Correspondence: yj11021@korea.ac.kr
DOI: https://doi.org/10.55976/dma.32025145386-100
Show More
[1]Heidarzadeh M, Rabinovich AB. Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan. Natural Hazards. 2021;106(2):1639-72. doi: 10.1007/s11069-020-04448-0.
[2]Iwahashi J, Yamazaki D, Nakano T, Endo R. Classification of topography for ground vulnerability assessment of alluvial plains and mountains of Japan using 30 m DEM. Progress in Earth and Planetary Science. 2021;8(1):3. doi: 10.1186/s40645-020-00398-0.
[3]Upadhyaya AN, Debnath P, Rani P, Selvakumar P, Manjunath T, Bhattacharya S. AI-Based Disaster Prediction and Early Warning Systems. In: AI and Emerging Technologies for Emergency Response and Smart Cities. IGI Global Scientific Publishing; 2025. p. 55-74.
[4]Šakić Trogrlić R, Van Den Homberg M, Budimir M, McQuistan C, Sneddon A, Golding B. Early warning systems and their role in disaster risk reduction. In: Towards the "perfect" weather warning. Springer International Publishing Cham; 2022. p. 11-46.
[5]Huang Y, Li R, Zou F, Jiang L, Porter AL, Zhang L. Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological Forecasting and Social Change. 2022;181:121760. doi: 10.1016/j.techfore.2022.121760.
[6]Lee Y-J. Mapping the technological landscape of green smart buildings: A patent analytics of key topics, leading companies, and technology gaps. Journal of Building Engineering. 2024;98:111020. doi: 10.1016/j.jobe.2024.111020.
[7]Wang M, Sakaji H, Higashitani H, Iwadare M, Izumi K. Discovering new applications: Cross-domain exploration of patent documents using causal extraction and similarity analysis. World Patent Information. 2023;75:102238. doi: 10.1016/j.wpi.2023.102238.
[8]Malhotra A, Zhang H, Beuse M, Schmidt T. How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology. Research Policy. 2021;50(9):104318. doi: 10.1016/j.respol.2021.104318.
[9]Kwon K, Jun S, Lee Y-J, Choi S, Lee C. Logistics technology forecasting framework using patent analysis for technology roadmap. Sustainability. 2022;14(9):5430. doi:10.3390/su14095430.
[10]Matsuda Y, Onomura S, Nakayoshi M. A Vehicle-Based Observation System for Collecting Near-Ground Meteorological Big Data: A Case Study in the Tokyo Metropolitan Area. Scientific Online Letters on the Atmpsphere. 2025;21:199-207. doi: 10.2151/sola.2025-025.
[11]Hirahara S, Kubo Y, Yoshida T, Komori T, Chiba J, Takakura T, et al. Japan meteorological agency/meteorological research institute coupled prediction system version 3 (JMA/MRI–CPS3). Journal of the Meteorological Society of Japan Ser II. 2023;101(2):149-69. doi: 10.2151/jmsj.2023-009.
[12]Ikuta Y, Fujita T, Ota Y, Honda Y. Variational data assimilation system for operational regional models at Japan Meteorological Agency. Journal of the Meteorological Society of Japan Ser II. 2021;99(6):1563-92. doi: 10.2151/jmsj.2021-076.
[13]Takamatsu N, Muramatsu H, Abe S, Hatanaka Y, Furuya T, Kakiage Y, et al. New GEONET analysis strategy at GSI: daily coordinates of over 1300 GNSS CORS in Japan throughout the last quarter century. Earth, Planets and Space. 2023;75(1):49. doi: 10.1186/s40623-023-01787-7.
[14]Higuchi A. Toward more integrated utilizations of geostationary satellite data for disaster management and risk mitigation. Remote Sensing. 2021;13(8):1553. doi:10.3390/rs13081553.
[15]Nishiyama G, Namiki N, Sugita S, Uno S. Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8. Earth, Planets and Space. 2022;74(1):105. doi:10.1186/s40623-022-01662-x.
[16]Kamran M, Tanveer K, Khalid N, Khalil MN, Ahmad B, Arooj A, et al. Integrating advanced deep learning algorithms for climate systems: Enhancing weather forecast accuracy, real-time climate monitoring, and long-term climate predictions. Spectrum of Engineering Sciences. 2025; 3(6):365-403.
[17]Wickramasinghe NK, Nakamura Y, Senoguchi A, Lu X, editors. Benefit analysis of efficient trajectory planning with dynamic weather forecast information. In: Asia Pacific International Symposium On Aerospace Technology (APISAT 2024). Adelaide, South Australia: Engineers Australia; 2024.
[18]Mishra JP, Singh K, Chaudhary H. Research advancements in ocean environmental monitoring systems using wireless sensor networks: a review. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2023;21(3):513-27. doi:10.12928/telkomnika.v21i3.24010.
[19]Choi Y, Park S, Lee S. Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data. Scientometrics. 2021;126(7):5431-76. doi: 10.1007/s11192-021-04001-1.
[20]Dratler Jr J, McJohn SM. Intellectual property law: Commercial, creative and industrial property. Law Journal Press; 2025.
[21]Coccia M, Roshani S. Path-breaking directions in quantum computing technology: A patent analysis with multiple techniques. Journal of the Knowledge Economy. 2024:1-34. doi:10.1007/s13132-024-01977-y.
[22]Son J, Moon H, Lee J, Lee S, Park C, Jung W, et al. Ai for patents: a novel yet effective and efficient framework for patent analysis. IEEE Access. 2022;10:59205-18. doi: 10.1109/ACCESS.2022.3176877.
[23]Lin W, Yu W, Xiao R. Measuring patent similarity based on text mining and image recognition. Systems. 2023;11(6):294. doi: 10.3390/systems11060294.
[24]Jee J, Shin H, Kim C, Lee S. Six different approaches to defining and identifying promising technology through patent analysis. Technology Analysis & Strategic Management. 2022;34(8):961-73. doi: 10.1080/09537325.2021.1934437.
[25]Shokouhyar S, Maghsoudi M, Khanizadeh S, Jorfi S. Analyzing supply chain technology trends through network analysis and clustering techniques: A patent-based study. Annals of Operations Research. 2024;341(1):313-48. doi: 10.1007/s10479-024-06119-w.
[26]Bolam FC, Grainger MJ, Mengersen KL, Stewart GB, Sutherland WJ, Runge MC, et al. Using the value of information to improve conservation decision making. Biological Reviews. 2019; 94(2):629-47. doi:10.1111/brv.12471.
[27]Giuliani M, Pianosi F, Castelletti A. Making the most of data: An information selection and assessment framework to improve water systems operations. Water Resources Research. 2015;51(11):9073-93. doi: 10.1002/2015WR017044.
[28]Linville CD. Mathematical and computational techniques for research prioritization with an application to global climate change research. Carnegie Mellon University ProQuest Dissertations & These, 1998.
[29]Stankevych I, Yatskevych I, Sakun H, Vasylenko O, Siemens E, editors. Quantifying the Economic Impact of Investment Activities: Methods and Applications. In: Applied Innovations in Information and Communication Technology. ICAIIT 2024. 2024; 1338: 264-283. doi: 10.1007/978-3-031-89296-7_14.
[30]Chalkidou K, Lord J, Fischer A, Littlejohns P. Evidence-based decision making: when should we wait for more information? Health Affairs. 2008; 27(6):1642-53. doi: 10.1377/hlthaff.27.6.1642.
[31]Heath A, Kunst N, Jackson C. Value of Information for Healthcare Decision-making. New York: CRC Press; 2024.
[32]Heath A, Kunst N, Grimm S. Reporting and Presenting Value of Information Analyses. In: Value of Information for Healthcare Decision-Making. Chapman and Hall/CRC. 2024; p. 169-92.
[33]Noruzi A, Abdekhoda M. Google Patents: The global patent search engine. Webology. 2014;11(1).
[34]Kim J, Lee S. Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change. 2015; 92:332-45. doi: 10.1016/j.techfore.2015.01.009.
[35]Lan F. Research on Text Similarity Measurement Hybrid Algorithm with Term Semantic Information and TF‐IDF Method. Advances in Multimedia. 2022; 2022(1):7923262. doi: 10.1155/2022/7923262.
[36]Abu Bakar N, Rosbi S. Autoregressive integrated moving average (ARIMA) model for forecasting cryptocurrency exchange rate in high volatility environment: A new insight of bitcoin transaction. International Journal of Advanced Engineering Research and Science. 2017; 4(11):130-7. doi: 10.22161/ijaers.4.11.20.
[37]Wang F, Su Q, Zhang Z. The influence of collaborative innovation network characteristics on firm innovation performance from the perspective of innovation ecosystem. Kybernetes. 2024; 53(4):1281-305. doi:/10.1108/K-04-2022-0553.
[38]Elmezain M, Othman EA, Ibrahim HM. Temporal degree-degree and closeness-closeness: A new centrality metrics for social network analysis. Mathematics. 2021; 9(22):2850. doi: 10.3390/math9222850.
[39]Velandia J, Alfonso L. Not all sources of uncertainty are worth resolving: A value of information approach for uncertainty reduction in flood risk management. Journal of Flood Risk Management. 2024; 17(3):e12993. doi: 10.1111/jfr3.12993.
[40]Sadatsafavi M, Lee TY, Wynants L, Vickers AJ, Gustafson P. Value-of-information analysis for external validation of risk prediction models. Medical Decision Making. 2023; 43(5):564-75. doi: 10.1177/0272989X231178317.
Copyright © 2025 Yong-Jae Lee

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn