Make Knowledge Veritable, Visible and Valuable.

Novel Russell's approximation method for transportation problem under hesitant bifuzzy environment

Ismat Beg 1 * , Soniya Gupta 2 , Arpa Ghosh 3 , Dheeraj Kumar Joshi 4

  • 1. Lahore School of Economics, Lahore 53200, Pakistan
  • 2. School of Physical Sciences, DIT University Dehradun, Uttarakhand, 248009, India
  • 3. School of Physical Sciences, DIT University Dehradun, Uttarakhand, 248009, India
  • 4. School of Physical Sciences, DIT University Dehradun, Uttarakhand, 248009, India

Correspondence: ibeg@lahoreschool.edu.pk

DOI: https://doi.org/10.55976/dma.4202614771-9

  • Received

    03 November 2025

  • Revised

    10 December 2025

  • Accepted

    16 December 2025

  • Published

    30 December 2025

RAM Hesitant bifuzzy set Fuzzy set Transportation problem

Show More

Abstract


References
V

[1]Hitchcock, F. L. The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics. 1941; 20(1–4): 224-230. doi: 10.1002/SAPM1941201224.

[2]Dantzig, G. Linear Programming and Extensions. 1963. doi: 10.1515/9781400884179.

[3]Zadeh, L. A. Fuzzy sets. Information and Control. 1965; 8(3): 338–353. doi: 10.1016/S0019-9958(65)90241-X.

[4]Atanassov, K. T. Intuitionistic fuzzy sets. International journal bioautomation. 1999; 20:1-137. doi: 10.1007/978-3-7908-1870-3_1.

[5]Atanassov, K. T. Interval Valued Intuitionistic Fuzzy Sets. In: Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. 1999; vol 35. Physica, Heidelberg. doi:10.1007/978-3-7908-1870-3_2.

[6]Chaube, S., Joshi, D. K., & Ujarari, C. S. Hesitant Bifuzzy Set (an introduction): A new approach to assess the reliability of the systems. Mathematics and Computers in Simulation. 2023; 205: 98-107. doi: 10.1016/J.MATCOM.2022.09.019.

[7]Torra, V. Hesitant fuzzy sets. International journal of intelligent systems. 2010; 25(6): 529-539. doi: 10.1002/INT.20418.

[8]Zhu, B., Xu, Z., & Xia, M. Dual hesitant fuzzy sets. Journal of Applied Mathematics. 2012; (1): 879629. doi: 10.1155/2012/879629.

[9]Zimmermann, H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1978; 1(1), 45-55. doi: 10.1016/0165-0114(78)90031-3.

[10]ÓhÉigeartaigh, M. A fuzzy transportation algorithm. Fuzzy Sets and Systems. 1982; 8(3): 235-243. doi: 10.1016/S0165-0114(82)80002-X.

[11]Chanas, S., Kołodziejczyk, W., & Machaj, A. A fuzzy approach to the transportation problem. Fuzzy Sets and Systems. 1984; 13(3):211-221. doi: 10.1016/0165-0114(84)90057-5.

[12]Chanas, S., & Kuchta, D. A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems. 1996; 82: 305. doi: 10.1016/0165-0114(95)00278-2.

[13]Kaur, A., & Kumar, A. A new method for solving fuzzy transportation problems using ranking function. Applied Mathematical Modelling. 2011; 35(12): 5652-5661. doi: 10.1016/j.apm.2011.05.012.

[14]Gupta, S., Joshi, D. K., Awasthi, N., Chaube, S., & Joshi, B. Distance and Similarity Measures of Hesitant BiFuzzy Set and Its Applications in Pattern Recognition Problem. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. doi: 10.1007/978-981-99-4577-1_7.

[15]Gupta, S., Joshi, D. K., Awasthi, N., Pant, M., Joshi, B. prasad, & Chaube, S. Distance and similarity measures of Hesitant bifuzzy set and its applications in renewable energy systems. Mathematics and Computers in Simulation. 2024; 219: 321-336. doi: 10.1016/J.MATCOM.2023.12.021.

[16]Liu, S. T., & Kao, C. Solving fuzzy transportation problems based on extension principle. European Journal of Operational Research. 2004; 153(3): 661-674. doi: 10.1016/S0377-2217(02)00731-2.

[17]Pandian, P., & Natarajan, G. A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Applied Mathematical Sciences. 2010; 4(2): 79-90.

[18]Singh, P. A new method for solving dual hesitant fuzzy assignment problems with restrictions based on similarity measure. Applied Soft Computing. 2014; 24: 559-571. doi: 10.1016/J.ASOC.2014.08.008.

[19]Hasibuan, N. A. Russel approximation method and Vogel’s approximation method In solving transport problem. The International Journal of Informatics and Computer Science. 2017; 1(1). doi: 10.30865/IJICS.V1I1.454.

[20]Gupta, S., & Joshi, D. K. ORESTE Approach for sustainable supplier selection problem with probabilistic dual hesitant fuzzy information. AIP conference proceedings. 2024; 3025(1). doi: 10.1063/5.0201369/3270367.

How to Cite

Beg, I., Gupta, S., Ghosh, A., & Kumar Joshi, D. (2025). Novel Russell’s approximation method for transportation problem under hesitant bifuzzy environment. Decision Making and Analysis, 4(1), 1–9. https://doi.org/10.55976/dma.4202614771-9
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1