Make Knowledge Veritable, Visible and Valuable.

Simulation model of perishable item picking policies in the buffer stock of a push-pull supply chain

Daniel Thiel 1 * , Vincent Hovelaque 2 , Delphine David 3

  • 1. University Sorbonne Paris Nord, CEPN, UMR 7234 CNRS, France
  • 2. University of Rennes, IGR-IAE, CREM, UMR 6211 CNRS, France
  • 3. University Sorbonne Paris Nord, CEPN, UMR 7234 CNRS, France

Correspondence: daniel.thiel@univ-paris13.fr

DOI: https://doi.org/10.55976/dma.22024129388-104

  • Received

    02 August 2024

  • Revised

    05 October 2024

  • Accepted

    23 October 2024

  • Published

    31 October 2024

Simulation Perishable inventory FIFO LIFO Push-pool supply chain Food waste

Show More

Abstract


References
V

[1]Eurostat Statistics Explained. Food waste and food waste prevention - estimates. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates. [Accessed 5th October 2024].

[2]European Commission. Food waste reduction targets. Available from: https://food.ec.europa.eu/food-safety/food-waste/eu-actions-against-food-waste/food-waste-reduction-targets_en. [Accessed 5th October 2024].

[3]Garrone P, Melacini M, Perego A, Sert S. Reducing food waste in food manufacturing companies. Journal of Cleaner Production. 2016; 137: 1076-doi: 1085.10.1016/j.jclepro.2016.07.145.

[4]La Scalia G, Micale R, Miglietta PP, Toma P. Reducing waste and ecological impacts through a sustainable and efficient management of perishable food based on the Monte Carlo simulation. Ecological Indicators. 2019; 97: 363-371. doi: 10.1016/j.ecolind.2018.10.041.

[5]Bertolini M, Bottani E, Rizzi A, Volpi A, Renzi P. Shrinkage reduction in perishable food supply chain by means of an RFID-based FIFO management policy. International Journal of RF Technologies. 2013; 5: 123-136. doi: 10.3233/RFT-130052.

[6]Salinas Segura A, Thiesse F. A comparison of sensor-based issuing policies in the perishables supply chain. International Journal of RF Technologies. 2017; 8: 123-141. doi: 10.3233/RFT-171672.

[7]Derman C, Klein M. Inventory Depletion Management. Management Science. 1958; 4: 450-456. doi: 10.1287/mnsc.4.4.450.

[8]Lieberman GJ. LIFO vs FIFO in Inventory Depletion Management. Management Science. 1958; 5: 102-105. doi: 10.1287/mnsc.5.1.102.

[9]Wells JH, Singh RP. A quality based inventory issue policy for perishable foods. Journal of Food Processing and Preservation. 1989; 12: 271-292. doi: 10.1111/j.1745-4549.1989.tb00086.x.

[10]Cohen MA, Prastacos GP. Critical number ordering policy for LIFO perishable inventory systems. Computers & Operations Research. 1981; 8: 185-195. doi: 10.1016/0305-0548(81)90007-1.

[11]Keilson J, Seidmann A. Product Selection Policies for Perishable Inventory Systems. Working Paper, Massachusetts Institute of Technology, Operations Research Center. Available from: https://dspace.mit.edu/handle/1721.1/5372. [Accessed 28th September 2024].

[12]Parlar M, Perry D, Stadje W. FIFO Versus LIFO Issuing Policies for Stochastic Perishable Inventory Systems. Methodology and Computing in Applied Probability. 2011; 13: 405-417. doi: 10.1007/s11009-009-9162-2.

[13]Haijema R, Minner S. Improved ordering of perishables: The value of stock-age information. International Journal of Production Economics. 2019; 209: 316-324. doi: 10.1016/j.ijpe.2018.03.008.

[14]Karaesmen IZ, Scheller–Wolf A, Deniz B. Managing Perishable and Aging Inventories: Review and Future Research Directions. In: Kempf KG, Keskinocak P, Uzsoy R (eds) Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook, Volume 1. 2011. New York, NY: Springer US, pp. 393-436.

[15]Bakker M, Riezebos J, Teunter RH. Review of inventory systems with deterioration since 2001. European Journal of Operational Research. 2012; 221: 275-284. doi: 10.1016/j.ejor.2012.03.004.

[16]Janssen L, Claus T, Sauer J. Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics. 2016; 182: 86-112. doi: 10.1016/j.ijpe.2016.08.019.

[17]Hendrix EMT, Pauls-Worm KGJ, de Jong MV. On Order Policies for a Perishable Product in Retail. Informatica. 2023; 34: 271-283. doi: 10.15388/23-INFOR520.

[18]Broekmeulen RR, Donselaar V. A replenishment policy for a perishable inventory system based on estimated aging and retrieval behavior. BETA publicatie: working papers 2007; 218. Technische Universiteit Eindhoven.

[19]Ding J, Peng Z. Heuristics for perishable inventory systems under mixture issuance policies. Omega. 2024; 126: 103078. doi: 10.1016/j.omega.2024.103078.

[20]Akkas A, Honhon D. Determining maximum shipping age requirements for shelf life and food waste management. Production and Operations Management. 2023; 32: 2173-2188. doi: 10.1111/poms.13963.

[21]Boxma O, Perry D, Stadje W. Perishable inventories with random input: a unifying survey with extensions. Annals of Operations Research. 2024; 332: 1069-1105. doi: 10.1007/s10479-023-05317-2.

[22]Yang Y, Chi H, Zhou W, Fan T, Piramuthu S. Deterioration control decision support for perishable inventory management. Decision Support Systems. 2020; 134: 113308. doi: 10.1016/j.dss.2020.113308.

[23]Tromp S-O, Rijgersberg H, Pereira da Silva F, Bartels P. Retail benefits of dynamic expiry dates—Simulating opportunity losses due to product loss, discount policy and out of stock. International Journal of Production Economics. 2012; 139: 14-21. doi: 10.1016/j.ijpe.2011.04.029.

[24]Hilletofth P, Hilmola O-P, Wang Y. Simulation based decision support systems in the supply chain context. Industrial Management & Data Systems. 2016; 116. doi: 10.1108/IMDS-11-2015-0477.

[25]Nahmias S. Perishable Inventory Theory: A Review. Operations Research. 1982; 30: 680-708.

[26]Han S, Oh Y, Hwang H. Retailing policy for perishable item sold from two bins with mixed issuing policy. Journal of Intelligent Manufacturing. 2012; 23: 2215-2226. doi: 10.1007/s10845-011-0567-8.

[27]Haijema R. A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life. International Journal of Production Economics. 2013; 143: 434-439. doi: 10.1016/j.ijpe.2011.05.021.

[28]Dhunna M, Dixit JB. Information Technology in Business Management. Laxmi Publications, Ltd., 2010.

[29]van Donselaar K, van Woensel T, Broekmeulen R, Fransoo J. Inventory control of perishables in supermarkets. International Journal of Production Economics. 2006; 104: 462-472. doi: 10.1016/j.ijpe.2004.10.019.

[30]Nahmias S, Perry D, Stadje W. Perishable inventory systems with variable input and demand rates. Mathematical Methods of Operations Research. 2004; 60: 155-162. doi: 10.1007/s001860300335.

[31]Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Bacteriology. 1987; 62: 479-490. doi: 10.1111/j.1365-2672.1987.tb02680.x.

[32]Wang K-J, Lin YS, Yu JCP. Optimizing inventory policy for products with time-sensitive deteriorating rates in a multi-echelon supply chain. International Journal of Production Economics. 2011; 130: 66-76. doi: 10.1016/j.ijpe.2010.11.009.

[33]Bruckner S. Predictive shelf life model for the improvement of quality management in meat chains. Thesis, Universitäts- und Landesbibliothek Bonn. Available from: https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/4224. [Accessed 28th September 2024].

[34]Mendes A, Cruz J, Saraiva T, Lim MT, Gaspar DP. Logistics strategy (FIFO, FEFO or LSFO) decision support system for perishable food products. In: 2020 International Conference on Decision Aid Sciences and Application (DASA). 2020: 173-178. doi: 10.1109/DASA51403.2020.9317068.

[35]Bruckner S, Albrecht A, Petersen B, Kreyenschmidt J. A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains. Food Control. 2013; 29: 451-460. doi: 10.1016/j.foodcont.2012.05.048.

[36]Ghosh D, Shah J. A comparative analysis of greening policies across supply chain structures. International Journal of Production Economics. 2012; 135: 568-583. doi: 10.1016/j.ijpe.2011.05.027.

[37]Ghosh PK, Manna AK, Dey JK, Kar S. Supply chain coordination model for green product with different payment strategies: A game theoretic approach. Journal of Cleaner Production. 2021; 290: 125734. doi: 10.1016/j.jclepro.2020.125734.

[38]Ghosh PK, Manna AK, Dey JK, Kar S. A deteriorating food preservation supply chain model with downstream delayed payment and upstream partial prepayment. RAIRO - Operations Research. 2022; 56: 331-348. doi: 10.1051/ro/2021172.

How to Cite

Thiel, D., Hovelaque, V., & David, D. (2024). Simulation model of perishable item picking policies in the buffer stock of a push-pull supply chain. Decision Making and Analysis, 2(1), 88–104. https://doi.org/10.55976/dma.22024129388-104
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.