Nahed Bahman 1 * , Naser Naser 2
Correspondence: nahed.bahman@polytechnic.bh
DOI: https://doi.org/10.55976/dma.32025144457-71
Show More
[1]Bennett NJ, Whitty TS, Finkbeiner E, Pittman J, Bassett H, Gelcich S, et al. Environmental stewardship: A conceptual review and analytical framework. Environmental Management. 2018;61:597-614. doi: 10.1007/s00267-017-0993-2.
[2]Lipper L, DeFries R, Bizikova L. Shedding light on the evidence blind spots confounding the multiple objectives of SDG 2. Nature Plants. 2020;6(10):1203-10. doi: 10.1038/s41477-020-00792-y.
[3]Citaristi I. The Europa directory of international organizations 2022. London: Routledge; 2022. p. 701-2.
[4]Masanet E, Shehabi A, Lei N, Smith S, Koomey J. Recalibrating global data center energy-use estimates. Science. 2020; 367(6481):984-6. doi:10.1126/science.aba3758.
[5]Jones HP, Jones PC, Barbier EB, Blackburn RC, Rey Benayas JM, Holl KD, et al. Restoration and repair of Earth's damaged ecosystems. Proceedings of the Royal Society B: Biological Sciences. 2018;285(1873):20172577. doi: 10.1098/rspb.2017.2577.
[6]Aslan J, Mayers K, Koomey JG, France CJJoie. Electricity intensity of internet data transmission: Untangling the estimates. Journal of Industrial Ecology. 2017;22(4):785-98. doi: 10.1111/jiec.12630.
[7]Belkhir L, Elmeligi AJJocp. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. Journal of Cleaner Production. 2018;177:448-63. doi: 10.1016/j.jclepro.2017.12.239.
[8]Strubell E, Ganesh A, McCallum A, editors. Energy and policy considerations for modern deep learning research. Proceedings of the AAAI Conference on Artificial Intelligence. 2020; 34(09):13693-13696. doi: 10.1609/aaai.v34i09.7123.
[9]Patterson D, Gonzalez J, Le Q, Liang C, Munguia L-M, Rothchild D, et al. Carbon emissions and large neural network training. 2021. doi: 10.48550/arXiv.2104.10350.
[10]Cao Q, Kang W, Sajid MJ, Cao M. Research on the optimization of carbon abatement efficiency in China on the basis of task allocation. Journal of Cleaner Production. 2021; 299:126912. doi: 10.1016/j.jclepro.2021.126912.
[11]Katal A, Dahiya S, Choudhury T. Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Computing. 2023;26(3):1845-75. doi: 10.1007/s10586-022-03713-0.
[12]Herrera M, Xie X, Menapace A, Zanfei A, Brentan BM. Sustainable AI infrastructure: A scenario-based forecast of water footprint under uncertainty. Journal of Cleaner Production. 2025;526:146528. doi: 10.1016/j.jclepro.2025.146528.
[13]Google. Google Environmental Report 2023. Available from: https://sustainability.google/reports/google-2023-environmental-report/ [Accessed 18th September 2025].
[14]Lei N, Masanet E. Climate-and technology-specific PUE and WUE estimations for US data centers using a hybrid statistical and thermodynamics-based approach. Resources, Conservation and Recycling. 2022;182:106323. doi: 10.1016/j.resconrec.2022.106323.
[15]Karimi L, Yacuel L, Degraft-Johnson J, Ashby J, Green M, Renner M, et al. Water-energy tradeoffs in data centers: A case study in hot-arid climates. Resources, Conservation and Recycling. 2022;181:106194. doi: 10.1016/j.resconrec.2022.106194.
[16]Mytton D. Data centre water consumption. npj Clean Water. 2021; 4(1):11. doi: 10.1038/s41545-021-00101-w.
[17]Parkinson S, Krey V, Huppmann D, Kahil T, McCollum D, Fricko O, et al. Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters. 2019;14(1):014009. doi: 10.1088/1748-9326/aaf2a3.
[18]Tisserand J-C, Hopfensitz A, Blondel S, Loheac Y, Mantilla C, Mateu G, et al. Management of common pool resources in a nation-wide experiment. Ecological Economics. 2022;201:107566. doi: 10.1016/j.ecolecon.2022.107566.
[19]UN Environment, ed. Global Environment Outlook – GEO-6: Healthy Planet, Healthy People. Cambridge University Press; 2019.
[20]Song Z, Pan Y, Chen H, Zhang T. Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review. Applied Energy. 2021;302:117572. doi:10.1016/j.apenergy.2021.117572.
[21]Forti V, Baldé CP, Kuehr R, Bel G. The global e-waste monitor 2020: Quantities, flows and the circular economy potential. 2020.
[22]Schnidrig J, Souttre M, Chuat A, Maréchal F, Margni M. Between green hills and green bills: Unveiling the green shades of sustainability and burden shifting through multi-objective optimization in Swiss energy system planning. Journal of Environmental Management. 2024;370:122537. doi: 10.1016/j.jenvman.2024.122537.
[23]Persson L, Carney Almroth BM, Collins CD, Cornell S, De Wit CA, Diamond ML, et al. Outside the safe operating space of the planetary boundary for novel entities. Environmental Science & Technology. 2022;56(3):1510-21. doi: 10.1021/acs.est.1c04158.
[24]Bahman N, Khan E, Mahmood T. Comparative Life Cycle Assessment of Airport Ground Operations: Environmental Impact of Diesel, Biodiesel, and Electric Sources. Environmental and Climate Technologies. 2024; 28(1). doi: 10.2478/rtuect-2024-0066.
[25]Wiedmann T, Chen G, Owen A, Lenzen M, Doust M, Barrett J, et al. Three‐scope carbon emission inventories of global cities. Journal of Industrial Ecology. 2021;25(3):735-50. doi: 10.1111/jiec.13063.
[26]Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009; 461:472-475. doi: 10.1038/461472a.
[27]Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, et al. Planetary boundaries: Guiding human development on a changing planet. Science. 2015;347(6223):1259855. doi:10.1126/science.1259855.
[28]O’Neill DW, Fanning AL, Lamb WF, Steinberger JK. A good life for all within planetary boundaries. Nature Sustainability. 2018;1(2):88-95. doi: 10.1038/s41893-018-0021-4.
[29]Häyhä T, Lucas PL, van Vuuren DP, Cornell SE, Hoff H. From Planetary Boundaries to national fair shares of the global safe operating space—How can the scales be bridged? Global Environmental Change. 2016;40:60-72. doi: 10.1016/j.gloenvcha.2016.06.008.
[30]Lange S, Pohl J, Santarius T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics. 2020;176:106760. doi: 10.1016/j.ecolecon.2020.106760.
[31]Ebert K, Alder N, Herbrich R, Hacker P. AI, Climate, and Regulation: From Data Centers to the AI Act. 2024. doi: 10.48550/arXiv.2410.06681.
[32]Teng Z, He Y, Qiao Z. Exploring the synergistic effects of digitalization and economic uncertainty on environmental sustainability: An investigation from China. Sustainability. 2023;15(15):11997. doi: /10.3390/su151511997.
[33]Garcia-Herrero L, Sanye-Mengual E, Casonato C, Listorti G. Life Cycle Assessment (and Environmental Footprint) to support food labelling schemes: an overview of current proposals and future directions. Cleaner Environmental Systems. 2025; (19):100334. doi:10.1016/j.cesys.2025.100334.
[34]Bahman N, Naser N, Khan E, Mahmood T. Environmental science, policy, and industry nexus: Integrating Frameworks for better transport sustainability. Global Transitions. 2025;7:29-40. doi: 10.1016/j.glt.2024.12.001.
[35]Richardson K, Steffen W, Lucht W, Bendtsen J, Cornell SE, Donges JF, et al. Earth beyond six of nine planetary boundaries. Science Advances. 2023; 9(37):eadh2458. doi: 10.1126/sciadv.adh2458.
[36]Kim J, Park J, Dedrick J. An Empirical Investigation of Cloud Computing and Environmental Performance of Nations: Implications for Shared Responsibility in Cloud Computing. Journal of the Association for Information System. 2025; 26(5). doi: 10.17705/1jais.00946.
[37]Douville TC, Bhatnagar D. Exploring the grid value of offshore wind energy in oregon. Energies. 2021;14(15):4435. doi: 10.3390/en14154435.
[38]Arodudu O, Helming K, Wiggering H, Voinov A. Towards a more holistic sustainability assessment framework for agro-bioenergy systems—A review. Environmental Impact Assessment Review. 2017;62:61-75. doi: 10.1016/j.eiar.2016.07.008.
[39]Lim CI, Biswas W. An evaluation of holistic sustainability assessment framework for palm oil production in Malaysia. Sustainability. 2015;7(12):16561-87. doi: 10.3390/su71215833.
[40]Lykou G, Mentzelioti D, Gritzalis D. A new methodology toward effectively assessing data center sustainability. Computers & Security. 2018;76:327-40. doi: 10.1016/j.cose.2017.12.008.
[41]Zinchenko V, Polishchuk O, Yakovleva O, Slyusarenko O, Rudenko Y, Lakusha N, editors. Towards a new anthropocene: the intersection of human evolution and environmental stewardship in the information era. VI International Scientific Forum on Computer and Energy Sciences (WFCES 2024). 2024; 541: E3S Web of Conferences. Ecology and Environmental Sciences. doi: 10.1051/e3sconf/202454104006.
[42]Streimikis J, Baležentis T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustainable Development. 2020;28(6):1702-12. doi: 10.1002/sd.2118.
[43]Goldemberg J, Coelho ST, Guardabassi P. The sustainability of ethanol production from sugarcane. Renewable Energy. Routledge; 2018. p. Vol3_321-Vol3_45.
Copyright © 2025 Nahed Bahman, Naser Naser

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn