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Abstract: Accurate weather observation is paramount for mitigating the severe impacts of natural disasters,
particularly in geographically vulnerable countries like Japan. This study provides a data-driven analysis of recent
patent trends in Japanese weather observation technology to identify high-potential areas for future investment. Given
Japan's susceptibility to extreme weather, enhancing forecast accuracy is crucial for economic and social resilience.
We analyzed 93 patents published from 2019 to 2023 using an integrated methodology that combines patent mining,
ARIMA-based time series forecasting, and Social Network Analysis (SNA). This approach enables us to identify key
technologies, forecast their growth trajectories, and map their structural importance within the innovation ecosystem.
Our analysis reveals that "control" technology is the leading field for future development, characterized by a
rapidly growing ("Hot") trend and high structural centrality in the technology network. To validate its commercial
relevance, we conducted an economic valuation using the Expected Value of Perfect Information (EVPI) and the
Expected Value of Sample Information (EVSI). The results demonstrate a quantifiable positive return on investment
for developing advanced control systems, confirming their economic viability. This research offers a robust, multi-
faceted framework for strategic decision-making, providing actionable insights for stakeholders by directly linking
technological forecasting to economic valuation.
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stability. Therefore, the development and enhancement of
accurate weather forecasting and early warning systems
are not merely scientific persuits but essential components
of national security, public safety, and disaster risk
management [3, 4]. In particular, the ability to deliver
timely and precise forecasts directly affects the capacity
of governments, industries, and communities to minimize
damage and safeguard resilience in the face of environmental
hazards. Meteorological observation technology is

1. Introduction

Japan’s unique geographical location and complex
topography make it highly susceptible to a wide array of
natural disasters, including typhoons, torrential rainfall,
earthquakes, and other severe weather phenomena [I,
2]. These recurring events pose significant threats to
human life, critical infrastructure, and national economic
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central to these forecasting and early warning systems.
This technology generates the raw data that supports all
subsequent models, predictions, and analytical outputs.
The effectiveness of any observation system is therefore
closely linked to its technological sophistication: higher-
resolution sensors, advanced remote-sensing platforms,
and integrated data networks contribute directly to greater
predictive accuracy and shorter alert times. Continuous
innovation is indispensable, as incremental improvements
in observational capacity can yield exponential gains in
forecasting reliability and disaster response effectiveness.

Patent analysis provides a particularly valuable perspective
for understanding how such innovation evolves [5, 6].
Patents represent codified knowledge and intellectual
property that often precede the commercialization of new
products or services [7]. They also reflect the strategic
priorities of both firms and research institutions, offering
a window into emerging technological trajectories [8]. By
systematically examining patent applications, researchers
can identify nascent areas of innovation, monitor the
pace of technological development, and anticipate which
domains are most likely to generate impactful advances.
In the context of weather observation, patents reveal not
only technological progress in instrumentation and data
processing but also innovations in satellite systems, 1oT-
enabled sensors, and Al-driven analytical tools. Against
this backdrop, the present study conducts a comprehensive
analysis of patent application trends in weather observation
technology in Japan. To be clear, this study does not develop

a new meteorological forecasting method itself, nor does it
predict the weather. Instead, its primary contribution is the
creation and application of a novel, integrated framework
for technology forecasting. The objectives of this
research are threefold: (1) to identify the most promising
technological trajectories within weather observation
patents, (2) to evaluate the commercial potential of these
technologies, and (3) to provide actionable insights for
stakeholders. By integrating patent forecasting, network
analytics, and economic valuation, this study develops a
data-driven roadmap to guide strategic R&D investment in
Japan’s weather observation technologies.

The broader significance of this research lies in its ability
to inform decision-making across multiple sectors. For
technology firms, it highlights high-potential areas for R&D
investment [8]. For policymakers, it offers evidence-based
guidance for resource allocation and strategic foresight
[5, 6]. For researchers, it helps align research agendas
with pressing technological needs and emerging industrial
applications [9]. The proposed methodology provides a
replicable framework for assessing technological trends
and their economic viability, which is a critical need in
high-stakes fields such as disaster management [3, 4].

This is particularly relevant for Japan, whose weather
observation infrastructure is among the most advanced in
the world. The Automated Meteorological Data Acquisition
System (AMeDAS), illustrated in Figure 1, exemplifies
this with its dense nationwide network. The map in
Figure 1 shows hundreds of observation sites, including

M Observations, Special AWS 155 sites
(including special automated weather stations)
) Rainfall, Temperature, Wind, Humidity 687 sites
() Rainfall, Temperature, Wind 74 sites
(including 1 extraordinary observation sites)
O Rainfall 370 sites
(including 1 extraordinary observation sites)
+ Snowfall 333 sites

(Not shown in this map)

Chichijima, Minamitorishima: |
Hahajima: ¢

Figure 1. Nationwide coverage of Japan’s AMeDAS weather observation network
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specialized stations for rainfall, temperature, wind,
and snowfall, forming a comprehensive data collection
backbone. Although AMeDAS has been instrumental, the
increasing demands driven by climate change necessitate
continuous innovation [10]. Understanding the evolution
of technologies that can enhance or supplement such
systems is critical for maintaining Japan’s leadership in
meteorological prediction and disaster resilience.

2. Literature review

2.1 Weather observation technology in Japan

Japan's weather observation capabilities are among
the most advanced globally, orchestrated primarily by
the Japan Meteorological Agency (JMA) [11, 12]. The
backbone of this observation network is the AMeDAS
network, which comprises approximately 1,300 automated
stations distributed across the country [10, 13]. These
stations provide continuous, real-time data on precipitation,
temperature, wind, and other critical meteorological
variables. This dense observational infrastructure is further
supported by a wide range of complementary technologies,
including weather radars, geostationary satellites such as
the Himawari series, radiosondes, and wind profilers [14,
15]. Together, these technologies produce a comprehensive
and high-resolution dataset that serves as the foundation
for advanced numerical weather prediction models. Such
models are indispensable in a country like Japan, where
mountainous terrain and exposure to extreme weather
events and highly localized and accurate forecasts are
demanded.

Recent technological advancements have focused
on improving both data quality and predictive power.
Innovations include phased-array radars for faster
precipitation monitoring and the integration of artificial
intelligence (Al) into data processing. Al-driven techniques
such as machine learning are refining pattern recognition
and improving short-term forecasts, making a paradigm
shift toward data-centric meteorology [16]. This evolution
represents a convergence of traditional atmospheric science
with computational intelligence. Figure 2 provides a
synthesized view of this multi-modal approach, illustrating
how various technologies—from ground-based radar and
observation posts to satellite-based sensors (GSM) and
atmospheric tools like radiosondes—work in concert [17].
This integrated system combines physical models with
advanced analytics to achieve higher levels of forecasting
reliability [18].

2.2 Patent analysis in technology forecasting

Patent analysis has long been recognized as a systematic
approach for anticipating technological change and
assessing innovation potential [19]. Because patents
represent legally protected intellectual property and
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codified knowledge [20], they often indicate technological
directions well before new products or services reach the
market [21]. Analyzing patent data thus provides valuable
foresight into emerging domains and the likely trajectory
of innovation [9].

A range of analytical techniques has proven effective in
extracting strategic intelligence from patent data [22]. For
example, Huang and Li [5] used patent citation networks to
analyze technology life cycles, demonstrating the value of
longitudinal analysis. Similarly, text mining methods such
as Term Frequency—Inverse Document Frequency (TF-
IDF) have been widely applied to identify core technical
concepts within patent corpora [23, 24]. For forecasting,
Kwon and Jun [9] utilized the Autoregressive Integrated
Moving Average (ARIMA) model to predict logistics
technology trends based on patent filing dynamics.
However, while these studies effectively apply individual
methods, a significant research gap remains in integrating
these disparate techniques into a single, cohesive
framework. Few studies combine time-series forecasting,
network-based structural analysis, and economic valuation
to provide a holistic, decision-oriented assessment of a
technology domain.

Table 1 summarizes representative studies in this area
and highlights how the present research extends prior
work. As shown, previous studies have mainly focused
on isolated methodological perspectives—such as life
cycle analysis, temporal trend forecasting, or structural
mapping—without establishing an integrative workflow
that links technological evolution to economic value. In
contrast, our study synthesizes TF-IDF, ARIMA, Social
Network Analysis (SNA), and economic valuation (EVPI/
EVSI) within a unified analytical framework, offering more
actionable insights for strategic decision-making in the
context of weather observation technology.

In addition, network-based approaches enrich the
analysis by uncovering the structural characteristics of
technological ecosystems. Social Network Analysis (SNA)
can be applied to patent co-classifications, citations, or
co-inventorship to map the interconnections between
technologies, institutions, and research communities [24].
Centrality measures derived from SNA highlight influential
technologies that act as hubs or bridges, revealing not only
which domains drive innovation but also how different
technologies converge to form integrative platforms [25].
Such analyses are essential for identifying foundational
technologies that may serve as enablers for multiple
application areas, particularly in cross-disciplinary domains
such as meteorology, where sensing, data processing, and
artificial intelligence converge.

2.3 Economic valuation of information

In the context of R&D investment, decision-making is
often conducted under substantial uncertainty regarding
both technological feasibility and market adoption.
Decision analysis provides rigorous tools to evaluate the
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economic value of reducing such uncertainty, with the
Expected Value of Perfect Information (EVPI) and the
Expected Value of Sample Information (EVSI) being
two cornerstone methodologies [26]. EVPI represents the
theoretical maximum value that decision-makers would
be willing to pay to eliminate all uncertainty about future
states of the world [27]. It quantifies the difference between
expected payoffs under perfect knowledge and those under
current, imperfect knowledge. While perfect information
is rarely attainable, EVPI serves as an upper bound that
indicates the potential value of investing in additional
information-gathering activities such as advanced R&D,
large-scale field experiments, or comprehensive data
acquisition [28].

EVSI, by contrast, provides a more practical measure
of the expected benefit of acquiring additional but
imperfect information. Examples include targeted pilot
studies, prototype testing, or partial datasets that reduce,
but do not eliminate, uncertainty. When the EVSI of an
activity exceeds its cost, the investment is considered
economically justifiable [29]. This criterion makes EVSI
particularly valuable for research prioritization, as it
balances the cost of inquiry with the incremental decision-
making benefits gained from improved knowledge [30].
In recent years, EVPI and EVSI have been applied in
fields ranging from healthcare technology assessment to
energy systems planning, demonstrating their versatility
as tools for strategic decision-making [31, 32]. Applying
these frameworks to patent analysis enables the translation
of technological signals—such as emerging trends in
meteorological observation patents—into quantifiable
economic terms. This, in turn, enables firms, policymakers,
and funding agencies to make more informed choices about
R&D investments, ensuring that resources are directed
toward technologies with the greatest potential to enhance
predictive accuracy, resilience, and societal benefit.

3. Methodology

3.1 Data collection

This study employs a multi-stage research methodology
to identify promising technologies in the field of weather
observation and to evaluate their economic potential using
patent data. As the first step, the dataset focuses on patents
related to weather observation technology filed in Japan
between January 1, 2019 and December 31, 2023, ensuring
coverage of the most recent technological trends. Patent
data were retrieved from the Japan Patent Office (JPO)
database via the Google Patent search interface [33], which
provides access to the JPO's patent repository [34]. English
language settings were used to maintain consistency and
accessibility. The search employed the following keywords:
"weather observation system," "weather prediction
model," "atmospheric exploration technology," "weather
observation," and "weather prediction." This process
yielded a final dataset of 93 relevant patents, which serve as
the basis for subsequent analyses. The detailed parameters
of the data collection process are summarized in Table 2.

3.2 Data analysis

The data analysis phase of this study employed a
comprehensive and multi-layered framework integrating
keyword extraction, time series forecasting, social network
analysis (SNA), and economic valuation. This approach
ensures that the study not only identifies emerging
technologies but also evaluates their potential value in a
rapidly evolving innovation ecosystem. Each analytical
step builds upon the previous one, allowing for a systematic
progression from the extraction of technical knowledge
to its prioritization based on both temporal and structural
indicators, ultimately linking technological potential to

Source: IMA

A Meteorological observation
methods (Image)

Figure 2. Overview of Japan’s multi-modal meteorological observation system
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Table 1. Comparison of methodological approaches in technology forecasting

Limitation / gap addressed

Study Methodology used Focus area by our study
Huane. Li Focuses on life cycle analysis but
[ 5%’ Patent citation networks ~ General technology life cycles lacks keyword-level trend forecasting
and economic valuation.
Provides temporal forecasting but
Kwon, Jun . . .. does not analyze the structural
[9] ARIMA time series Logistics technology importance of technologies (via SNA)
or their economic value.
. . Compares different methods but
. Multiple patent analysis - . . .
Jee, Shin . : General promising technology  does not integrate them into a single
approaches (including : . . : . ;
[24] SNA) identification workflow or link findings to economic
decision-making (EVPI/EVSI).
Integrated framework Weather observation Ssi,rrllltiltisrlazlentf:etrvr\l}())(r)liaelnfglresciZSt:rlfi’
This Study  (TF-IDF, ARIMA, SNA, YSIS,

EVPI/EVSI)

technology

economic valuation to provide
actionable, prioritized insights.

Table 2. Detailed information about the selected patent data

Data collection parameters

Information

Research Keywords used in
the Search

Period
Database

"weather observation system",
"atmospheric exploration technology",

non

weather prediction model",
", "weather observation",
"weather prediction"

2019~2023 (Publication Year, Last 10 Years)
Japan Patent Office (Google Patent, English)

economic decision-making.
3.2.1 Keyword extraction and analysis

The first step in our analytical framework involved the
identification of key technical concepts embedded within
the patent corpus. Patent documents particularly abstracts
and claims were subjected to text mining techniques
to extract technical terms that accurately represent the
innovations described. To assess the significance of
these terms, we employed the Term Frequency-Inverse
Document Frequency (TF-IDF) metric, as expressed in
Equation 1 [35].

TF-IDF (¢, d, D) = TE(t,d) x IDF(t, D) (1)

_ DI
IDF(t, D) = log (M) ”

Here, TF(¢,d) represents the frequency ofterm tin document
d, while Equation 2 measures the rarity of term # across the
entire document set D. Terms that frequently appear in a
single document but are uncommon across the corpus are
considered highly informative. The application of TF-IDF
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enabled us to isolate core technological concepts. To ensure
the quality of the extracted keywords and enhance the
robustness of the analysis, a filtering process was applied.
This involved removing common English stop-words and
filtering out terms with a document frequency below a set
threshold (i.e., appearing in fewer than three patents) to
eliminate idiosyncratic noise and focus on more prevalent
technologies. By focusing on statistically significant and
domain-relevant keywords rather than generic terms, we
ensured that subsequent analyses were built upon a robust
and conceptually meaningful technical foundation.

3.2.2 Time series analysis

Once the critical keywords were identified, we
investigated their temporal dynamics to uncover patterns of
technological evolution. The annual frequency of patents
associated with each keyword was analyzed to detect
growth trajectories over the study period (2019-2023). This
approach enabled us to distinguish between technologies
that are emerging, stable, or in decline. To forecast future
trends, we employed the Autoregressive Integrated Moving
Average (ARIMA) model, as specified in Equation 3 [36].
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In this expression, ¢(B) denotes the autoregressive
polynomial of order p, (1-B)? represents differencing of
order d to remove non-stationarity, #(B) is the moving
average polynomial of order g, and ¢, is white noise. The
ARIMA model was selected due to its proven effectiveness
and interpretability in analyzing univariate time-series
data, particularly in patent forecasting where temporal
dependencies and trend persistence are prevalent [9]. Its
ability to handle non-stationary data through differencing
makes it well-suited to real-world datasets such as patent
filing frequencies, which often lack a stable mean or
variance.

The selection of the optimal ARIMA(p, d, ¢) order for
each keyword series was performed systematically. First,
the degree of differencing (d) was determined using the
Augmented Dickey—Fuller (ADF) test to ensure stationarity.
Next, the autoregressive (p) and moving average (q) orders
were identified by examining the Autocorrelation (ACF)
and Partial Autocorrelation (PACF) plots of the differenced
series. Final model selection was guided by the principle of
parsimony, minimizing the Akaike Information Criterion
(AIC) to prevent overfitting while maintaining predictive
power. Although alternative models such as exponential
smoothing, Prophet, or deep learning approaches (e.g.,
LSTMs) could be considered, ARIMA was selected for
its interpretability, suitability for small-sample series, and
well-established methodological rigor in the context of
technological forecasting.

The application of the ARIMA model enabled the
classification of technologies into three distinct categories
based on their temporal patterns. Hot technologies
exhibited rapidly increasing trends, signaling emerging
areas with strong innovation potential. Active technologies
demonstrated steady upward trajectories, indicative of
sustained research interest and ongoing market relevance.
Conversely, cold technologies displayed flat or declining
patterns, suggesting they are either mature fields with
limited advancement potential or areas experiencing
declining competitive importance within the innovation
landscape.

3.2.3 Social network analysis (SNA)

Technological progress rarely occurs in isolation;
innovations are interconnected through shared concepts
and applications. To capture this relational dimension, we
constructed a co-occurrence network of keywords, where
nodes represent technical terms and edges signify their
joint presence within patent documents. This network-
based perspective provides insight into how technologies
interact and which concepts serve as central hubs in the
innovation ecosystem [37]. Two key centrality measures
were calculated to assess the importance of each keyword:
Degree Centrality in Equation 4 and Betweenness Centrality
in Equation 5 [38]. By evaluating these centrality metrics,
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we assigned priority levels (High, Medium, Low) to each
keyword, enabling us to differentiate between core enabling
technologies and peripheral developments.

Cp(D) = ndf)l 4)
Co =y “jm &)
s#I#t st

3.2.4 Economic valuation of technology

While technological relevance is essential, its economic
viability ultimately determines whether a technology
will be pursued in practice. To assess this, we integrated
decision-analytic methods [39], specifically the Expected
Value of Perfect Information (EVPI in Equation 6) and
Expected Value of Sample Information (EVSI in Equation
7) [40]. By comparing EVPI and EVSI, we can determine
whether investing in further research is justified given the
potential returns, thus providing a quantitative basis for
R&D prioritization.

EVPI = E, [méle(a, 9)] — maxE, [V (a,6)]
(6)

EVSI = Ey [mglemX[V(a,H)]] - méLng[V(a,Q)]

()
3.2.5 Integrated analysis framework

The final step of our analysis synthesizes the temporal
insights from the ARIMA forecasts with the structural
insights from the network analysis. This integrated
framework enables the identification of technologies
that are both rapidly emerging and structurally central to
the innovation landscape. Such technologies are prime
candidates for strategic investment, as they not only
demonstrate growth potential but also occupy pivotal
positions within the broader technological ecosystem. This
comprehensive approach moves beyond static assessments,
providing actionable intelligence for policymakers,
investors, and researchers seeking to foster innovation in
weather observation technologies.

4. Results

4.1 Patent application trends

The annual frequency of patent applications related
to weather observation technology from 2019 to 2023
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is shown in Figure 3. The data indicates a peak in 2019,
followed by a dip in 2020, and a subsequent recovery and
stabilization in the following years. The top 10 patent
applicants are listed in Table 3. Notably, the list is led
by automotive and electronics giants, with Honda Motor
Co., Ltd. (7 patents), Denso Corporation (6 patents), and
Mitsubishi Electric (5 patents) as the top three. These top
10 applicants account for nearly 40% of the patents in the
dataset, indicating a significant concentration of R&D in
this sector among major industrial players.

4.2 Keyword analysis

From the 93 patents, 193 distinct technical keywords were
extracted and analyzed. The descriptive statistics of their
TF-IDF scores are presented in Table 4. The top 10 most
important keywords, ranked by their TF-IDF scores, are
shown in Table 5. "Process" and "manag" (management)
achieved the highest scores, appearing in 31.2% and
33.3% of patents, respectively. Other highly ranked

nn

keywords include "system," "control," "vehicl" (vehicle),
and "informat" (information), highlighting a focus on
data processing, system control, and mobile observation
platforms. The keyword "informat" was the most frequent,
appearing in over half of the analyzed patents (54.8%).

4.3 Time series analysis

The ARIMA model was applied to forecast trends for
the key technical terms, enabling their classification into
"Hot," "Active," or "Cold" fields, as illustrated in Figure 4.
The results, summarized in Table 5 (Result of Time Series
Analysis), reveal distinct developmental trajectories across
different technological areas. Hot Fields include the terms
"method," "system," "devic," "program," and "control."
These keywords exhibit a rapidly increasing trend,
indicating that innovation is accelerating in areas such as
new technological methods, integrated systems, physical
devices, software development, and automated control
logic. The steep upward trajectory of these terms suggests

30
25
25
22
20 18
15

15 13

10
5
0

2019 2020 2021 2022 2023
Figure 3. Frequency of patents applications
Table 3. Top 10 patent applicants
Rank Applicant Number of patents filed (patent share)

1 Honda Motor Co., Ltd. 7 (7.5%)
2 Denso Corporation 6 (6.4%)
3 Mitsubishi Electric 5(5.3%)
4 RICOH 3 (3.2%)
5 NEC Corporation 3 (3.2%)
6 Soft Bank Corporation 3(3.2%)
7 Toyota Motor Corporation 3 (3.2%)
8 Riken Technos Corporation 3 (3.2%)
9 Toshiba Corporation 2 (2.1%)
10 Hitachi Astemo, Ltd. 2 (2.1%)

Sum 37 (39.8%)
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Table 4. Descriptive statistics of identified technical keywords

Descriptive statistics TF-IDF score
N 193
Max 10.5718
Q3 2.17972
Median 1.367036
Ql 1.039045
Min 0.272465

Trend Prediction through
Y = Frequency Time Series Analysis
704
Hot Fields
60 4
50

40 |
. Active Fields
30

204

10 N % Cold Fields

o — T X o= Year

1980 1990 2000 2010 2020

Figure 4. Example of Time Series Analysis

Table 5. Result of time series analysis

Technical keyword Fields
method, system, devic, program, control Hot
manag, process, inform, informat Active
vehicl Cold
confrol

informat

mh\/
‘."‘ inform
/ v

system

Figure 5. Results of social network analysis visualization
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strong and growing research focus, highlighting them as
emerging priorities for R&D investment.

Active Fields encompass the terms "manag," "process,"
"inform," and "informat." These keywords show steady,
positive growth, reflecting sustained efforts in data
management, processing workflows, and information
system development. The consistent upward trend
indicates ongoing interest and incremental technological
advancement rather than sudden emergence, marking them
as stable areas of innovation. Cold Fields are represented
by the keyword "vehicl." Although vehicle-based data
collection remains relevant, as evidenced by the applicants
listed in Table 3, its growth trajectory is comparatively flat.
This classification suggests that while the field continues to
contribute to the broader technological landscape, its role
as a distinct driver of innovation may be slowing relative to
other emerging and active areas.

nn

4.4 Social network analysis

To understand the relationships between technologies,
a co-occurrence network was created, as visualized in
Figure 5. In this network, each node represents a technical
keyword, and an edge (line) connecting two nodes
signifies that they appeared together in the same patent.

The thickness of the edge is proportional to their co-
occurrence frequency; a thicker line, such as that between
"control" and "system" indicates a stronger technological
relationship. Central keywords can be visually identified by
their numerous and thick connections, suggesting that they
are integral components of the innovation ecosystem and
serve as critical points of technological convergence.

To quantify this visual intuition, we calculated centrality
metrics for each keyword, as illustrated in Figure 6 and
summarized in Table 6. The x-axis represents Betweenness
Centrality, which measures how often a keyword acts as a
"bridge" on the shortest path between two other keywords.

A higher score indicates that the keyword plays a
connecting role across otherwise separate technological
clusters. The y-axis represents Closeness Centrality,
which measures how easily a keyword can connect to all
other keywords in the network, reflecting its capacity to
efficiently disseminate or gather technological information.

This two-dimensional mapping functions as a
technology priority map. Keywords located in the upper-
right quadrant—exhibiting both high betweenness and
high closeness centrality—are considered high-priority
because they serve as both critical bridges and efficient
hubs in the technology network. As shown in Table
6, "control", "inform", and "informat" fall into this

1.5
! [ ]
system . .
devic o5 informat inform
. process, control
%1 5 1 -0.5 ¢ 0 0.5 1 1.5
o -
’ manag
] ] 4
program  method
° -15
vehicl S
betweenness
Average sD
betweenness 1 0.86638172
closeness 0.101161616 0.011202689

Figure 6. Technology mapping results each technical keywords based on centrality

Table 6. Result of social network analysis

Technical Keyword Priority
control, inform, informat High

- Medium
method, system, devic, program, Low

manag, process, vehicl
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category, underscoring their central and integrative roles
in the innovation structure. In contrast, keywords such
as "method", "system", "device", "program", "manage",
"process" and "vehicle" exhibit lower centrality values and
are classified as low-priority. These terms represent more
specialized or peripheral technologies that, while relevant,
exert less structural influence on the overall technological
landscape.

4.5 Integrated analysis

By synthesizing the findings from the time series analysis
(TSA) and social network analysis (SNA), we developed
an overall priority ranking for the technology fields,
as summarized in Table 7. This integrated framework
highlights technologies that are both structurally central
within the innovation network and exhibit strong growth
momentum over time, ensuring that emerging trends and
key integrative technologies are considered simultaneously
for strategic prioritization.

Priority 1 is assigned to "control", which emerged as the
top-ranked technology. It is classified as a "Hot" field in the
time series analysis and possesses "High" centrality in the
network, marking it as both rapidly growing and structurally
pivotal. Priority 2 includes "inform" and "informat," which
combine "High" network centrality with an "Active"
growth trend, indicating that these technologies play a
central role in knowledge integration while demonstrating
moderate innovation momentum. Priority 3 consists of
"method," "system," "devic," and "program." Although

these keywords have "Low" network centrality, their
"Hot" growth trend highlights them as significant areas of
emerging technology.

Priority 4 encompasses "manag" and '"process,"
representing established, active fields with steady growth,
but lower structural importance in the network, suggesting
they serve more as supporting technologies than as central
hubs. Finally, Priority 5 is assigned to "vehicl", classified as
both a "Cold" field and as having "Low" network centrality,
reflecting limited growth and peripheral influence within
the technological landscape. Overall, the integrated results
strongly indicate that control technology is the most
strategic and promising area for future R&D investment
in Japanese weather observation, indicating that research
resources should be concentrated in this field to maximize
innovation impact.

4.6 Economic valuation

To translate our findings into a tangible business case,
we conducted an economic valuation of the top-ranked
technology, "control". We modeled a scenario in which an
event organizer must decide whether to proceed with or
cancel an event based on a weather forecast. The detailed
calculations are presented in the spreadsheet shown in Table
9, which includes the payoff matrix, prior probabilities of
weather states, and the conditional probabilities of forecast
accuracy summarized in Table 8.

Table 7. Results of the integrated analysis frameworks

Technical keyword Social network analysis Time series analysis priority
control High Hot 1
inform, informat High Active 2
method, system, devic, Low Hot 3
program
manag, process Low Active 4
vehicl Low Cold
Table 8. Results of the integrated analysis frameworks
Rain Cloud Clear

Rain (Actual Weather) 0.7 0.2 0.1

Cloud (Actual Weather) 0.3 0.5 0.2

Clear (Actual Weather) 0.1 0.3 0.6

Decision Making and Analysis
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Table 9. Result of scenario analysis using EVPI and EVSI

. Formula or
Category Item / state Rain Cloud Clear probability Remarks
Event progress 50, 600 4000 — —
payoff
Event
cancellation -200 -200 200 — —
1. Baseline payoff
Decision  Prior probability 0.7 0.2 0.1 — IP=1.0
" E"tpe“i;il EMV = Max(-
onetary vatue — — — 770,-160)=  Optimal: Cancel
(EMV) "160
Eventprogress ;50 -600 4000 — —
payoff
Event
cancellation -200 -200 200 — —
payoff
i i Max(P
Ol oo Mot
2. Perfect
Information ~ Expected Value (-200%0.7) +
Scenario with Perfect o o o (-200%0.2) + o
Information (4000x0.1) =
(EVWPI) 220
Expected Value
of Perfect EVwPI - EMV Max potential
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The analysis begins with the baseline decision. Without
any additional information, the optimal choice is to cancel
the event, yielding an Expected Monetary Value (EMV) of
—160. This baseline provides a benchmark for evaluating
the value of acquiring further information. The Expected
Value of Perfect Information (EVPI) is 380, representing
the maximum theoretical benefit of eliminating all
uncertainty about the weather. We then modeled the
Expected Value with Sample Information (EVSI) based
on an improved forecast reflecting the potential benefit of
investing in advanced control technology. The expected
value under this scenario is —39, yielding an EVSI of 121
(-39 — (-160)). This positive EVSI demonstrates that
even imperfect but enhanced information generates a net
economic gain, providing quantitative justification for
investing in superior control technologies and highlighting
their strategic importance.

5. Discussion

5.1 Summary of findings

This study leveraged a multi-method framework to
analyze 93 Japanese patents in weather observation from
2019 to 2023. The key findings are threefold. First, the
R&D landscape is dominated by major automotive and
electronics firms such as Honda and Denso. Second, our
integrated analysis, which combined time series forecasting
with network centrality metrics, clearly identified "control"
technology as the highest-priority field. This conclusion
is supported by robust evidence: "control" is not only a
"Hot" field with a rapidly growing number of patents, but
also a structurally critical hub in the innovation network,
as demonstrated by its high betweenness and closeness
centrality. Finally, our economic evaluation confirmed
this strategic priority. By modeling a real-world decision
scenario, we showed that investing in improved "control"
systems yields a positive Expected Value of Sample
Information (EVSI), providing a quantitative justification
for R&D expenditure in this area.

5.2 Theoretical and practical implications

This research contributes to the field of technology
forecasting by presenting a robust, integrated methodology
that synthesizes insights from text mining, time series
analysis, social network analysis, and economic valuation.
This approach provides a more comprehensive and
defensible assessment of technological trends than any
single method alone. In particular, the inclusion of EVPI
and EVSI bridges the gap between identifying technological
trends and evaluating their economic viability, offering
a direct link to strategic business decision-making. The
framework highlights how combining statistical and
modeling techniques can inform optimal R&D investment
decisions.

Decision Making and Analysis

The findings offer clear, actionable intelligence
for companies. Technology firms, particularly in the
automotive and IoT sectors, should recognize the strategic
importance of "control" technologies. The results indicate
that future value lies not only in data collection but also in
sophisticated control systems that process this data for real-
time, automated decision support. Practical applications
may include vehicle-to-everything (V2X) communication
for hyperlocal weather alerts or advanced control systems
for drone-based atmospheric observation.

For policymakers and researchers, the study provides
guidance for prioritizing initiatives and research directions.
Government agencies and funding bodies should consider
supporting R&D in control systems for meteorological
applications, as enhancing these capabilities can improve
national disaster preparedness and strengthen technological
competitiveness. For researchers, the convergence of
control engineering, artificial intelligence, and meteorology
presents a promising area for innovation. The relative
decline of "vehicle" as a hot keyword suggests a shift
from viewing vehicles as simple sensor platforms to fully
integrated nodes within a larger intelligent control network.

5.3 Limitations and future research

This study is subject to several limitations, which also
provide meaningful directions for future research. First, as
the reviewer noted, the dataset of 93 patents over a five-year
period is informative but relatively limited. The robustness
of the conclusions would be strengthened by extending the
temporal scope to capture longer-term technological cycles
(e.g., 10-20 years). Furthermore, a comparative analysis
with international patents, particularly those from the
United States Patent and Trademark Office (USPTO) and
the European Patent Office (EPO), would offer valuable
context for assessing Japan’s competitive position within
the global innovation landscape. Additionally, the analysis
was confined to patents filed in Japan and based on English-
language search terms, which may not fully reflect the
linguistic and conceptual nuances of the original Japanese
patent documents.

Second, while the network analysis (Section 4.4 and Table
6) effectively identified the structural centrality and priority
of technological keywords, the results are limited by the
representativeness of the selected dataset. Expanding the
keyword set and incorporating emerging terms from recent
patent filings or research publications could provide a more
dynamic understanding of evolving technological linkages
and priorities.

Third, as the reviewer rightly pointed out, the economic
valuation was based on a single illustrative case—an
event organization scenario—designed primarily to
demonstrate the methodological applicability of the
proposed framework. While this example was effective
for conceptual illustration, its generalizability remains
limited. Future research should enhance the universality of
these findings by exploring a broader range of application
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contexts. For instance, one could model the economic
value of improved "control" technology (identified as a
high-priority keyword in Table 6) for optimizing energy
grid load balancing during extreme weather conditions or
for guiding precision agriculture operations. Conducting a
sensitivity analysis on key model inputs—such as payoff
values, prior probabilities, and R&D cost parameters—
would further increase the robustness and policy relevance
of the economic implications under varying market
conditions.

Finally, incorporating additional data sources such
as scientific publications, news articles, and corporate
financial reports could enable triangulation with the patent-
based findings, offering a more comprehensive view of
the innovation ecosystem. Complementary qualitative
case studies of leading patenting firms would also deepen
understanding of firm-level innovation strategies and the
institutional drivers behind the observed technological
convergence patterns.

6. Conclusion

This study provided a comprehensive, data-driven analysis
of the current technological frontier in Japanese weather
observation. Our integrated methodology successfully
synthesized patent forecasting, network analytics, and
economic valuation to identify strategic R&D priorities.
Our findings clearly indicated a strategic shift towards more
intelligent, automated, and interconnected systems, with
"control" technology at the center of this transformation.
By integrating rigorous patent analytics with established
economic valuation models, we not only identified this
key trend but also quantified its potential value, offering
a solid foundation for strategic decision-making. As Japan
continues to grapple with the challenges of a changing
climate and extreme weather, investing in the advanced
control technologies identified in this research will be
paramount to enhancing its forecasting capabilities,
protecting its citizens, and securing its economic future.
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