. Data Science Dept, University of Salford, United Kingdom
  • 4. Computer Science Department, Federal University Lavras, Brazil

Correspondence: macdon4ru2003@gmail.com

DOI: https://doi.org/10.55976/dt.32024127820-31

  • Received

    12 June 2024

  • Revised

    03 August 2024

  • Accepted

    27 August 2024

  • Published

    06 September 2024

Cancer treatment mRNA technology DNA Vaccines Antibodies COVID-19

Show More

Abstract


References
V

[1]Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, et al. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Research. 2024; 52(8): 4440-55. doi: 10.1101/2023.09.22.559000.

[2]Khatir I, Brunet MA, Meller A, Amiot F, Patel T, Lapointe X, et al. Decoupling of mRNA and protein expression in aging brains reveals the age-dependent adaptation of specific gene subsets. Cells. 2023; 12(4): 615. doi: 10.3390/cells12040615.

[3]Roberts JZ, LaBonte MJ. The Importance of the Fifth Nucleotide in DNA: Uracil. Oligonucleotides-Overview and Applications: IntechOpen. 2023. doi:10.5772/intechopen.110267.

[4]Kenoosh HA, Pallathadka H, Hjazi A, Al‐Dhalimy AMB, Zearah SA, Ghildiyal P, et al. Recent advances in mRNA‐based vaccine for cancer therapy; bench to bedside. Cell Biochemistry and Function. 2024; 42(2): e3954. doi: 10.1002/cbf.3954.

[5]Meo S, Bukhari I, Akram J, Meo A, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. European Review for Medical & Pharmacological Sciences. 2021; 25(3). doi: 10.26355/eurrev_202102_24877.

[6]Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. The Lancet. 2024; 403(10432): 1192-204. doi: 10.1016/S0140-6736(23)02444-3.

[7]Tam YK, Madden TD, Hope MJ. Pieter Cullis’ quest for a lipid-based, fusogenic delivery system for nucleic acid therapeutics: success with siRNA so what about mRNA? Journal of Drug Targeting. 2016; 24(9): 774-9. doi: 10.1080/1061186X.2016.1221955.

[8]Chandarana C, Tiwari A. A Review of Clinical Trials of Cancer and Its Treatment as a Vaccine. Reviews on Recent Clinical Trials. 2024; 19(1): 7-33. doi: 10.2174/0115748871260733231031081921.

[9]Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles─ from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS nano. 2021; 15(11): 16982-7015. doi: 10.1021/acsnano.1c04996.

[10]Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced Drug Delivery Reviews. 2021; 179: 114000. doi: 10.1016/j.addr.2021.114000.

[11]Molldrem S. What to do with the new molecular publics: the vernacularization of pathogen genomics and the future of infectious disease biosocialities. BioSocieties. 2024: 1-28. doi: 10.1057/s41292-024-00326-1.

[12]Krammer F, Palese P. Profile of Katalin Karikó and Drew Weissman: 2023 Nobel laureates in Physiology or Medicine. Proceedings of the National Academy of Sciences. 2024; 121(9): e2400423121. doi: 10.1073/pnas.2400423121.

[13]Bayat M, Asemani Y, Najafi S. Essential considerations during vaccine design against COVID-19 and review of pioneering vaccine candidate platforms. International Immunopharmacology. 2021; 97: 107679. doi: 10.1016/j.intimp.2021.107679.

[14]S. Mueller. Existing and emerging mRNA vaccines and their environmental impact: a transdisciplinary assessment. Environmental Sciences Europe. 2024; 36: 144. doi: 10.1186/s12302-024-00966-x.

[15]Liu Y, Tian F, Shi S, Deng Y, Zheng P. Enzymatic protein–protein conjugation through internal site verified at the single-molecule level. The Journal of Physical Chemistry Letters. 2021; 12(44): 10914-9. doi: 10.1021/acs.jpclett.1c02767.

[16]Y. A. El-Maradny, M. A. Badawy, K. I. Mohamed, R. F. Ragab, H. M. Moharm, N. A. Abdallah, et al. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. International Journal of Biological Macromolecules. 2024:135201. doi: 10.1016/j.ijbiomac.2024.135201.

[17]Laczkó D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity. 2020;53(4):724-32. e7. doi: 10.1016/j.immuni.2020.07.019.

[18]Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews. 2021; 178: 113834. doi: 10.1016/j.addr.2021.113834.

[19]Ghosh I, Gandhi MD. Emerging Frontiers in Vaccine Development: A Review of Changing Paradigm. Journal of Biosciences and Medicines. 2022; 10(7): 123-45. doi: 10.4236/jbm.2022.107010.

[20]El Bairi K, Trapani D, Petrillo A, Le Page C, Zbakh H, Daniele B, et al. Repurposing anticancer drugs for the management of COVID-19. European Journal of Cancer. 2020; 141: 40-61. doi: 10.1016/j.ejca.2020.09.014.

[21]Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS Applied Bio Materials. 2024; 7(8). doi:10.1021/acsabm.4c00395.

[22]Bakare K, Nkeiruka A, Matthew U, Ebong G, Oyekunle D. Immunotherapy Influence On Human Body: Glycan Engineering Antibody-Based Cancer Treatments. Journal of Community Medicine and Public Health Reports. 2024; 5(03). doi: 10.38207/JCMPHR/2024/JAN05030120.

[23]Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Frontiers in Immunology. 2023;14:1246682. doi: 10.3389/fimmu.2023.1246682.

[24]Chakraborty C, Sharma AR, Bhattacharya M, Lee S-S. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Frontiers in Immunology. 2021;12:679344. doi: 10.3389/fimmu.2021.679344.

[25]Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nature Reviews Genetics. 2024; 25(3): 211-32. doi: 10.1038/s41576-023-00662-1.

[26]Noor R. Developmental Status of the Potential Vaccines for the Mitigation of the COVID-19 Pandemic and a Focus on the Effectiveness of the Pfizer-BioNTech and Moderna mRNA Vaccines. Current Clinical Microbiology Reports. 2021; 8(3):178-185. doi: 10.1007/s40588-021-00162-y.

[27]Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, et al. The 2019 mathematical oncology roadmap. Physical Biology. 2019; 16(4): 041005. doi: 10.1088/1478-3975/ab1a09.

[28]Knezevic I, Liu MA, Peden K, Zhou T, Kang H-N. Development of mRNA vaccines: scientific and regulatory issues. Vaccines. 2021; 9(2): 81. doi: 10.3390/vaccines9020081.

[29]Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy. 2022; 7(1): 166. doi: 10.1038/s41392-022-01007-w.

[30]M. Tripathi, A. Sarkar, M. Mahilang. Nucleic acids: components, nomenclature, types, and protection method. In: Handbook of biomolecules, ed: Elsevier, 2023, pp. 57-76. doi:10.1016/B978-0-323-91684-4.00009-8.

[31]Schuster SL, Hsieh AC. The untranslated regions of mRNAs in cancer. Trends in Cancer. 2019; 5(4) :245-62. doi: 10.1016/j.trecan.2019.02.011.

[32]Wu Q, Bazzini AA. Translation and mRNA stability control. Annual Review of Biochemistry. 2023; 92(1): 227-45. doi: 10.1146/annurev-biochem-052621-091808.

[33]TV BS, Sharma R. mRNA translation from a unidirectional traffic perspective. Physica A: Statistical Mechanics and its Applications. 2024: 129574. doi: 10.1016/j.physa.2024.129574.

[34]Piao X, Yadav V, Wang E, Chang W, Tau L, Lindenmuth BE, et al. Double-stranded RNA reduction by chaotropic agents during in vitro transcription of messenger RNA. Molecular Therapy-Nucleic Acids. 2022; 29: 618-24. doi: 10.1016/j.omtn.2022.08.001.

[35]Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. International Review of Cell and Molecular Biology. 2022; 372: 1-54. doi: 10.1016/bs.ircmb.2022.04.007.

[36]Alameh M-G, Weissman D. Nucleoside modifications of in vitro transcribed mRNA to reduce immunogenicity and improve translation of prophylactic and therapeutic antigens. RNA Therapeutics: Elsevier; 2022. p. 141-69. doi: 10.1016/B978-0-12-821595-1.00014-2.

[37]Rodnina MV. Decoding and recoding of mRNA sequences by the ribosome. Annual Review of Biophysics. 2023; 52: 161-82. doi: 10.1146/annurev-biophys-101922-072452.

[38]He Q, Gao H, Tan D, Zhang H, Wang J-z. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharmaceutica Sinica B. 2022; 12(7): 2969-89. doi: 10.1016/j.apsb.2022.03.011.

[39]Zagrovic B, Adlhart M, Kapral TH. Coding From Binding? Molecular Interactions at the Heart of Translation. Annual Review of Biophysics. 2023; 52: 69-89. doi: 10.1146/annurev-biophys-090622-102329.

[40]Uhl JD, Shiroda M, Haudek KC. Developing assessments to elicit and characterize undergraduate mechanistic explanations about information flow in biology. Journal of Biological Education. 2024; 58(1): 226-45. doi: 10.1080/00219266.2022.2041460.

[41]Bastide A, David A. Interaction of rRNA with mRNA and tRNA in translating mammalian ribosome: functional implications in health and disease. Biomolecules. 2018; 8(4): 100. doi: 10.3390/biom8040100.

[42]Adachi H, De Zoysa MD, Yu Y-T. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2019; 1862(3): 230-9. doi: 10.1016/j.bbagrm.2018.11.002.

[43]Poulis P, Peske F, Rodnina MV. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biological Chemistry. 2023; 404(8-9): 755-67. doi: 10.1515/hsz-2023-0142.

[44]Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. International Journal of Neuroscience. 2024:1-11. doi: 10.1080/00207454.2024.2315483.

[45]Hollingsworth R, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019; 4: 7. doi: 10.1038/s41541-019-0103-y.

[46]Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharmaceutica Sinica B. 2020; 10(3): 414-33. doi: 10.1016/j.apsb.2019.08.010.

[47]Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology. 2021; 18(4): 215-29. doi: 10.1038/s41571-020-00460-2.

[48]Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood, The Journal of the American Society of Hematology. 2020; 136(4): 418-28. doi: 10.1182/blood.2019000952.

[49]Oh DY, Fong L. Cytotoxic CD4+ T cells in cancer: Expanding the immune effector toolbox. Immunity. 2021; 54(12): 2701-11. doi: 10.1016/j.immuni.2021.11.015.

[50]Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, et al. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon. 2024; 10(5): E26971. doi: 10.1016/j.heliyon.2024.e26971.

[51]Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, et al. Unlocking the Potential of Exosomes in Cancer Research: A Paradigm Shift in Diagnosis, Treatment, and Prevention. Pathology-Research and Practice. 2024; 255:155214. doi: 10.1016/j.prp.2024.155214.

[52]Zhou D-W, Wang K, Zhang Y-A, Ma K, Yang X-C, Li Z-Y, et al. mRNA therapeutics for disease therapy: principles, delivery, and clinical translation. Journal of Materials Chemistry B. 2023; 11(16): 3484-510. doi: 10.1039/D2TB02782H.

[53]Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine. 2021; 9: 20503121211034366. doi: 10.1177/20503121211034366.

[54]Sotirov S, Dimitrov I. Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines. International Journal of Molecular Sciences. 2024; 25(9): 4934. doi: 10.3390/ijms25094934.

[55]Grinsted J, Liddell J, Bouleghlimat E, Kwok KY, Taylor G, Marques MP, et al. Purification of therapeutic & prophylactic mRNA by affinity chromatography. Cell and Gene Therapy Insights. 2022; 8(2): 335-49. doi: 10.18609/cgti.2022.049.

[56]Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials. 2020; 10(2): 364. doi: 10.3390/nano10020364.

[57]Kwon S, Kwon M, Im S, Lee K, Lee H. mRNA vaccines: the most recent clinical applications of synthetic mRNA. Archives of Pharmacal Research. 2022; 45(4): 245-62. doi: 10.1007/s12272-022-01381-7.

[58]Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape. Current Issues in Molecular Biology. 2023; 45(11): 9181-214. doi: 10.3390/cimb45110576.

[59]Yang L, Tang L, Zhang M, Liu C. Recent advances in the molecular design and delivery technology of mRNA for vaccination against infectious diseases. Frontiers in Immunology. 2022; 13: 896958. doi: 10.3389/fimmu.2022.896958.

[60]Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs. 2021; 11(2): 287. doi: 10.18683/germs.2021.1264.

[61]Chaudhary N, Ahuja R, Sherwani A, Chauhan S. Efficacy and safety of mRNA based COVID-19 vaccines: a systematic review and Meta-analysis of randomized clinical trials. 2021. Available at SSRN: https://ssrn.com/abstract=4254949. doi: 10.2139/ssrn.4254949.

[62]Rzymski P, Szuster‐Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? Journal of Medical Virology. 2023; 95(2): e28572. doi: 10.1002/jmv.28572.

[63]Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery. 2021; 20(11): 817-38. doi: 10.1038/s41573-021-00283-5.

[64]Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses? Nanomaterials. 2020; 10(9): 1645. doi: 10.3390/nano10091645.

[65]Liu Q, Schwartz JB, Slattum PW, Lau SJ, Guinn D, Madabushi R, et al. Roadmap to 2030 for drug evaluation in older adults. Clinical Pharmacology & Therapeutics. 2022; 112(2): 210-23. doi: 10.1002/cpt.2452.

[66]Anand P, Stahel VP. The safety of Covid-19 mRNA vaccines: a review. Patient Safety in Surgery. 2021; 15(1): 20. doi: 10.1186/s13037-021-00291-9.

How to Cite

Adebanjo, E. A., K. M. Bakare, V. E. Oseni, and U. O. Matthew. “Messenger Ribonucleic Acids (mRNA) Technology for Future Applications in Cancer Treatment”. Diagnostics and Therapeutics, vol. 3, no. 1, Sept. 2024, pp. 20-31, doi:10.55976/dt.32024127820-31.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.