Make Knowledge Veritable, Visible and Valuable.

Assessment of bio-accessibility of heavy metals (Cd, Pb, and As) through consumption of medicinal plants collected from different regions in Nyamira- Kenya

Richard Mogwasi 1 * , Kennedy Olale 2 , Salome Osunga 3 , Evans Okemwa Kenanda 4

  • 1. Department of Chemistry, School of Pure and Applied Sciences (SPAS), Kisii University, Kisii-Kenya
  • 2. Department of Chemistry, School of Pure and Applied Sciences (SPAS), Kisii University, Kisii-Kenya
  • 3. Department of Chemistry, School of Pure and Applied Sciences (SPAS), Kisii University, Kisii-Kenya
  • 4. Department of Chemistry, School of Pure and Applied Sciences (SPAS), Kisii University, Kisii-Kenya

Correspondence: mogwasirichard@gmail.com

DOI: https://doi.org/10.55976/dt.22023113516-33

  • Received

    24 October 2022

  • Revised

    19 December 2022

  • Accepted

    23 May 2023

  • Published

    14 June 2023

Bio-accessibility Metalloids Toxicity Medicinal plants

Show More

Abstract


References
V

[1]Adie, Gilbert U., and Adedoyin Adekunle. Evaluation of potentially toxic metal contamination of local medicinal plants and extracts sold in Ibadan, Nigeria. Journal of Health and Pollution. 2017;7(14):23-29. doi: https://doi.org/10.5696/2156-9614-7.14.23

[2]Clemens S, Ma J F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology. 2016;67:489-512. doi: https://doi.org/10.1146/annurev-arplant-043015-112301

[3]Zeng X, Xu X, Boezen H M, et al. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere. 2016;148:408-415. doi: https://doi.org/10.1016/j.chemosphere.2015.10.078

[4]Ogunbanjo O, Onawumi O, Gbadamosi M, et al. Chemical speciation of some heavy metals and human health risk assessment in soil around two municipal dumpsites in Sagamu, Ogun state, Nigeria. Chemical Speciation & Bioavailability. 2016;28(1-4):142-151. doi: https://doi.org/10.1080/09542299.2016.1203267

[5]Subramanian R, Gayathri S, Rathnavel C, et al. Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pacific Journal of Tropical Biomedicine. 2012;2(1):S74-S78. doi: https://doi.org/10.1016/S2221 1691(12)60133-6

[6]Annan K, Kojo A I, Cindy A, et al. Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Pharmacognosy Research. 2010;2(1):41. doi: https://doi.org/10.4103/0974-8490.60579

[7]Ahmad K, Khan Z I, Shaheen M, et al. Exploration of concentration of two macro-minerals in different wild forages in relation to nutrient requirements of livestock. Agricultural Sciences. 2013;7(4):340-344. doi: https://doi.org/10.4236/as.2013.47049

[8]Jena V, Gupta S. Study of heavy metal distribution in medicinal plant basil. Journal of Environmental & Analytical Toxicology. 2012;2(8):161-162. doi: https://doi.org/10.4172/2161-0525.1000161

[9]Korfali S I, Mroueh M, Al-Zein M, et al. Metal concentration in commonly used medicinal herbs and infusion by Lebanese population: health impact. Journal of Food Research. 2013;2(2):70. doi: https://doi.org/10.5539/jfr.v2n2p70

[10]Arpadjan S, Çelik G, Taşkesen S, et al. Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food and Chemical Toxicology. 2008;46(8):2871-2875. doi: https://doi.org/10.1016/j.fct.2008.05.027

[11]Jayawardene I, Saper R, Lupoli N, et al. Determination of in vitro bioaccessibility of Pb, As, Cd and Hg in selected traditional Indian medicines. Journal of Analytical Atomic Spectrometry. 2010;25(8):1275-1282. doi: https://doi.org/10.1039/C003960H

[12]Mirosławski J, Paukszto A. Determination of the cadmium, chromium, nickel, and lead ions relays in selected polish medicinal plants and their infusion. Biological Trace Element Research. 2018;182(1):147-151. doi: https://doi.org/10.1007/s12011-017-1072-5

[13]Koch I, Moriarty M, House K, et al. Bioaccessibility of lead and arsenic in traditional Indian medicines. Science of the Total Environment. 2011;409(21):4545-4552. doi: https://doi.org/10.1016/j.scitotenv.2011.07.059

[14]Ranđelović D G, Vračar L O, Tepić A N. Color changes of blackberry as affected by freezing rate. Acta Periodica Technologica. 2008;(39):63-68.

[15]Abbas G, Murtaza B, Bibi I, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health. 2018;15(1):59. doi: https://doi.org/10.3390/ijerph15010059

[16]Zhou L, Wang S, Hao Q, et al. Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis. Chinese Medicine. 2018;13:1-8. doi: https://doi.org/10.1186/s13020-018-0196-7

[17]Pizarro I, Gómez-Gómez M, León J, et al. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile. Science of the Total Environment. 2016;565:557-563. doi: https://doi.org/10.1016/j.scitotenv.2016.04.199

[18]Yang Y, Li Y, Zhang J. Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China. Chemical Speciation & Bioavailability. 2016;28(1-4):33-41. doi: https://doi.org/10.1080/09542299.2016.1157005

[19]Nguyen M H, Pham T D, Nguyen T L, et al. Speciation analysis of arsenic compounds by HPLC-ICP-MS: application for human serum and urine. Journal of Analytical Methods in Chemistry. 2018;2018. doi: https://doi.org/10.1155/2018/9462019

[20]Khan Z I, Ahmad K, Rasheed M J Z, et al. Toxic and some essential metals in medicinal plants used in herbal medicines: a case study in Pakistan. African Journal of Pharmacy and Pharmacology. 2013;7(21):1389-1395. doi: https://doi.org/10.5897/ajpp2012.1894

[21]Quaghebeur M, Rengel Z. Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchimica Acta. 2005;151:141-152. doi: https://doi.org/10.1007/s00604-005-0394-8

[22]Wrobel K, Wrobel K, Caruso J A. Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection. Analytical and Bioanalytical Chemistry. 2005;381:317-331. doi: https://doi.org/10.1007/s00216-004-2959-5

[23]Schallenberg M, Goff J, Harper M A. Gradual, catastrophic and human induced environmental changes from a coastal lake, southern New Zealand. Sedimentary Geology. 2012;273:48-57. doi: https://doi.org/10.1016/j.sedgeo.2012.06.010

[24]Shenker M, Fan T W M, Crowley D E. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. Journal of Environmental Quality. 2001;30(6):2091-2098. doi: https://doi.org/10.2134/jeq2001.2091

[25]Rahman M M, Sengupta M K, Chowdhury U K, et al. Arsenic contamination incidents around the world. Australia: Csiro Publishing; 2006.

[26]McLaren R G, Naidu R, Smith J, et al. Fractionation and distribution of arsenic in soils contaminated by cattle dip. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 1998. doi: https://doi.org/10.2134/jeq1998.00472425002700020015x

[27]Dembitsky V M, Rezanka T. Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Science. 2003;165(6):1177-1192. doi: https://doi.org/10.1016/j.plantsci.2003.08.007

[28]Larios R, Fernández-Martínez R, LeHecho I, et al. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Science of the Total Environment. 2012;414:600-607. doi: https://doi.org/10.1016/j.scitotenv.2011.09.051

[29]Mogwasi R, Nyagaka B, Okiambe E, et al. Comparison of Levels of Lead with calcium, Zinc and phosphorus in Human Blood. Global Journal of Pure and Applied Chemistry Research . 2023;1:144-149

[30]Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment. 2016;188:1-19. doi: https://doi.org/10.1007/s10661-016-5647-y

[31]Nagarajan S, Sivaji K, Krishnaswamy S, et al. Safety and toxicity issues associated with lead-based traditional herbo-metallic preparations. Journal of Ethnopharmacology. 2014;151(1): 1-11. doi: https://doi.org/10.1016/j.jep.2013.10.037

[32]Bolan S, Naidu R, Kunhikrishnan A, et al. Speciation and bioavailability of lead in complementary medicines. Science of the Total Environment. 2016;539:304-312. doi: https://doi.org/10.1016/j.scitotenv.2015.08.124

[33]Yang H, Li F, Xue T, et al. Csm6-DNAzyme tandem assay for one-pot and sensitive analysis of lead pollution and bioaccumulation in mice. Analytical Chemistry. 2022;94(48): 16953-16959. doi: https://doi.org/10.1021/acs.analchem.2c04589

[34]Zhang Y, Wu C, Liu H, et al. Label-free DNAzyme assays for dually amplified and one-pot detection of lead pollution. Journal of Hazardous Materials. 2021;406:124790. doi: https://doi.org/10.1016/j.jhazmat.2020.124790

[35]Azam M, Wabaidur S M, Khan M R, et al. Heavy metal ions removal from aqueous solutions by treated ajwa date pits: kinetic, isotherm, and thermodynamic approach. Polymers. 2022;14(5): 914. doi: https://doi.org/ 10.3390/polym14050914

[36]Azam M, Wabaidur S M, Khan M R, et al. Removal of Chromium (III) and Cadmium (II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules. 2021;26(12):3718. doi: https://doi.org/10.3390/ molecules 26123718

[37]Yaqoob A A, Mohamad Ibrahim M N, Umar K, et al. Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells. Polymers. 2020;13(1):135. doi: https://doi.org/10.3390/polym13010135

[38]Alqadami A A, Naushad M, Abulhassan Abdalla M, et al. Determination of heavy metals in skin‐whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry. IET Nanobiotechnology. 2017;11(5):597-603. doi: 10.1049/iet-nbt.2016.0212 www.ietdl.org

[39]Khan M R, Ahmad N, Ouladsmane M, et al. Heavy metals in acrylic color paints intended for the school children use: a potential threat to the children of early age. Molecules. 2021; 26(8): 2375. doi: https://doi.org/10.3390/molecules 26082375

[40]World Health Organisation. Department of technical cooperation for essential drugs and traditional medicine. World Health Organization guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva, Switzerland; 2017

[41]Intawongse M, Dean J R. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environmental Pollution. 2008;152(1):60-72. doi: https://doi.org/10.1016/j.envpol.2007.05.022

[42]Čadková Z, Száková J, Miholová D, et al. Bioaccessibility versus bioavailability of essential (Cu, Fe, Mn, and Zn) and toxic (Pb) elements from phyto hyperaccumulator Pistia stratiotes: potential risk of dietary intake. Journal of Agricultural and Food Chemistry. 2015;63(8):2344-2354. doi: https://doi.org/10.1021/jf5058099

[43]Nischwitz V, Mogwasi R, Zor S, et al. First comprehensive study on total contents and hot water extractable fraction of selected elements in 19 medicinal plants from various locations in Nyamira County, Kenya. Journal of Trace Elements in Medicine and Biology. 2017;39:54-61. doi: https://doi.org/10.1016/j.jtemb.2016.08.001

[44]Mogwasi R, Kariuki D K, Getenga M Z, et al. Comparison of aqueous and enzymatic extraction combination with sequential filtration for the profiling of selected trace elements in medicinal plants from Kenya. Journal of Trace Elements in Medicine and Biology. 2019;54:1-7. doi: https://doi.org/10.1016/j.jtemb.2019.03.003

[45]Mogwasi R, Zor S, Kariuki D K, et al. Sequential extraction as novel approach to compare 12 medicinal plants from Kenya regarding their potential to release chromium, manganese, copper, and zinc. Biological Trace Element Research. 2018;182:407-422. doi: https://doi.org/10.1007/s12011-017-1083-2

[46]Emongor V. Biosorption of lead from aqueous solutions of varied pH by kale plants (Brasicca oleraceae var. acephala). Journal of Agricultural, Food and Environmental Sciences. 2007;1(2):1-8.

[47]Inoti K J, Fanuel K, George O, et al. Assessment of heavy metal concentrations in urban grown vegetables in Thika Town, Kenya. African Journal of Food Science.2012;6(3):41-46. doi: https://doi.org/10.5897/ajfs10.072

[48]Navarro P, Arana G, Etxebarria N, et al. Evaluation of the physiologically based extraction test as an indicator of metal toxicity in mussel tissue. Analytica Chimica Acta. 2008;622(1-2):126-132. doi: https://doi.org/10.1016/j.aca.2008.05.052

[49]McBride M B. Environmental chemistry of soils. New York: Oxford University Press;1994. 406-413

[50]Zhang S, Li W, Shan X Q, et al. Effects of low molecular weight organic anions on the release of arsenite and arsenate from a contaminated soil. Water, Air, and Soil Pollution. 2005;167:111-122. doi: https://doi.org/10.1007/s11270-005-8219-2

[51]Goh K H, Lim T T. Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere. 2004;55(6): 849-859. doi: https://doi.org/10.1016/j.chemosphere.2003.11.041

[52]Murphy T, Phan K, Yumvihoze E, et al. Effects of arsenic, iron and fertilizers in soil on rice in Cambodia. Journal of Health and Pollution. 2018;8(19)):180910. doi: https://doi.org/10.5696/2156-9614-8.19.180910

[53]Karanja N N, Njenga M, Mutua G K, et al. Concentrations of heavy metals and pesticide residues in leafy vegetables and implications for peri-urban farming in Nairobi, Kenya. Journal of Agriculture. Food Systems, and Community Development. 2012;3(1):255-267. doi: https://doi.org/10.5304/jafscd.2012.031.003

[54]Zhu F, Wang X, Fan W, et al. Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China. Environmental Monitoring and Assessment. 2013;185:3909-3916. doi: https://doi.org/10.1007/s10661-012-2839-y

[55]Tadesse A W, Gereslassie T, Yan X, et al. Determination of Heavy Metal Concentrations and Their Potential Sources in Selected Plants: Xanthium strumarium L.(Asteraceae), Ficus exasperata Vahl (Moraceae), Persicaria attenuata (R. Br) Sojak (Polygonaceae), and Kanahia laniflora (Forssk.) R. Br.(Asclepiadaceae) from Awash River Basin, Ethiopia. Biological Trace Element Research. 2019;191:231-242. doi: https://doi.org/10.1007/s12011-018-1588-3

[56]Basta N T, Tabatabai M A. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science. 1992;153(3):195-204. doi: https://doi.org/10.1097/00010694-199203000-00004

[57]Barrow N J. Mechanisms of reaction of zinc with soil and soil components. Zinc in Soils and Plants: Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27-28 September, 1993. Springer Netherlands. 1993: 15-31. doi: https://doi.org/10.1007/978-94-011-0878-2_2

[58]Pampura T B, Pinskiy D L, Ostroumov V G, et al. Experimental study of the buffer capacity of chernozem contaminated with copper and zinc. Eurasian Soil Science. 1993; 25(10): 27-38.

[59]McBride M B. Environmental chemistry of soils. Oxford University Press. New York, 1994; 7: 406-413

[60]Qiao L, Ho G. The effect of clay amendment on speciation of heavy metals in sewage sludge. Water Science and Technology. 1996;34(7-8):413-420. doi: https://doi.org/10.2166/wst.1996.0649

[61]McBride M, Sauve S, Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science. 1997;48(2):337-346. doi: https://doi.org/10.1111/j.1365-2389.1997.tb00554

[62]Martínez C E, McBride M B. Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides. Environmental Science & Technology. 1998;32(6):743-748. doi: https://doi.org/10.1021/es970262+

[63]Połeć-Pawlak K, Ruzik R, Abramski K, et al. Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Analytica Chimica Acta. 2005;540(1):61-70. doi: https://doi.org/10.1016/j.aca.2004.10.048

[64]Hu L, McBride M B, Cheng H, et al. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environmental Research. 2011;111(3):356-361. doi: https://doi.org/10.1016/j.envres.2011.01.012

[65]Ueno D, Iwashita T, Zhao F J, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant and Cell Physiology. 2008;49(4):540-548. doi: https://doi.org/10.1093/pcp/pcn026

[66]Sauvé S. Speciation of metals in soils. Bioavailability of metals in terrestrial ecosystems: Importance of partitioning for bioavailability to invertebrates. Microbes and Plants. 2002:7-38.

[67]Antoniadis V, Robinson J S, Alloway B J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere. 2008;71(4): 759-764. doi: https://doi.org/10.1016/j.chemosphere.2007.10.015

[68]Schachtman D P, Kumar R, Schroeder J I, et al. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proceedings of the National Academy of Sciences. 1997;94(20):11079-11084. doi: https://doi.org/10.1073/pnas.94.20.11079

[69]Fox T C, Guerinot M L. Molecular biology of cation transport in plants. Annual Review of Plant Biology. 1998;49(1):669-696. doi: https://doi.org/10.1146/annurev.arplant.49.1.669

[70]Nabulo G, Oryem-Origa H, Nasinyama G W, et al. Assessment of heavy metal contamination of food crops in wetlands and from vehicle emissions. Healthy City Harvests: Generating Evidence to Guide Policy on Urban Agriculture. 2008: 111-131.

[71]Ababneh F A. The hazard content of cadmium, lead, and other trace elements in some medicinal herbs and their water infusions. International Journal of Analytical Chemistry. 2017; 2017. doi: https://doi.org/10.1155/2017/6971916

[72]Fairbrother A, Wenstel R, Sappington K, et al. Framework for metals risk assessment. Ecotoxicology and Environmental Safety. 2007;68(2):145-227. doi: https://doi.org/10.1016/j.ecoenv.2007.03.015

[73]Violante A, Cozzolino V, Perelomov L, et al. Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition. 2010; 10(3): 268-292. doi: https://doi.org/10.4067/S0718-9516201000010000

[74]Peijnenburg W, Jager T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety. 2003;56(1):63-77. doi: https://doi.org/10.1016/S0147-6513(03)00051-4

[75]Hooda P S. Speciation and bioavailability of metal contaminants in soils: Concepts, approaches and challenges. Progress in Environmental Science and Technology. 2007; 1: 1165-1168.

[76]Degryse F, Smolders E, Parker D R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications–a review. European Journal of Soil Science. 2009;60(4):590-612. doi: https://doi.org/10.1111/j.1365-2389.2009.01142

[77]Sessitsch A, Howieson J G, Perret X, et al. Advances in Rhizobium research. Critical Reviews in Plant Sciences. 2002;21(4):323-378. doi: https://doi.org/10.1080/0735-260291044278

[78]Chojnacka K, Chojnacki A, Górecka H, et al. Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment. 2005;337(1-3):175-182. doi: https://doi.org/10.1016/j.scitotenv.2004.06.009

[79]Lair G J, Gerzabek M H, Haberhauer G. Retention of copper, cadmium and zinc in soil and its textural fractions influenced by long‐term field management. European Journal of Soil Science. 2007;58(5):1145-1154. doi: https://doi.org/10.1111/j.1365-2389.2007.00905

[80]Cao X, Chen Y, Wang X, et al. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere. 2001;44(4):655-661. doi: https://doi.org/10.1016/S0045-6535 (00)00492-6

[81]Hopkinson B M, Barbeau K A. Organic and redox speciation of iron in the eastern tropical North Pacific suboxic zone. Marine Chemistry. 2007;106(1-2):2-17. doi: https://doi.org/10.1016/j.marchem.2006.02.008

[82]Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology. 2010;44(1):15-23. doi: https://doi.org/10.1021/es9026248.

[83]Oorts K, Smolders E, Degryse F, et al. Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environmental Science & Technology. 2008;42(12):4378-4383. doi: https://doi.org/10.1021/es703061t

[84]Moraghan J T, Mascagni Jr H J. Environmental and soil factors affecting micronutrient deficiencies and toxicities. Micronutrients in Agriculture. 1991;4:371-425. doi: https://doi.org/10.2136/sssabookser4.2ed.c11

[85]de Oliveira L M, Das S, da Silva E B, et al. Metal concentrations in traditional and herbal teas and their potential risks to human health. Science of the Total Environment. 2018;633:649-657. doi: https://doi.org/10.1016/j.scitotenv.2018.03.215

[86]Szymczycha-Madeja A, Welna M, Pohl P. Elemental analysis of teas and their infusions by spectrometric methods. TrAC Trends in Analytical Chemistry. 2012;35:165-181. doi: https://doi.org/10.1016/j.trac.2011.12.005

[87]Fattorini D, Notti A, Regoli F. Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chemistry and Ecology. 2006;22(5):405-414. doi: https://doi.org/10.1080/02757540600917328

[88]Steinmaus C, Carrigan K, Kalman D, et al. Dietary intake and arsenic methylation in a US population. Environmental Health Perspectives. 2005;113(9):1153-1159. doi: https://doi.org/10.1289/ehp.7907

[89]Aposhian H V, Zakharyan R A, Avram M D, et al. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicology and Applied Pharmacology. 2004;198(3):327-335. doi: 10.1016/j.taap.2003.10.027

[90]Winski S L, Carter D E. Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. Journal of Toxicology and Environmental Health. Part A Current Issues. 1995;46(3):379-397. doi: 10.1080/15287399509532043

[91]Miller Jr W H, Schipper H M, Lee J S, et al. Mechanisms of action of arsenic trioxide. Cancer Research. 2002; 62(14): 3893-3903.

[92]Stýblo M, Drobná Z, Jaspers I, et al. The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environmental Health Perspectives. 2002; 110(suppl 5): 767-771. doi: 10.1289/ehp.110-1241242

[93]Adriano DC .Trace elements in terrestrial environments: biochemistry, bio availability and risks of metal(loid)s. 2nd ed. New York: Springer publishing;2001

[94]Zhang J, Yang R, Chen R, et al. Accumulation of heavy metals in tea leaves and potential health risk assessment: a case study from Puan County, Guizhou Province, China. International Journal of Environmental Research and Public Health. 2018;15(1):133. doi: https://doi.org/10.3390/ijerph15010133

[95]Nkansah M A, Opoku F, Ackumey A A. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. Environmental Monitoring and Assessment. 2016;188:1-11. doi: https://doi.org/10.1007/s10661-016-5343-y

[96]Sarma H, Deka S, Deka H, et al. Accumulation of heavy metals in selected medicinal plants. Reviews of Environmental Contamination and Toxicology. 2011:63-86. doi: https://doi.org/10.1007/978-1-4614-0668-6_4

How to Cite

Mogwasi, R., K. . Olale, S. Osunga, and E. O. Kenanda. “Assessment of Bio-Accessibility of Heavy Metals (Cd, Pb, and As) through Consumption of Medicinal Plants Collected from Different Regions in Nyamira- Kenya”. Diagnostics and Therapeutics, vol. 2, no. 1, June 2023, pp. 16-33, doi:10.55976/dt.22023113516-33.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.