Make Knowledge Veritable, Visible and Valuable.

Research on inclination angle design of container loading and unloading platform based on sliding rail type three-dimensional wharf

Taiyang Li 1 , Mingjie Li 2 * , Fangwei Zhang 3 , Muran Wang 4 , Mengchen Wang 5

  • 1. School of Navigation and Shipping, Shandong Jiaotong University, Weihai, 264209, China
  • 2. School of International Business, Shandong Jiaotong University, Weihai, 264209, China
  • 3. School of International Business, Shandong Jiaotong University, Weihai, 264209, China
  • 4. School of Civil Engineering, Yantai University, Yantai, 264005, China
  • 5. School of International Business, Shandong Jiaotong University, Weihai, 264209, China

Correspondence: 201046@sdjtu.edu.cn

DOI: https://doi.org/10.55976/dma.3202513131-13

  • Received

    08 October 2024

  • Revised

    21 November 2024

  • Accepted

    02 December 2024

  • Published

    17 December 2024

Three-dimensional wharf Friction coefficient Optimal inclination Container handling Safety

Show More

Abstract


References
V

[1]Carlo H J, Vis I F A, Roodbergen K J. Seaside operations in container terminals: literature overview, trends, and research directions. Flexible Services and Manufacturing Journal. 2015; 27: 224-262. doi: 10.1007/S10696-013-9178-3.

[2]Younis G, Kamar L B, Attya H. Development strategy of the port said container terminal. NAŠE MORE: znanstveni časopis za more i pomorstvo. 2010; 57(1-2): 1-17.

[3]Song L, Ravesteijn W. Responsible port innovation in China: the case of the Yangshan port extension project. International Journal of Critical Infrastructures. 2015; 11(4): 297-315. doi: 10.1504/IJCIS.2015.073841.

[4]Zhou Q, Jiao Z, Huang Z, et al. Wear-resistant CrCoNi nanocrystalline film via friction-driven surface segregation. Acta Materialia. 2024; 279: 120299. doi: 10.1016/j.actamat.2024.120299.

[5]Bielli M, Boulmakoul A, Rida M. Object oriented model for container terminal distributed simulation. European Journal of Operational Research. 2006; 175(3): 1731-1751. doi: 10.1016/j.ejor.2005.02.037.

[6]Zhou Q, Xia Q, Li Q, et al. Microstructure, mechanical and tribological properties of NbMoWTaAg refractory high entropy films with nano-layered self-organization. Tribology International. 2024: 109888. doi: 10.1016/j.triboint.2024.109888.

[7]L. Zhang, X. F. Shi and Q. Lu. DEDS modeling method and evaluation of container terminal three-dimensional rail network transmission system. Transportation and Computer. 2008; 1: 49-54. doi: 10.3963/j.issn.1674-4861.2008.01.012.

[8]Ren Y, Huang Z, Wang Y, et al. Friction-induced rapid amorphization in a wear-resistant (CoCrNi) 88Mo12 dual-phase medium-entropy alloy at cryogenic temperature. Composites Part B: Engineering. 2023; 263: 110833. doi: 10.1016/j.compositesb.2023.110833.

[9]C. X. Pan, J. L. Wang, X. D. Zhao and Q. Lu. Tridimensional rail terminal transmission system modeling and simulation. Computer Engineering and Applications. 2011; 47(31): 230-233. doi: 10.3778/j.issn.1002-8331.2011.31.065.

[10]X. F. Shi, L. L. Liang and Q. Lu. A new algorithm for hybrid allocation of three-dimensional track equipment in automated container terminal. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition). 2013; 37(04): 745-748. doi: 10.3963/j.issn.2095-3844.2013.04.018.

[11]Roy D, Gupta A, De Koster R B M. A non-linear traffic flow-based queuing model to estimate container terminal throughput with AGVs. International Journal of Production Research. 2016; 54(2): 472-493. doi: 10.1080/00207543.2015.1056321.

[12]Z. B. Zhao and W. Liu. Design of "zero turnover" automatic three-dimensional storage yard and general layout of wharf. Water Transportation Engineering. 2022; (02): 37-45. doi: 10.16233/j.cnki.issn1002-4972.20220125.011.

[13]Hartmann S. Generating scenarios for simulation and optimization of container terminal logistics. Or Spectrum. 2004; 26(2): 171-192. doi: 10.1007/3-540-26686-0_4.

[14]Z. P. Zhou, M. L. Liang and C. X. Pan. Genetic algorithm based scheduling strategy for three-dimensional wharf transportation system. Computer Engineering and Applications. 2013; 49(12): 228-232. doi: 10.3778/j.issn.1002-8331.1204-0283.

[15]Gharehgozli A, Zaerpour N, de Koster R. Container terminal layout design: transition and future. Maritime Economics & Logistics. 2020; 22: 610-639. doi: 10.1057/s41278-019-00131-9.

[16]Muravev D, Hu H, Rakhmangulov A, et al. Multi-agent optimization of the intermodal terminal main parameters by using AnyLogic simulation platform: Case study on the Ningbo-Zhoushan Port. International Journal of Information Management. 2021; 57: 102133. doi: 10.1016/j.ijinfomgt.2020.102133.

[17]Hu X, Ji S, Hua H, et al. An Improved Genetic Algorithm for Berth Scheduling at Bulk Terminal. Computer Systems Science & Engineering. 2022; 43(3). doi: 10.32604/csse.2022.029230.

[18]Yang Y L, Ding J F, Chiu C C, et al. Core risk factors influencing safe handling operations for container terminals at Kaohsiung port. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2016; 230(2): 444-453. doi: 10.1177/1475090214563859.

[19]D. R. Fang. Handling technology scheme of inland bulk grain wharf in rainy areas. Engineering and Construction. 2018; 32(05): 717-718. doi: 10.3969/j.issn.1673-5781.2018.05.022.

[20]Wang N, Chang D, Shi X, et al. Analysis and design of typical automated container terminals layout considering carbon emissions. Sustainability. 2019; 11(10): 2957. doi: 10.3390/su11102957.

[21]Abu Aisha T, Ouhimmou M, Paquet M. Optimization of container terminal layouts in the seaport—Case of port of Montreal. Sustainability. 2020; 12(3): 1165. doi: 10.3390/su12031165.

[22]Yuan L, Jin J, Xu Y, et al. Study on recognition method of similar weather scenes in terminal area. Computer Systems Science and Engineering. 2023; 44(2): 1171-1185. doi: 10.32604/csse.2023.027221.

[23]Dick C T, Dirnberger J R. Advancing the science of yard design and operations with the CSX hump yard simulation system. Proceedings of the 2014 Joint Rail Conference. 2014 Joint Rail Conference. Colorado Springs, Colorado, USA. 2014. V001T04A006. ASME. doi: 10.1115/JRC2014-3841.

[24]Zhang J., Ioannou P A, Chassiakos A. Automated container transport system between inland port and terminals. ACM Transactions on Modeling and Computer Simulation. 2006; 16(2): 95-118. doi: 10.1145/1138464.1138465.

[25]Başlamişli S C, Ünlüsoy Y S. Optimization of speed control hump profiles. Journal of transportation engineering. 2009; 135(5): 260-269. doi: 10.1061/(ASCE)TE.1943-5436.0000002.

[26]Tan C., He J., Wang Y. Storage yard management based on flexible yard template in container terminal. Advanced Engineering Informatics. 2017; 34: 101-113. doi: 10.1016/j.aei.2017.10.003.

[27]Guo L., Wang J., Zheng J.. Berth allocation problem with uncertain vessel handling times considering weather conditions. Computers & Industrial Engineering. 2021; 158: 107417. doi: 10.1016/j.cie.2021.107417.

[28]Chen F., Yu X. Issues and Countermeasures of Roll-on/Roll-off Transshipment for Track-Type Container Gantry Cranes. Journal of Nanjing Institute of Industrial Technology. 2017; 17(2): 7-9. doi: 10.15903/j.cnki.jniit.2017.02.003.

[29]Liang Dawei. Technical Characteristics and Design Innovations of Track-Type Container Gantry Cranes. China Equipment Engineering. 2018; (15):174-175.

[30]Chai Z., Cui Z., Xie H. Control of Interference from the Cable Electromagnetic Field on IGV Magnetic Pins at Automated Container Terminals. Waterway Engineering. 2022; (10): 199-203. doi: 10.16233/j.cnki.issn1002-4972.20220927.031.

[31]Huynh N., Walton C M, Davis J. Finding the number of yard cranes needed to achieve desired truck turn time at marine container terminals. Transportation Research Record. 2004; 1873(1): 99-108. doi: 10.3141/1873-12.

[32]Zhao Y. The slowest AC drive traction flat car in China - the conveyor subsystem of the customs container inspection system. Electric Locomotive Technology. 2000; (04): 21-22. doi: 10.16212/j.cnki.1672-1187.2000.04.008.

[33]Liu J., Zhao Q. and Qi Z. Research on the integration of electric locomotive technology, 5.0 M high mining height, fully mechanized mining, intensive and efficient technology. Journal of Coal. 2010; 35(11): 1783-1788. doi: 10.13225/j.cnki.jccs.2010.11.004.

How to Cite

Li, T., Li, M., Zhang, F., Wang, M., & Wang, M. (2024). Research on inclination angle design of container loading and unloading platform based on sliding rail type three-dimensional wharf. Decision Making and Analysis, 3(1), 1–13. https://doi.org/10.55976/dma.3202513131-13
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.