Ismat Beg 1 * , Soniya Gupta 2 , Arpa Ghosh 3 , Dheeraj Kumar Joshi 4
Correspondence: ibeg@lahoreschool.edu.pk
DOI: https://doi.org/10.55976/dma.4202614771-9
Show More
[1]Hitchcock, F. L. The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics. 1941; 20(1–4): 224-230. doi: 10.1002/SAPM1941201224.
[2]Dantzig, G. Linear Programming and Extensions. 1963. doi: 10.1515/9781400884179.
[3]Zadeh, L. A. Fuzzy sets. Information and Control. 1965; 8(3): 338–353. doi: 10.1016/S0019-9958(65)90241-X.
[4]Atanassov, K. T. Intuitionistic fuzzy sets. International journal bioautomation. 1999; 20:1-137. doi: 10.1007/978-3-7908-1870-3_1.
[5]Atanassov, K. T. Interval Valued Intuitionistic Fuzzy Sets. In: Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. 1999; vol 35. Physica, Heidelberg. doi:10.1007/978-3-7908-1870-3_2.
[6]Chaube, S., Joshi, D. K., & Ujarari, C. S. Hesitant Bifuzzy Set (an introduction): A new approach to assess the reliability of the systems. Mathematics and Computers in Simulation. 2023; 205: 98-107. doi: 10.1016/J.MATCOM.2022.09.019.
[7]Torra, V. Hesitant fuzzy sets. International journal of intelligent systems. 2010; 25(6): 529-539. doi: 10.1002/INT.20418.
[8]Zhu, B., Xu, Z., & Xia, M. Dual hesitant fuzzy sets. Journal of Applied Mathematics. 2012; (1): 879629. doi: 10.1155/2012/879629.
[9]Zimmermann, H. J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1978; 1(1), 45-55. doi: 10.1016/0165-0114(78)90031-3.
[10]ÓhÉigeartaigh, M. A fuzzy transportation algorithm. Fuzzy Sets and Systems. 1982; 8(3): 235-243. doi: 10.1016/S0165-0114(82)80002-X.
[11]Chanas, S., Kołodziejczyk, W., & Machaj, A. A fuzzy approach to the transportation problem. Fuzzy Sets and Systems. 1984; 13(3):211-221. doi: 10.1016/0165-0114(84)90057-5.
[12]Chanas, S., & Kuchta, D. A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems. 1996; 82: 305. doi: 10.1016/0165-0114(95)00278-2.
[13]Kaur, A., & Kumar, A. A new method for solving fuzzy transportation problems using ranking function. Applied Mathematical Modelling. 2011; 35(12): 5652-5661. doi: 10.1016/j.apm.2011.05.012.
[14]Gupta, S., Joshi, D. K., Awasthi, N., Chaube, S., & Joshi, B. Distance and Similarity Measures of Hesitant BiFuzzy Set and Its Applications in Pattern Recognition Problem. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. doi: 10.1007/978-981-99-4577-1_7.
[15]Gupta, S., Joshi, D. K., Awasthi, N., Pant, M., Joshi, B. prasad, & Chaube, S. Distance and similarity measures of Hesitant bifuzzy set and its applications in renewable energy systems. Mathematics and Computers in Simulation. 2024; 219: 321-336. doi: 10.1016/J.MATCOM.2023.12.021.
[16]Liu, S. T., & Kao, C. Solving fuzzy transportation problems based on extension principle. European Journal of Operational Research. 2004; 153(3): 661-674. doi: 10.1016/S0377-2217(02)00731-2.
[17]Pandian, P., & Natarajan, G. A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Applied Mathematical Sciences. 2010; 4(2): 79-90.
[18]Singh, P. A new method for solving dual hesitant fuzzy assignment problems with restrictions based on similarity measure. Applied Soft Computing. 2014; 24: 559-571. doi: 10.1016/J.ASOC.2014.08.008.
[19]Hasibuan, N. A. Russel approximation method and Vogel’s approximation method In solving transport problem. The International Journal of Informatics and Computer Science. 2017; 1(1). doi: 10.30865/IJICS.V1I1.454.
[20]Gupta, S., & Joshi, D. K. ORESTE Approach for sustainable supplier selection problem with probabilistic dual hesitant fuzzy information. AIP conference proceedings. 2024; 3025(1). doi: 10.1063/5.0201369/3270367.
Copyright © 2025 Ismat Beg, Soniya Gupta, Arpa Ghosh, Dheeraj Kumar Joshi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn