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Abstract: Accurate weather observation is paramount for mitigating the severe impacts of natural disasters, 
particularly in geographically vulnerable countries like Japan. This study provides a data-driven analysis of recent 
patent trends in Japanese weather observation technology to identify high-potential areas for future investment. Given 
Japan's susceptibility to extreme weather, enhancing forecast accuracy is crucial for economic and social resilience. 
We analyzed 93 patents published from 2019 to 2023 using an integrated methodology that combines patent mining, 
ARIMA-based time series forecasting, and Social Network Analysis (SNA). This approach enables us to identify key 
technologies, forecast their growth trajectories, and map their structural importance within the innovation ecosystem. 
Our analysis reveals that "control" technology is the leading field for future development, characterized by a 
rapidly growing ("Hot") trend and high structural centrality in the technology network. To validate its commercial 
relevance, we conducted an economic valuation using the Expected Value of Perfect Information (EVPI) and the 
Expected Value of Sample Information (EVSI). The results demonstrate a quantifiable positive return on investment 
for developing advanced control systems, confirming their economic viability. This research offers a robust, multi-
faceted framework for strategic decision-making, providing actionable insights for stakeholders by directly linking 
technological forecasting to economic valuation.
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1. Introduction

   Japan’s unique geographical location and complex 
topography make it highly susceptible to a wide array of 
natural disasters, including typhoons, torrential rainfall, 
earthquakes, and other severe weather phenomena [1, 
2]. These recurring events pose significant threats to 
human life, critical infrastructure, and national economic 

stability. Therefore, the development and enhancement of 
accurate weather forecasting and early warning systems 
are not merely scientific persuits but essential components 
of national security, public safety, and disaster risk 
management [3, 4]. In particular, the ability to deliver 
timely and precise forecasts directly affects the capacity 
of governments, industries, and communities to minimize 
damage and safeguard resilience in the face of environmental 
hazards. Meteorological observation technology is 



Decision Making and Analysis 87 | Volume 3 Issue 1, 2025

central to these forecasting and early warning systems. 
This technology generates the raw data that supports all 
subsequent models, predictions, and analytical outputs. 
The effectiveness of any observation system is therefore 
closely linked to its technological sophistication: higher-
resolution sensors, advanced remote-sensing platforms, 
and integrated data networks contribute directly to greater 
predictive accuracy and shorter alert times. Continuous 
innovation is indispensable, as incremental improvements 
in observational capacity can yield exponential gains in 
forecasting reliability and disaster response effectiveness.
Patent analysis provides a particularly valuable perspective 
for understanding how such innovation evolves [5, 6]. 
Patents represent codified knowledge and intellectual 
property that often precede the commercialization of new 
products or services [7]. They also reflect the strategic 
priorities of both firms and research institutions, offering 
a window into emerging technological trajectories [8]. By 
systematically examining patent applications, researchers 
can identify nascent areas of innovation, monitor the 
pace of technological development, and anticipate which 
domains are most likely to generate impactful advances. 
In the context of weather observation, patents reveal not 
only technological progress in instrumentation and data 
processing but also innovations in satellite systems, IoT-
enabled sensors, and AI-driven analytical tools. Against 
this backdrop, the present study conducts a comprehensive 
analysis of patent application trends in weather observation 
technology in Japan. To be clear, this study does not develop 

a new meteorological forecasting method itself, nor does it 
predict the weather. Instead, its primary contribution is the 
creation and application of a novel, integrated framework 
for technology forecasting. The objectives of this 
research are threefold: (1) to identify the most promising 
technological trajectories within weather observation 
patents, (2) to evaluate the commercial potential of these 
technologies, and (3) to provide actionable insights for 
stakeholders. By integrating patent forecasting, network 
analytics, and economic valuation, this study develops a 
data-driven roadmap to guide strategic R&D investment in 
Japan’s weather observation technologies.
   The broader significance of this research lies in its ability 
to inform decision-making across multiple sectors. For 
technology firms, it highlights high-potential areas for R&D 
investment [8]. For policymakers, it offers evidence-based 
guidance for resource allocation and strategic foresight 
[5, 6]. For researchers, it helps align research agendas 
with pressing technological needs and emerging industrial 
applications [9]. The proposed methodology provides a 
replicable framework for assessing technological trends 
and their economic viability, which is a critical need in 
high-stakes fields such as disaster management [3, 4].
   This is particularly relevant for Japan, whose weather 
observation infrastructure is among the most advanced in 
the world. The Automated Meteorological Data Acquisition 
System (AMeDAS), illustrated in Figure 1, exemplifies 
this with its dense nationwide network. The map in 
Figure 1 shows hundreds of observation sites, including 

Figure 1. Nationwide coverage of Japan’s AMeDAS weather observation network
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specialized stations for rainfall, temperature, wind, 
and snowfall, forming a comprehensive data collection 
backbone. Although AMeDAS has been instrumental, the 
increasing demands driven by climate change necessitate 
continuous innovation [10]. Understanding the evolution 
of technologies that can enhance or supplement such 
systems is critical for maintaining Japan’s leadership in 
meteorological prediction and disaster resilience.

2. Literature review

2.1 Weather observation technology in Japan

   Japan's weather observation capabilities are among 
the most advanced globally, orchestrated primarily by 
the Japan Meteorological Agency (JMA) [11, 12]. The 
backbone of this observation network is the AMeDAS 
network, which comprises approximately 1,300 automated 
stations distributed across the country [10, 13]. These 
stations provide continuous, real-time data on precipitation, 
temperature, wind, and other critical meteorological 
variables. This dense observational infrastructure is further 
supported by a wide range of complementary technologies, 
including weather radars, geostationary satellites such as 
the Himawari series, radiosondes, and wind profilers [14, 
15]. Together, these technologies produce a comprehensive 
and high-resolution dataset that serves as the foundation 
for advanced numerical weather prediction models. Such 
models are indispensable in a country like Japan, where 
mountainous terrain and exposure to extreme weather 
events and highly localized and accurate forecasts are 
demanded.
   Recent technological advancements have focused 
on improving both data quality and predictive power. 
Innovations include phased-array radars for faster 
precipitation monitoring and the integration of artificial 
intelligence (AI) into data processing. AI-driven techniques 
such as machine learning are refining pattern recognition 
and improving short-term forecasts, making a paradigm 
shift toward data-centric meteorology [16]. This evolution 
represents a convergence of traditional atmospheric science 
with computational intelligence. Figure 2 provides a 
synthesized view of this multi-modal approach, illustrating 
how various technologies—from ground-based radar and 
observation posts to satellite-based sensors (GSM) and 
atmospheric tools like radiosondes—work in concert [17]. 
This integrated system combines physical models with 
advanced analytics to achieve higher levels of forecasting 
reliability [18].

2.2 Patent analysis in technology forecasting

   Patent analysis has long been recognized as a systematic 
approach for anticipating technological change and 
assessing innovation potential [19]. Because patents 
represent legally protected intellectual property and 

codified knowledge [20], they often indicate technological 
directions well before new products or services reach the 
market [21]. Analyzing patent data thus provides valuable 
foresight into emerging domains and the likely trajectory 
of innovation [9].
   A range of analytical techniques has proven effective in 
extracting strategic intelligence from patent data [22]. For 
example, Huang and Li [5] used patent citation networks to 
analyze technology life cycles, demonstrating the value of 
longitudinal analysis. Similarly, text mining methods such 
as Term Frequency–Inverse Document Frequency (TF-
IDF) have been widely applied to identify core technical 
concepts within patent corpora [23, 24]. For forecasting, 
Kwon and Jun [9] utilized the Autoregressive Integrated 
Moving Average (ARIMA) model to predict logistics 
technology trends based on patent filing dynamics. 
However, while these studies effectively apply individual 
methods, a significant research gap remains in integrating 
these disparate techniques into a single, cohesive 
framework. Few studies combine time-series forecasting, 
network-based structural analysis, and economic valuation 
to provide a holistic, decision-oriented assessment of a 
technology domain.
   Table 1 summarizes representative studies in this area 
and highlights how the present research extends prior 
work. As shown, previous studies have mainly focused 
on isolated methodological perspectives—such as life 
cycle analysis, temporal trend forecasting, or structural 
mapping—without establishing an integrative workflow 
that links technological evolution to economic value. In 
contrast, our study synthesizes TF-IDF, ARIMA, Social 
Network Analysis (SNA), and economic valuation (EVPI/
EVSI) within a unified analytical framework, offering more 
actionable insights for strategic decision-making in the 
context of weather observation technology.
   In addition, network-based approaches enrich the 
analysis by uncovering the structural characteristics of 
technological ecosystems. Social Network Analysis (SNA) 
can be applied to patent co-classifications, citations, or 
co-inventorship to map the interconnections between 
technologies, institutions, and research communities [24]. 
Centrality measures derived from SNA highlight influential 
technologies that act as hubs or bridges, revealing not only 
which domains drive innovation but also how different 
technologies converge to form integrative platforms [25]. 
Such analyses are essential for identifying foundational 
technologies that may serve as enablers for multiple 
application areas, particularly in cross-disciplinary domains 
such as meteorology, where sensing, data processing, and 
artificial intelligence converge.

2.3 Economic valuation of information

   In the context of R&D investment, decision-making is 
often conducted under substantial uncertainty regarding 
both technological feasibility and market adoption. 
Decision analysis provides rigorous tools to evaluate the 
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economic value of reducing such uncertainty, with the 
Expected Value of Perfect Information (EVPI) and the 
Expected Value of Sample Information (EVSI) being 
two cornerstone methodologies [26]. EVPI represents the 
theoretical maximum value that decision-makers would 
be willing to pay to eliminate all uncertainty about future 
states of the world [27]. It quantifies the difference between 
expected payoffs under perfect knowledge and those under 
current, imperfect knowledge. While perfect information 
is rarely attainable, EVPI serves as an upper bound that 
indicates the potential value of investing in additional 
information-gathering activities such as advanced R&D, 
large-scale field experiments, or comprehensive data 
acquisition [28].
   EVSI, by contrast, provides a more practical measure 
of the expected benefit of acquiring additional but 
imperfect information. Examples include targeted pilot 
studies, prototype testing, or partial datasets that reduce, 
but do not eliminate, uncertainty. When the EVSI of an 
activity exceeds its cost, the investment is considered 
economically justifiable [29]. This criterion makes EVSI 
particularly valuable for research prioritization, as it 
balances the cost of inquiry with the incremental decision-
making benefits gained from improved knowledge [30]. 
In recent years, EVPI and EVSI have been applied in 
fields ranging from healthcare technology assessment to 
energy systems planning, demonstrating their versatility 
as tools for strategic decision-making [31, 32]. Applying 
these frameworks to patent analysis enables the translation 
of technological signals—such as emerging trends in 
meteorological observation patents—into quantifiable 
economic terms. This, in turn, enables firms, policymakers, 
and funding agencies to make more informed choices about 
R&D investments, ensuring that resources are directed 
toward technologies with the greatest potential to enhance 
predictive accuracy, resilience, and societal benefit.

3. Methodology

3.1 Data collection

   This study employs a multi-stage research methodology 
to identify promising technologies in the field of weather 
observation and to evaluate their economic potential using 
patent data. As the first step, the dataset focuses on patents 
related to weather observation technology filed in Japan 
between January 1, 2019 and December 31, 2023, ensuring 
coverage of the most recent technological trends.  Patent 
data were retrieved from the Japan Patent Office (JPO) 
database via the Google Patent search interface [33], which 
provides access to the JPO's patent repository [34]. English 
language settings were used to maintain consistency and 
accessibility. The search employed the following keywords: 
"weather observation system," "weather prediction 
model," "atmospheric exploration technology," "weather 
observation," and "weather prediction." This process 
yielded a final dataset of 93 relevant patents, which serve as 
the basis for subsequent analyses. The detailed parameters 
of the data collection process are summarized in Table 2.

3.2 Data analysis

   The data analysis phase of this study employed a 
comprehensive and multi-layered framework integrating 
keyword extraction, time series forecasting, social network 
analysis (SNA), and economic valuation. This approach 
ensures that the study not only identifies emerging 
technologies but also evaluates their potential value in a 
rapidly evolving innovation ecosystem. Each analytical 
step builds upon the previous one, allowing for a systematic 
progression from the extraction of technical knowledge 
to its prioritization based on both temporal and structural 
indicators, ultimately linking technological potential to 

Figure 2. Overview of Japan’s multi-modal meteorological observation system
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economic decision-making.

3.2.1 Keyword extraction and analysis

   The first step in our analytical framework involved the 
identification of key technical concepts embedded within 
the patent corpus. Patent documents particularly abstracts 
and claims were subjected to text mining techniques 
to extract technical terms that accurately represent the 
innovations described. To assess the significance of 
these terms, we employed the Term Frequency–Inverse 
Document Frequency (TF-IDF) metric, as expressed in 
Equation 1 [35].

                                                                                        (1)

                       (2)

   Here, TF(t,d) represents the frequency of term t in document 
d, while Equation 2 measures the rarity of term t across the 
entire document set D. Terms that frequently appear in a 
single document but are uncommon across the corpus are 
considered highly informative. The application of TF-IDF 

enabled us to isolate core technological concepts. To ensure 
the quality of the extracted keywords and enhance the 
robustness of the analysis, a filtering process was applied. 
This involved removing common English stop-words and 
filtering out terms with a document frequency below a set 
threshold (i.e., appearing in fewer than three patents) to 
eliminate idiosyncratic noise and focus on more prevalent 
technologies. By focusing on statistically significant and 
domain-relevant keywords rather than generic terms, we 
ensured that subsequent analyses were built upon a robust 
and conceptually meaningful technical foundation.

3.2.2 Time series analysis

   Once the critical keywords were identified, we 
investigated their temporal dynamics to uncover patterns of 
technological evolution. The annual frequency of patents 
associated with each keyword was analyzed to detect 
growth trajectories over the study period (2019-2023). This 
approach enabled us to distinguish between technologies 
that are emerging, stable, or in decline. To forecast future 
trends, we employed the Autoregressive Integrated Moving 
Average (ARIMA) model, as specified in Equation 3 [36].

Table 1. Comparison of methodological approaches in technology forecasting

Study Methodology used Focus area Limitation / gap addressed 
by our study

Huang, Li 
[5] Patent citation networks General technology life cycles

Focuses on life cycle analysis but 
lacks keyword-level trend forecasting 

and economic valuation.

Kwon, Jun 
[9] ARIMA time series Logistics technology

Provides temporal forecasting but 
does not analyze the structural 

importance of technologies (via SNA) 
or their economic value.

Jee, Shin 
[24]

Multiple patent analysis 
approaches (including 

SNA)

General promising technology 
identification

Compares different methods but 
does not integrate them into a single 

workflow or link findings to economic 
decision-making (EVPI/EVSI).

This Study
Integrated framework 

(TF-IDF, ARIMA, SNA, 
EVPI/EVSI)

Weather observation 
technology

Synthesize temporal forecasting, 
structural network analysis, and 
economic valuation to provide 
actionable, prioritized insights.

Table 2. Detailed information about the selected patent data

Data collection parameters Information

Research Keywords used in 
the Search

"weather observation system", "weather prediction model", 
"atmospheric exploration technology", "weather observation", 

"weather prediction"
Period 2019∼2023 (Publication Year, Last 10 Years)

Database  Japan Patent Office (Google Patent, English)
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 ϕ(B)(1−B)dXt =θ(B)εt                                                     (3)

   In this expression, ϕ(B) denotes the autoregressive 
polynomial of order p, (1−B)d represents differencing of 
order d to remove non-stationarity, θ(B) is the moving 
average polynomial of order q, and εt is white noise. The 
ARIMA model was selected due to its proven effectiveness 
and interpretability in analyzing univariate time-series 
data, particularly in patent forecasting where temporal 
dependencies and trend persistence are prevalent [9]. Its 
ability to handle non-stationary data through differencing 
makes it well-suited to real-world datasets such as patent 
filing frequencies, which often lack a stable mean or 
variance.
   The selection of the optimal ARIMA(p, d, q) order for 
each keyword series was performed systematically. First, 
the degree of differencing (d) was determined using the 
Augmented Dickey–Fuller (ADF) test to ensure stationarity. 
Next, the autoregressive (p) and moving average (q) orders 
were identified by examining the Autocorrelation (ACF) 
and Partial Autocorrelation (PACF) plots of the differenced 
series. Final model selection was guided by the principle of 
parsimony, minimizing the Akaike Information Criterion 
(AIC) to prevent overfitting while maintaining predictive 
power. Although alternative models such as exponential 
smoothing, Prophet, or deep learning approaches (e.g., 
LSTMs) could be considered, ARIMA was selected for 
its interpretability, suitability for small-sample series, and 
well-established methodological rigor in the context of 
technological forecasting.
   The application of the ARIMA model enabled the 
classification of technologies into three distinct categories 
based on their temporal patterns. Hot technologies 
exhibited rapidly increasing trends, signaling emerging 
areas with strong innovation potential. Active technologies 
demonstrated steady upward trajectories, indicative of 
sustained research interest and ongoing market relevance. 
Conversely, cold technologies displayed flat or declining 
patterns, suggesting they are either mature fields with 
limited advancement potential or areas experiencing 
declining competitive importance within the innovation 
landscape.

3.2.3 Social network analysis (SNA)

   Technological progress rarely occurs in isolation; 
innovations are interconnected through shared concepts 
and applications. To capture this relational dimension, we 
constructed a co-occurrence network of keywords, where 
nodes represent technical terms and edges signify their 
joint presence within patent documents. This network-
based perspective provides insight into how technologies 
interact and which concepts serve as central hubs in the 
innovation ecosystem [37]. Two key centrality measures 
were calculated to assess the importance of each keyword: 
Degree Centrality in Equation 4 and Betweenness Centrality 
in Equation 5 [38]. By evaluating these centrality metrics, 

we assigned priority levels (High, Medium, Low) to each 
keyword, enabling us to differentiate between core enabling 
technologies and peripheral developments.

                                     
                                                                                        (4)

                                                 (5)

3.2.4 Economic valuation of technology

   While technological relevance is essential, its economic 
viability ultimately determines whether a technology 
will be pursued in practice. To assess this, we integrated 
decision-analytic methods [39], specifically the Expected 
Value of Perfect Information (EVPI in Equation 6) and 
Expected Value of Sample Information (EVSI in Equation 
7) [40]. By comparing EVPI and EVSI, we can determine 
whether investing in further research is justified given the 
potential returns, thus providing a quantitative basis for 
R&D prioritization.

(6)

(7)

3.2.5 Integrated analysis framework

   The final step of our analysis synthesizes the temporal 
insights from the ARIMA forecasts with the structural 
insights from the network analysis. This integrated 
framework enables the identification of technologies 
that are both rapidly emerging and structurally central to 
the innovation landscape. Such technologies are prime 
candidates for strategic investment, as they not only 
demonstrate growth potential but also occupy pivotal 
positions within the broader technological ecosystem. This 
comprehensive approach moves beyond static assessments, 
providing actionable intelligence for policymakers, 
investors, and researchers seeking to foster innovation in 
weather observation technologies.

4. Results

4.1 Patent application trends

   The annual frequency of patent applications related 
to weather observation technology from 2019 to 2023 
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is shown in Figure 3. The data indicates a peak in 2019, 
followed by a dip in 2020, and a subsequent recovery and 
stabilization in the following years. The top 10 patent 
applicants are listed in Table 3. Notably, the list is led 
by automotive and electronics giants, with Honda Motor 
Co., Ltd. (7 patents), Denso Corporation (6 patents), and 
Mitsubishi Electric (5 patents) as the top three. These top 
10 applicants account for nearly 40% of the patents in the 
dataset, indicating a significant concentration of R&D in 
this sector among major industrial players.

4.2 Keyword analysis

   From the 93 patents, 193 distinct technical keywords were 
extracted and analyzed. The descriptive statistics of their 
TF-IDF scores are presented in Table 4. The top 10 most 
important keywords, ranked by their TF-IDF scores, are 
shown in Table 5. "Process" and "manag" (management) 
achieved the highest scores, appearing in 31.2% and 
33.3% of patents, respectively. Other highly ranked 

keywords include "system," "control," "vehicl" (vehicle), 
and "informat" (information), highlighting a focus on 
data processing, system control, and mobile observation 
platforms. The keyword "informat" was the most frequent, 
appearing in over half of the analyzed patents (54.8%).

4.3 Time series analysis

   The ARIMA model was applied to forecast trends for 
the key technical terms, enabling their classification into 
"Hot," "Active," or "Cold" fields, as illustrated in Figure 4. 
The results, summarized in Table 5 (Result of Time Series 
Analysis), reveal distinct developmental trajectories across 
different technological areas. Hot Fields include the terms 
"method," "system," "devic," "program," and "control." 
These keywords exhibit a rapidly increasing trend, 
indicating that innovation is accelerating in areas such as 
new technological methods, integrated systems, physical 
devices, software development, and automated control 
logic. The steep upward trajectory of these terms suggests 

Figure 3. Frequency of patents applications

Table 3. Top 10 patent applicants
Rank Applicant Number of patents filed (patent share)

1 Honda Motor Co., Ltd. 7 (7.5%)
2 Denso Corporation 6 (6.4%)
3 Mitsubishi Electric 5 (5.3%)
4 RICOH 3 (3.2%)
5 NEC Corporation 3 (3.2%)
6 Soft Bank Corporation 3 (3.2%)
7 Toyota Motor Corporation 3 (3.2%)
8 Riken Technos Corporation 3 (3.2%)
9 Toshiba Corporation 2 (2.1%)

10 Hitachi Astemo, Ltd. 2 (2.1%)
Sum 37 (39.8%)
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Table 4. Descriptive statistics of identified technical keywords

Descriptive statistics TF-IDF score
N 193

Max 10.5718
Q3 2.17972

Median 1.367036
Q1 1.039045
Min 0.272465

Figure 4. Example of Time Series Analysis

Table 5. Result of time series analysis

Technical keyword Fields
method, system, devic, program, control Hot

manag, process, inform, informat Active
vehicl Cold

Figure 5. Results of social network analysis visualization
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strong and growing research focus, highlighting them as 
emerging priorities for R&D investment.
   Active Fields encompass the terms "manag," "process," 
"inform," and "informat." These keywords show steady, 
positive growth, reflecting sustained efforts in data 
management, processing workflows, and information 
system development. The consistent upward trend 
indicates ongoing interest and incremental technological 
advancement rather than sudden emergence, marking them 
as stable areas of innovation. Cold Fields are represented 
by the keyword "vehicl." Although vehicle-based data 
collection remains relevant, as evidenced by the applicants 
listed in Table 3, its growth trajectory is comparatively flat. 
This classification suggests that while the field continues to 
contribute to the broader technological landscape, its role 
as a distinct driver of innovation may be slowing relative to 
other emerging and active areas.

4.4 Social network analysis

   To understand the relationships between technologies, 
a co-occurrence network was created, as visualized in 
Figure 5. In this network, each node represents a technical 
keyword, and an edge (line) connecting two nodes 
signifies that they appeared together in the same patent. 

The thickness of the edge is proportional to their co-
occurrence frequency; a thicker line, such as that between 
"control" and "system" indicates a stronger technological 
relationship. Central keywords can be visually identified by 
their numerous and thick connections, suggesting that they 
are integral components of the innovation ecosystem and 
serve as critical points of technological convergence.
   To quantify this visual intuition, we calculated centrality 
metrics for each keyword, as illustrated in Figure 6 and 
summarized in Table 6. The x-axis represents Betweenness 
Centrality, which measures how often a keyword acts as a 
"bridge" on the shortest path between two other keywords. 
   A higher score indicates that the keyword plays a 
connecting role across otherwise separate technological 
clusters. The y-axis represents Closeness Centrality, 
which measures how easily a keyword can connect to all 
other keywords in the network, reflecting its capacity to 
efficiently disseminate or gather technological information.
   This two-dimensional mapping functions as a 
technology priority map. Keywords located in the upper-
right quadrant—exhibiting both high betweenness and 
high closeness centrality—are considered high-priority 
because they serve as both critical bridges and efficient 
hubs in the technology network. As shown in Table 
6, "control", "inform", and "informat" fall into this 

Figure 6. Technology mapping results each technical keywords based on centrality

Table 6. Result of social network analysis

Technical Keyword Priority
control, inform, informat High

- Medium
method, system, devic, program,

 manag, process, vehicl Low
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category, underscoring their central and integrative roles 
in the innovation structure. In contrast, keywords such 
as "method", "system", "device", "program", "manage", 
"process" and "vehicle" exhibit lower centrality values and 
are classified as low-priority. These terms represent more 
specialized or peripheral technologies that, while relevant, 
exert less structural influence on the overall technological 
landscape.   

4.5 Integrated analysis

   By synthesizing the findings from the time series analysis 
(TSA) and social network analysis (SNA), we developed 
an overall priority ranking for the technology fields, 
as summarized in Table 7. This integrated framework 
highlights technologies that are both structurally central 
within the innovation network and exhibit strong growth 
momentum over time, ensuring that emerging trends and 
key integrative technologies are considered simultaneously 
for strategic prioritization.
   Priority 1 is assigned to "control", which emerged as the 
top-ranked technology. It is classified as a "Hot" field in the 
time series analysis and possesses "High" centrality in the 
network, marking it as both rapidly growing and structurally 
pivotal. Priority 2 includes "inform" and "informat," which 
combine "High" network centrality with an "Active" 
growth trend, indicating that these technologies play a 
central role in knowledge integration while demonstrating 
moderate innovation momentum. Priority 3 consists of 
"method," "system," "devic," and "program." Although 

these keywords have "Low" network centrality, their 
"Hot" growth trend highlights them as significant areas of 
emerging technology.
   Priority 4 encompasses "manag" and "process," 
representing established, active fields with steady growth, 
but lower structural importance in the network, suggesting 
they serve more as supporting technologies than as central 
hubs. Finally, Priority 5 is assigned to "vehicl", classified as 
both a "Cold" field and as having "Low" network centrality, 
reflecting limited growth and peripheral influence within 
the technological landscape. Overall, the integrated results 
strongly indicate that control technology is the most 
strategic and promising area for future R&D investment 
in Japanese weather observation, indicating that research 
resources should be concentrated in this field to maximize 
innovation impact.

4.6 Economic valuation

   To translate our findings into a tangible business case, 
we conducted an economic valuation of the top-ranked 
technology, "control". We modeled a scenario in which an 
event organizer must decide whether to proceed with or 
cancel an event based on a weather forecast. The detailed 
calculations are presented in the spreadsheet shown in Table 
9, which includes the payoff matrix, prior probabilities of 
weather states, and the conditional probabilities of forecast 
accuracy summarized in Table 8.

Table 7. Results of the integrated analysis frameworks

Technical keyword Social network analysis Time series analysis priority
control High Hot 1

inform, informat High Active 2
method, system, devic, 

program Low Hot 3

manag, process Low Active 4
vehicl Low Cold 5

Table 8. Results of the integrated analysis frameworks

Rain Cloud Clear
Rain (Actual Weather) 0.7 0.2 0.1

Cloud (Actual Weather) 0.3 0.5 0.2
Clear (Actual Weather) 0.1 0.3 0.6
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Table 9. Result of scenario analysis using EVPI and EVSI

Category Item / state Rain Cloud Clear Formula or 
probability Remarks

1. Baseline 
Decision

Event progress 
payoff -1500 -600 4000 — —

Event 
cancellation 

payoff
-200 -200 200 — —

Prior probability 0.7 0.2 0.1 — ΣP = 1.0
Expected 

Monetary Value 
(EMV) — — —

EMV = Max(-
770, -160) = 

-160
Optimal: Cancel

2. Perfect 
Information 

Scenario

Event progress 
payoff -1500 -600 4000 — —

Event 
cancellation 

payoff
-200 -200 200 — —

Optimal choice 
payoff by state -200 -200 4000 Max(Proceed, 

Cancel) —

Expected Value 
with Perfect 
Information 

(EVwPI)

— — —

(-200×0.7) + 
(-200×0.2) + 
(4000×0.1) = 

220

—

Expected Value 
of Perfect 

Information 
(EVPI)

— — —
EVwPI − EMV 
= 220 − (−160) 

= 380

Max potential 
value

3. Sample 
Information 

Scenario

Forecast 
accuracy 

(conditional 
probability) 

P(F│S)

0.7 / 0.2 / 0.1 0.3 / 0.5 / 0.2 0.1 / 0.3 / 0.6 From Table 8 —

Marginal 
Probability P(F) 0.56 0.27 0.17 P(F) = 

Σ[P(F│S)P(S)] —

Posterior 
probability 

P(S│F)

0.875 / 
0.1071 / 
0.0179

0.5185 / 0.3704 
/ 0.1111

0.4118 / 0.2353 
/ 0.3529 Bayes’ theorem —

Optimal choice 
payoff (forecast-

based)

-192.84 
(Cancel) -155.56 (Cancel) 652.72 

(Proceed)
EMV(Proceed) 

vs EMV(Cancel) —

Expected Value 
with Sample 
Information 

(EVwSI)
— — —

Σ(Optimal 
Payoff × P(F)) = 

-39.00
—

4. Valuation 
Summary

Baseline EMV — — — -160 —
EV with Sample 

Information 
(EVwSI)

— — — -39.00 —

EVSI = EVwSI 
− EMV — — — -39.00 − (−160) 

= 121.00 Positive value

EVPI (Max 
potential value) — — — 380 —



Decision Making and Analysis 97 | Volume 3 Issue 1, 2025

   The analysis begins with the baseline decision. Without 
any additional information, the optimal choice is to cancel 
the event, yielding an Expected Monetary Value (EMV) of 
−160. This baseline provides a benchmark for evaluating 
the value of acquiring further information. The Expected 
Value of Perfect Information (EVPI) is 380, representing 
the maximum theoretical benefit of eliminating all 
uncertainty about the weather. We then modeled the 
Expected Value with Sample Information (EVSI) based 
on an improved forecast reflecting the potential benefit of 
investing in advanced control technology. The expected 
value under this scenario is −39, yielding an EVSI of 121 
(−39 − (−160)). This positive EVSI demonstrates that 
even imperfect but enhanced information generates a net 
economic gain, providing quantitative justification for 
investing in superior control technologies and highlighting 
their strategic importance.

5. Discussion

5.1 Summary of findings

   This study leveraged a multi-method framework to 
analyze 93 Japanese patents in weather observation from 
2019 to 2023. The key findings are threefold. First, the 
R&D landscape is dominated by major automotive and 
electronics firms such as Honda and Denso. Second, our 
integrated analysis, which combined time series forecasting 
with network centrality metrics, clearly identified "control" 
technology as the highest-priority field. This conclusion 
is supported by robust evidence: "control" is not only a 
"Hot" field with a rapidly growing number of patents, but 
also a structurally critical hub in the innovation network, 
as demonstrated by its high betweenness and closeness 
centrality. Finally, our economic evaluation confirmed 
this strategic priority. By modeling a real-world decision 
scenario, we showed that investing in improved "control" 
systems yields a positive Expected Value of Sample 
Information (EVSI), providing a quantitative justification 
for R&D expenditure in this area.

5.2 Theoretical and practical implications

   This research contributes to the field of technology 
forecasting by presenting a robust, integrated methodology 
that synthesizes insights from text mining, time series 
analysis, social network analysis, and economic valuation. 
This approach provides a more comprehensive and 
defensible assessment of technological trends than any 
single method alone. In particular, the inclusion of EVPI 
and EVSI bridges the gap between identifying technological 
trends and evaluating their economic viability, offering 
a direct link to strategic business decision-making. The 
framework highlights how combining statistical and 
modeling techniques can inform optimal R&D investment 
decisions.

   The findings offer clear, actionable intelligence 
for companies. Technology firms, particularly in the 
automotive and IoT sectors, should recognize the strategic 
importance of "control" technologies. The results indicate 
that future value lies not only in data collection but also in 
sophisticated control systems that process this data for real-
time, automated decision support. Practical applications 
may include vehicle-to-everything (V2X) communication 
for hyperlocal weather alerts or advanced control systems 
for drone-based atmospheric observation.
   For policymakers and researchers, the study provides 
guidance for prioritizing initiatives and research directions. 
Government agencies and funding bodies should consider 
supporting R&D in control systems for meteorological 
applications, as enhancing these capabilities can improve 
national disaster preparedness and strengthen technological 
competitiveness. For researchers, the convergence of 
control engineering, artificial intelligence, and meteorology 
presents a promising area for innovation. The relative 
decline of "vehicle" as a hot keyword suggests a shift 
from viewing vehicles as simple sensor platforms to fully 
integrated nodes within a larger intelligent control network.

5.3 Limitations and future research

   This study is subject to several limitations, which also 
provide meaningful directions for future research. First, as 
the reviewer noted, the dataset of 93 patents over a five-year 
period is informative but relatively limited. The robustness 
of the conclusions would be strengthened by extending the 
temporal scope to capture longer-term technological cycles 
(e.g., 10–20 years). Furthermore, a comparative analysis 
with international patents, particularly those from the 
United States Patent and Trademark Office (USPTO) and 
the European Patent Office (EPO), would offer valuable 
context for assessing Japan’s competitive position within 
the global innovation landscape. Additionally, the analysis 
was confined to patents filed in Japan and based on English-
language search terms, which may not fully reflect the 
linguistic and conceptual nuances of the original Japanese 
patent documents.
   Second, while the network analysis (Section 4.4 and Table 
6) effectively identified the structural centrality and priority 
of technological keywords, the results are limited by the 
representativeness of the selected dataset. Expanding the 
keyword set and incorporating emerging terms from recent 
patent filings or research publications could provide a more 
dynamic understanding of evolving technological linkages 
and priorities.
   Third, as the reviewer rightly pointed out, the economic 
valuation was based on a single illustrative case—an 
event organization scenario—designed primarily to 
demonstrate the methodological applicability of the 
proposed framework. While this example was effective 
for conceptual illustration, its generalizability remains 
limited. Future research should enhance the universality of 
these findings by exploring a broader range of application 
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contexts. For instance, one could model the economic 
value of improved "control" technology (identified as a 
high-priority keyword in Table 6) for optimizing energy 
grid load balancing during extreme weather conditions or 
for guiding precision agriculture operations. Conducting a 
sensitivity analysis on key model inputs—such as payoff 
values, prior probabilities, and R&D cost parameters—
would further increase the robustness and policy relevance 
of the economic implications under varying market 
conditions.
   Finally, incorporating additional data sources such 
as scientific publications, news articles, and corporate 
financial reports could enable triangulation with the patent-
based findings, offering a more comprehensive view of 
the innovation ecosystem. Complementary qualitative 
case studies of leading patenting firms would also deepen 
understanding of firm-level innovation strategies and the 
institutional drivers behind the observed technological 
convergence patterns.

6. Conclusion

   This study provided a comprehensive, data-driven analysis 
of the current technological frontier in Japanese weather 
observation. Our integrated methodology successfully 
synthesized patent forecasting, network analytics, and 
economic valuation to identify strategic R&D priorities. 
Our findings clearly indicated a strategic shift towards more 
intelligent, automated, and interconnected systems, with 
"control" technology at the center of this transformation. 
By integrating rigorous patent analytics with established 
economic valuation models, we not only identified this 
key trend but also quantified its potential value, offering 
a solid foundation for strategic decision-making. As Japan 
continues to grapple with the challenges of a changing 
climate and extreme weather, investing in the advanced 
control technologies identified in this research will be 
paramount to enhancing its forecasting capabilities, 
protecting its citizens, and securing its economic future.
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