Iftikhar Ul Haq 1 , Tanzeela Shaheen 2 , Wajid Ali 3 * , Adeel Arshad 4 , Muhammad Kumail 5
Correspondence: wajidali00258@gmail.com
DOI: https://doi.org/10.55976/dma.320251437101-121
Show More
[1]Pawlak Z. Rough sets. International Journal of Computer & Information Sciences. 1982; (11): 341-356. doi:10.1007/BF01001956.
[2]Zengtai Gong, Xiaoxia Zhang. On characterization of fuzzy soft, rough sets based on a pair of border implicators. Fundamenta Informaticae. 2015; 137(4): 457-491. doi: 10.3233/FI-2015-1190.
[3]Yulin He, Xizhao Wang, Joshua Zhexue Huang. Recent advances in multiple criteria decision-making techniques. International Journal of Machine Learning and Cybernetics. 2022; 13: 561-564. doi: 10.1007/s13042-015-0490-y.
[4]Witold Pedrycz, George Vukovich. Granular neural networks. Neurocomputing. 2001; 36(1-4): 205-224. doi: 10.1016/S0925-2312(00)00342-8.
[5]W. Pedrycz. Associations and rules in data mining: a linkage analysis. 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).Honolulu, HI, USA, 2002; 2: 867-871. doi: 10.1109/FUZZ.2002.1006618.
[6]W. Pedrycz. Granular computing: analysis and design of intelligent systems. Boca Raton: CRC press; 2018. doi:10.1201/9781315216737.
[7]Xi-Zhao Wang, Rana Aamir Raza Ashfaq, Ai-Min Fu. Fuzziness based sample categorization for classifier performance improvement. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 2015; 29(3): 1185-1196. doi: 10.3233/IFS-151729.
[8]Jianhua Dai, Wentao Wang, Ju-Sheng Mi. Uncertainty measurement for interval-valued information systems. Information Sciences. 2013; 251: 63-78. doi: 10.1016/j.ins.2013.06.047.
[9]Jianhua Dai, Qing Xu. Approximations and uncertainty measures in incomplete information systems. Information Sciences. 2012 (198): 62-80. doi: 10.1016/j.ins.2012.02.032.
[10]Ivo Düntsch, Günther Gediga. Uncertainty measures of rough set prediction. Artificial Intelligence. 1998; 106(1): 109-137. doi: 10.1016/S0004-3702(98)00091-5.
[11]Zdzisław Pawlak, Andrzej Skowron. Rough sets: some extensions. Information Sciences. 2007; 177(1): 28-40. doi: 10.1016/j.ins.2006.06.006.
[12]Zdzisław Pawlak, Andrzej Skowron. Rudiments of rough sets. Information Sciences. 2007; 177(1): 3-27. doi: 10.1016/j.ins.2006.06.003.
[13]Zdzisław Pawlak, Andrzej Skowron. Rough sets and Boolean reasoning. Information Sciences. 2007; 177(1): 41-73. doi: 10.1016/j.ins.2006.06.007.
[14]Marzena Kryszkiewicz. Rough set approach to incomplete information systems. Information Sciences. 1998; 112(1-4): 39-49. doi: 10.1016/S0020-0255(98)10019-1.
[15]Yuhua Qian, Jiye Liang, Witold Pedrycz, Chuangyin Dang. Positive approximation: an accelerator for attribute reduction in rough set theory. Artificial Intelligence. 2010; 174(9-10): 597-618. doi: 10.1016/j.artint.2010.04.018.
[16]Wei-Zhi Wu, Mei Zhang, Huai-Zu Li, Ju-Sheng Mi. Knowledge reduction in random information systems via Dempster–Shafer theory of evidence. Information Sciences. 2005; 174(3-4): 143-164. doi: 10.1016/j.ins.2004.09.002.
[17]Zdzisław Pawlak. Rough sets: Theoretical aspects of reasoning about data. Springer Dordrecht; 1991. doi: 10.1007/978-94-011-3534-4.
[18]Janusz A. Pomykala. Approximation operations in approximation space. Bulletin of the Polish Academy of Sciences. 1987; 35(9-10): 653-662.
[19]Roman Slowinski, Daniel Vanderpooten. A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering. 2000; 12(2): 331-336. doi: 10.1109/69.842271.
[20]Wei-Zhi Wu, Wen-Xiu Zhang. Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences. 2004; 159(3-4): 233-254. doi: 10.1016/j.ins.2003.08.005.
[21]Yiyu Yao, Yaohua Chen. Subsystem based generalizations of rough set approximations. International Symposium on Methodologies for Intelligent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. doi: 10.1007/11425274_22.
[22]William Zhu. Relationship among basic concepts in covering-based rough sets. Information Sciences. 2009; 179(14): 2478-2486. doi: 10.1016/j.ins.2009.02.013.
[23]Gong, Zengtai, and Xiaoxia Zhang. Variable precision intuitionistic fuzzy rough sets model and its application. International Journal of Machine Learning and Cybernetics. 2014; 5: 263-280. doi: 10.1007/s13042-013-0162-8.
[24]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Rough approximation by dominance relations. International Journal of Intelligent Systems. 2002; 17(2): 153-171. doi: 10.1002/int.10014.
[25]Andrzej Skowron, Jaroslaw Stepaniuk. Tolerance approximation spaces. Fundamenta Informaticae. 1996; 27(2-3): 245-253. doi: 10.3233/FI-1996-272311.
[26]Wojciech Zakowski. Approximations in the space (u, π). Demonstratio Mathematica. 1983; 16(3): 761-770. doi: 10.1515/dema-1983-0319.
[27]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. A new rough set approach to multicriteria and multiattribute classification. Rough Sets and Current Trends in Computing: First International Conference, RSCTC 1998. Warsaw, Poland, June 22–26, 1998 Proceedings 1. Springer Berlin Heidelberg, 1998. doi: 10.1007/3-540-69115-4_9.
[28]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research. 2001; 129(1): 1-47. doi: 10.1016/S0377-2217(00)00167-3.
[29]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research. 2002; 138(2): 247-259. doi: 10.1016/S0377-2217(01)00244-2.
[30]Xiaolu Zhang. A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems. 2016; 31(6): 593-611. doi: 10.1002/int.21796.
[31]M. Zulqarnain, Fazal Dayan. Selection of best alternative for an automotive company by intuitionistic fuzzy TOPSIS method. International Journal of Scientific & Technology Research. 2017; 6(10): 126-132.
[32]Rana Muhammad Zulqarnain, Xiao Long Xin, et al. Some fundamental operations on interval valued neutrosophic hypersoft set with their properties. Neutrosophic Sets and Systems. 2021; 40(1): 8. doi: 10.5281/zenodo.4549352.
[33]Rana Muhammad Zulqarnain, Imran Siddique, et al. Neutrosophic Hypersoft Matrices with Application to Solve Multiattributive Decision‐Making Problems. Complexity. 2021;1: 5589874. doi: 10.1155/2021/5589874.
[34]Tahir Mahmood, Wajid Ali, et al. Power aggregation operators and similarity measures based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute decision making. Computer Modeling in Engineering & Sciences. 2021; 126(3): 1165-1187. doi: 10.32604/cmes.2021.014393.
[35]Muhammad Zulqarnain, Fazal Dayan. Choose best criteria for decision making via fuzzy topsis method. Mathematics and Computer Science. 2017; 2(6): 113-119. doi: 10.11648/j.mcs.20170206.14.
[36]Rana Muhammad Zulqarnain, Hong-Liang Dai, Wen-Xiu Ma, et al. Supplier selection in green supply chain management using correlation-based TOPSIS in a q-rung orthopair fuzzy soft environment. Heliyon. 2024; 10(11). doi: 10.1016/j.heliyon. 2024.e32145.
[37]Xiaolu Zhang. A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems. 2016; 31(6): 593-611. doi: 10.1002/int.21796.
[38]Ming‐Wen Shao, Wen‐Xiu Zhang. Dominance relation and rules in an incomplete ordered information system. International Journal of Intelligent Systems. 2005; 20(1): 13-27. doi: 10.1002/int.20051.
[39]Rana Muhammad Zulqarnain, Hafiz Khalil Ur Rehman, Jan Awrejcewicz, et al. Extension of Einstein average aggregation operators to medical diagnostic approach under Q-rung orthopair fuzzy soft set. IEEE Access. 2022; 10: 87923-87949. doi:10.1109/ACCESS.2022.3199069.
[40]Xiaolu Zhang, Zeshui Xu. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems. 2014; 29(12): 1061-1078. doi: 10.1002/int.21676.
[41]Rana Muhammad Zulqarnain, Imran Siddique, Aiyared Iampan, et al. Novel multicriteria decision making approach for interactive aggregation operators of q-rung orthopair fuzzy soft set. IEEE Access. 2022; (10): 59640-59660. doi: 10.1109/ACCESS.2022.3178595.
[42]Shahid Hussain Gurmani, Harish Garg, Rana Muhammad Zulqarnain, et al. Selection of unmanned aerial vehicles for precision agriculture using interval-valued q-rung orthopair fuzzy information based TOPSIS method. International Journal of Fuzzy Systems. 2023; 25(8): 2939-2953. doi: 10.1007/s40815-023-01568-0.
[43]Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain. An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider. AIMS Mathematics. 2023; 8(9): 20223-20253. doi: 10.3934/math.20231031.
[44]Afshan Qayyum, Norseen Mushtaq, Tanzeela Shaheen, et al. Some Similarity Measures on Generalized Interval-Valued Intuitionistic Fuzzy Soft Expert Sets and Their Applications in Medical Diagnosis. Neutrosophic Systems with Applications. 2024; 23 (1): 47-67. doi: 10.61356/j.nswa.2024.23398.
[45]Jerzy Błaszczyński, Salvatore Greco, et al. On variable consistency dominance-based rough set approaches. In: Rough Sets and Current Trends in Computing: 5th International Conference, RSCTC 2006. Kobe, Japan, November 6-8, 2006, Proceedings 5. Springer Berlin Heidelberg, 2006. doi: 10.1007/11908029_22.
[46]Salvatore Greco, Masahiro Inuiguchi, Roman Slowinski. Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning. 2006; 41(2): 179-211. doi: 10.1016/j.ijar.2005.06.014.
[47]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Dominance-based rough set approach to case-based reasoning. In: Modeling Decisions for Artificial Intelligence: Third International Conference. MDAI 2006, Tarragona, Spain, April 3-5, 2006. Proceedings 3. Springer Berlin Heidelberg, 2006. doi: 10.1007/11681960_3.
[48]Bing Huang, Hua-xiong Li, Da-kuan Wei. Dominance-based rough set model in intuitionistic fuzzy information systems. Knowledge-Based Systems. 2012; 28: 115-123. doi: 10.1016/j.knosys.2011.12.008.
[49]Bing Huang, Da-kuan Wei, Hua-xiong Li, et al. Using a rough set model to extract rules in dominance-based interval-valued fuzzy intuitionistic information systems. Information Sciences. 2013; 221: 215-229. doi: 10.1016/j.ins.2012.09.010.
[50]Bing Huang, Yu-liang Zhuang, Hua-xiong Li, et al. A dominance intuitionistic fuzzy-rough set approach and its applications. Applied Mathematical Modelling. 2013; 37(12-13): 7128-7141. doi: 10.1016/j.apm.2012.12.009.
[51]Wajid Ali, Tanzeela Shaheen, Hamza Ghazanfar Toor, et al. An improved intuitionistic fuzzy decision-theoretic rough set model and its application. Axioms. 2023; 12(11): 1003. doi: 10.3390/axioms12111003.
[52]Jerzy Błaszczyński, Salvatore Greco, Roman Słowiński, et al. Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning. 2009; 50(7): 979-999. doi: 10.1016/j.ijar.2009.02.011.
[53]Wojciech Ziarko. Variable precision rough set model. Journal of Computer and System Sciences. 1993; 46(1): 39-59. doi: 10.1016/0022-0000(93)90048-2.
[54]Qing-Hua Hu, Da-Ren Yu. Variable precision dominance based rough set model and reduction algorithm for preference-ordered data. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826). IEEE. 2004; 4. doi: 10.1109/ICMLC.2004.1382179.
[55]Tanzeela Shaheen, Wajid Ali, Bilal Hussain, et al. A Novel Multi-Granulation Model based on $alpha $-Fuzzified Rough Set Environment and its Application in Classification. Advances in Fuzzy Sets and Systems. 2024; 29(1): 39-68. doi: 10.17654/0973421X24003.
[56]Yuhua Qian, Jiye Liang, Chuangyin Dang. Interval ordered information systems. Computers & Mathematics with Applications. 2008; 56(8): 1994-2009. doi: 10.1016/j.camwa.2008.04.021.
[57]Iftikhar Ul Haq, Tanzeela Shaheen, Wajid Ali, et al. A Novel SIR Approach to Closeness Coefficient-Based MAGDM Problems Using Pythagorean Fuzzy Aczel–Alsina Aggregation Operators for Investment Policy. Discrete Dynamics in Nature and Society. 2022. doi: 10.1155/2022/5172679.
[58]Iftikhar Ul Haq, Tanzeela Shaheen, Wajid Ali, et al. Novel Fermatean Fuzzy Aczel–Alsina Model for Investment Strategy Selection. Mathematics. 2023; 11(14): 3211. doi: 10.3390/math11143211.
[59]Iftikhar Ul Haq, Tanzeela Shaheen, HamzaToor, et al. Incomplete Dominance-based Intuitionistic Fuzzy Rough Sets and their Application in Estimation of Inflation Rates in the Least Developed Countries. IEEE Access. 2023; 11: 66614-66625. doi: 10.1109/ACCESS.2023.3290963.
[60]Ronald R. Yager. Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems. 2016; 25(5): 1222-1230. doi: 10.1109/TFUZZ.2016.2604005.
Copyright © 2025 Iftikhar Ul Haq, Tanzeela Shaheen, Wajid Ali, Adeel Arshad, Muhammad Kumail

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn