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Abstract: Digital infrastructure is central to modern life, yet its environmental burden remains underexamined,
particularly in the context of planetary boundaries. This study introduces the Digital Planetary Burden Index (DPBI),
an integrative framework designed to quantify the ecological impacts of digital systems across five key dimensions:
energy consumption, material intensity, water usage, greenhouse gas emissions, and e-waste generation. These
indicators are mapped onto the planetary boundaries framework to provide a science-based structure for assessing
the sustainability of digital operations. The DPBI is empirically tested through a case study of a Google data center
to reveal the often-overlooked planetary stress associated with digital infrastructure. Despite its virtual nature, the
data center demonstrates substantial environmental impacts across multiple biophysical domains, underscoring the
discrepancy between digital convenience and ecological cost. The DPBI fills a critical gap in sustainability science
by linking digital infrastructure with global ecological thresholds. It supports enhanced environmental accountability
in the tech sector and provides a transparent, replicable model for evaluating digital sustainability. By situating digital
systems within the Earth’s finite limits, the DPBI offers a strategic tool for evidence-based governance and climate-
aligned innovation, contributing to more sustainable digital development pathways in the Anthropocene.
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1. Introduction

The digital economy is growing at an extremely high
pace and it has been revolutionizing the way people
work, communicate, and consume resources in society.
Underneath that virtual surface is a rapidly expanding array
of data centers, cloud infrastructure and hardware systems,
all of which take an outsize and growing environmental toll
on the planet. This ever-increasing demand is occurring in
the absence of a coherent scientific, regulatory and popular
account of the environmental consequences of digital

infrastructure. The narrow focus on energy or carbon in
most sustainability assessments often overlooks many other
biophysical dimensions (water or minerals consumption,
electronic waste) [1]. This presents a substantial blind
spot in efforts to align digital transformation with global
sustainability goals [2]. Concurrently, the concept of
planetary boundaries has been established as a new science-
based reaction to inventory humanity's safe operating space.
However, digital infrastructure has not been systematically
analyzed within this framework, resulting in a conceptual
and methodological gap. Current methods do not consider
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the complete range of environmental impacts associated
with the life and use of digital technology. To fill this gap,
in this paper we proposed the Digital Planetary Burden
Index (DPBI), a new model for estimating the impact of
digital infrastructures on the environment within five
interconnected areas: energy, materials, water, emissions
and e-waste. Each component has been validated in the
scientific literature and corresponds to a related planetary
boundary issue.

The framework is operationalized through a real-world
case study of a Google data center, a globally recognized
node of digital infrastructure. This example demonstrates
both the methodological applicability of the DPBI and
the urgent need for systemic accountability in the digital
sector. Google provides clear, interpretable data that
illustrates how digital systems, though intangible to users,
exert concrete and measurable pressures on the Earth’s life-
support systems. By advancing the integration of digital
sustainability into planetary science, the DPBI not only
offers a new evaluative tool, but also lays the groundwork
for future policy interventions and research at the
intersection of technology and environmental stewardship.

Although sustainability assessment tools such as the Life
Cycle Assessment (LCA) or the Environmental Footprint
Method provide important insights, they primarily measure
environmental impacts in relative or component-specific
terms. These tools often lack a science-based boundary
reference that distinguishes between operations that are
efficient and those that are truly sustainable. The Digital
Planetary Burden Index (DPBI) builds upon this tradition
and extends it by explicitly situating the impacts of
digital infrastructure within the framework of planetary
boundaries. The DPBI does not replace them, but rather
complements them by providing boundary-normalized,
multidimensional and geographically contextualized
performance indicators to show whether digital systems are
within safe ecological limits.

2. Literature review

The recent growth in digital infrastructures such as
data centers, cloud computing platforms, Al models,
and blockchain systems brings many insights for future
generations but has also raised a number of global
environmental challenges. Data center power consumption
alone is said to account for approximately 1-2% of
the world’s electricity, a number predicted to increase
dramatically given the continued popularity of Al and
10T applications [3, 4]. According to Jones et al. [5], the
world data center industry emitted more than 200 megatons
of CO: each year in the late 2010s, with an increasing
portion from increasingly computer-intensive machine
learning models. More recent studies have underscored
the accelerating carbon footprint of ICT. For example,
Aslan et al. [6] quantified the rising global electricity use
of data centers, while Belkhir and Elmeligi [7] provided
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an early estimate of ICT’s share of global greenhouse gas
emissions, projecting it could rise to 14% by 2040. Strubell
et al. [8] demonstrated the high energy and emissions
costs of training natural language processing models, and
Patterson et al. [9] extended this analysis to large-scale Al
systems, highlighting both the scale of the challenge and
the potential of more efficient architectures.

Recent analyses have tried to contextualize these impacts
in terms of energy efficiency and carbon neutrality. For
example, Cao et al. [10] proposed a roadmap to carbon-
neutral data centers by integrating renewable energy,
energy storage, and hardware optimization. Similarly, Katal
et al. [11] highlighted the effectiveness of power usage
effectiveness (PUE) metrics in tracking energy efficiency
at the facility levels. However, such approaches often focus
on operational-level optimizations, rather than systemic
environmental sustainability. Although these contributions
are valuable, they generally pay attention to sustainability
in terms of carbon reduction only, ignoring other
environmental externalities such as water consumption, the
transformation of land or mineral exhaustion. Furthermore,
they do not address the limits of the Earth system within
which infrastructure should function.

Another critical but underexamined impact area of digital
infrastructure is freshwater consumption. Data centers rely
heavily on water-based cooling systems, particularly in arid
and semi-arid regions where water is both environmentally
and socially scarce [12]. For instance, Google’s 2023
Environmental Report discloses the consumption of over 5
billion gallons of water for data center cooling in a single
year, often in regions like Arizona or Oregon that experience
seasonal water stress [13]. Research has emerged around
water usage effectiveness (WUE) as a parallel metric to PUE.
While WUE provides insight into operational efficiency, it
does not integrate context-specific water scarcity, nor does
it relate water consumption to safe planetary thresholds.
Moreover, most assessments are siloed by environmental
vectors and do not acknowledge the compound interactions
between water, energy, and climate feedbacks [14, 15].
Recent research emphasizes the water stress implications
of digital infrastructure. Mytton [16] analyzed water use
in UK data centers, calling for transparent disclosure and
the integration of water risk metrics. Parkinson et al. [17]
further demonstrated the trade-offs between water- and
energy-intensive cooling methods, particularly in hot-arid
climates, underscoring the systemic nature of water—energy
tensions in digital infrastructure [15].

Digital infrastructure also imposes a significant material
footprint, including the use of rare earth elements (REEs),
critical minerals such as cobalt, and large volumes of
semiconductors [18]. These materials are not only energy-
intensive to extract and refine, but also their disposal
contributes to hazardous e-waste streams [19]. Song et
al. [20] highlighted the geopolitical and ecological risks
associated with rare earth element and cobalt supply
chains, while Forti et al. [21] provided a global assessment
of e-waste generation, identifying ICT equipment as one
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of the fastest-growing waste categories. These studies
reinforce the urgent need to situate material intensity and
waste generation within the planetary boundary for novel
entities. Life Cycle Assessments (LCAs) of IT equipment
such as servers, storage units, and cooling systems often
quantify embedded material and energy use. However,
these studies tend to focus on individual components
rather than the aggregated systemic burden [22]. More
importantly, they do not anchor material throughput within
the concept of "novel entities" as defined in the planetary
boundaries’ framework [23, 24]. This highlights a key gap:
while material footprints are well-documented in isolation,
they remain detached from a cumulative or boundary-
aware interpretation of environmental sustainability.

Mainstream ESG (Environmental, Social, Governance)
metrics and corporate reporting frameworks, such as CDP,
GRI, and SASB, have promoted transparency among
major tech firms. For example, Microsoft, Amazon, and
Google routinely report Scope 1-3 emissions, energy mix,
and selected sustainability KPIs. Similarly, green data
center certifications (e.g., LEED, BREEAM) integrate
sustainability features in construction and energy use.
However, these frameworks fall short in several ways. First,
they lack coherence across domains: water, land, carbon,
and materials are assessed separately. Second, they fail
to benchmark performance against planetary thresholds,
instead focusing on year-over-year improvement or peer
comparison [25]. Third, they do not capture the geospatial
context of impacts—such as whether water is withdrawn in
a highly stressed basin or land is developed in a biodiversity
hotspot. In this regard, ESG assessments are best seen
as compliance and disclosure tools, not instruments for
boundary-aware sustainability governance.

The planetary boundaries framework, first proposed by
Rockstrom et al. [26] and refined by Steffen et al. [27],
defines a "safe operating space" for humanity across
nine critical Earth system processes. These include
climate change, biosphere integrity, land-system change,
freshwater use, biogeochemical flows, ocean acidification,
atmospheric aerosol loading, stratospheric ozone depletion,
and the introduction of novel entities. While the planetary
boundaries framework has gained prominence in climate

science and environmental economics, its integration
into sector-specific environmental assessments remains
uncommon. For example, O’Neill et al. [28] attempted to
downscale planetary boundaries for national footprints,
while Hayhd et al. [29] explored boundary applications
in agriculture. However, no known framework has
comprehensively applied planetary boundaries to the ICT
or digital infrastructure sector.

Several attempts had been made to conceptualize ICT
within planetary thinking. For instance, Lange et al. [30]
examined the rebound effects of digitalization, arguing that
ICT may exacerbate environmental stress unless absolute
limits are imposed. Similarly, Ebert et al. [31] called for
Al-specific climate governance, especially given the
carbon and energy intensities of large language models
and high-performance computing. Yet, these studies stop
short of providing an operational, index-based approach
that integrates multidimensional impacts with planetary
thresholds.

Table 1 highlights the distinctive contribution of the
DPBI compared with existing approaches. While LCA
and the Environmental Footprint Method provide valuable
insights into product-level or multi-indicator sustainability,
they generally lack boundary-based normalization and
geospatial sensitivity. In contrast, DPBI situates digital
infrastructure explicitly within planetary boundaries,
integrates multiple environmental dimensions into a single
index, and introduces geo-contextual adjustments. This
makes DPBI more suitable for assessing whether digital
systems operate within safe ecological limits, rather than
simply achieving incremental efficiency gains.

Despite these important contributions, most existing
studies remain siloed by environmental vector and do not
fully integrate impacts across planetary dimensions. As
noted by Teng et al. [32], digitalization may exacerbate
ecological pressures without absolute limits, and they
argue for Al-specific governance that explicitly accounts
for planetary system stress. These insights highlight the
need for a multidimensional, boundary-aware framework
such as DPBI. The key weakness in the existing literature
lies in the fragmentation of environmental indicators.
While energy, emissions, and water are increasingly

Table 1. Comparison of existing sustainability assessment frameworks (LCA, Environmental Footprint Method)
with the proposed Digital Planetary Burden Index (DPBI).

Geo-contextual

Framework Scope Normalization Integration e s Policy relevance
sensitivity
Product/process . . . - Informal
LCA lifecycle Relative (per unit) Component-specific Limited benchmarking
Environmental Multi-indicator Relative, not Harmonized but Limited EU compliance
Footprint Method sustainability boundary-linked siloed focus
_ Digital Boundary- Integrated (carbon, - . Policy-oriented
. infrastructure normalized Explicit (regional + .
DPBI (this study) o water, land, o (safe—caution—
(facility to (planetary materials, energy) workload-sensitive) overshoot zones)
portfolio) thresholds) ’ &y
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measured at facility or corporate levels, they are rarely
combined in a meaningful way. This creates a siloed view
of sustainability, where improvements in one domain (e.g.,
carbon) may mask regressions in others (e.g., water or land).
Furthermore, normalization of impacts is typically absent.
For instance, reporting that a data center uses 1 billion liters
of water annually is informative, but meaningless without
contextualization—Is this within a sustainable threshold?
Is it being withdrawn from a water-scarce basin? The
absence of benchmarking against ecological limits renders
most reports descriptive rather than diagnostic. Tools
such as the Environmental Footprint Method attempt to
harmonize LCA indicators but do not embed planetary
boundaries. In the same way, SBTi (Science-Based Targets
initiative) focuses on GHGs but lacks a multi-criteria
scope. This failure in systems integration paves the way
for the Digital Planetary Burden Index (DPBI), which
aims to operationalize sustainability indicators in line with
planetary boundaries and geospatial sensitivity [33].

Comparing DPBI with existing sustainability
frameworks

Despite the progress of methods such as LCA and the
Environmental Footprint Method, their application to
digital infrastructure remains constrained. LCA typically
evaluates cradle-to-grave impacts of specific products
or processes but does not explicitly benchmark results
against global or regional planetary thresholds. The
Environmental Footprint Method harmonizes multiple
indicators but lacks integration with geospatial sensitivity
and workload differentiation. In contrast, the DPBI
extends these approaches in three critical ways: (a) it
normalizes impacts against planetary boundaries to assess
absolute sustainability, (b) it integrates five environmental
dimensions into a composite score to capture trade-offs,
and (c) it incorporates regional and functional sensitivity,
ensuring results are meaningful across locations and
service types.

This work has identified a key shortcoming in existing
environmental assessment tools applicable to digital
infrastructure. There are many individual metrics
available that allow us to assess the impact (for example,
carbon emitted or water used), but no holistic framework
systematically aggregates these different burdens together
into a notion of being within the safe space boundaries for
the planet [34]. The current framework does not normalize
environmental impacts with respect to planetary boundary
limits, so we cannot evaluate in absolute terms whether
any facility is being operated sustainably. Furthermore,
existing evaluations are usually not sensitive to geospatial
inhomogeneities or workload specificities; they typically
do not consider that the same infrastructure can lead to
very different environmental impacts depending on its
location and the computations it supports. The DPBI fills
these gaps by defining a multi-dimensional, boundary-
aware sustainability framework. It integrates carbon, water,
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land, and material footprints into a single index base, sets
them against planetary boundaries to provide context, and
presents a new facility-level benchmark that is globally
comparable but also sensitive to local conditions. In this
way, the DPBI focuses not on improvement towards
the margins but on systemic subsistence within Earth’s
ecological boundaries, much exceeding the scope of
existing literature.

3. Conceptual framework

This section addresses the scattered and narrowly
focused practices found in the literature by presenting the
DPBI, a holistic sustainability framework for evaluating
the environmental performance of digital infrastructure
based on planetary boundaries. The DPBI aims to provide
a concrete, evidence-based, and scalable approach to
measuring the total environmental burden added to a
specific site by digital architecture (such as datacenters), for
purpose of incentivizing them toward a convergence with
humankind’s safe operating space on Earth. The formation
of the DPBI is based on three conceptual paradigms:
planetary boundary alignment, multi-dimensional burden
integration, and geo-contextual sensitivity. These principles
define what the index is and what it may be used for as a
benchmark, reporter or policy alignment mechanism. At
its core, the DPBI framework assesses five interrelated
environmental dimensions: carbon emissions, freshwater
use, land footprint, material intensity, and energy source
burden. Each of these dimensions reflects a tangible
environmental externality associated with the design,
operation, and scaling of digital infrastructure. Rather than
treating these impacts as independent or loosely related,
the DPBI conceptualizes them as converging stressors that
must be managed together to avoid overshooting planetary
boundaries. For instance, the decision to increase server
cooling efficiency using evaporative water systems may
reduce electricity consumption but simultaneously escalate
freshwater stress particularly in arid regions. Similarly,
transitioning to renewable energy sources can reduce carbon
intensity but may increase land and mineral footprints due
to solar, wind, and battery infrastructure. These trade-offs
underscore the necessity of an integrated model (Figure 1).
Each environmental dimension in the DPBI is normalized
against a science-based threshold derived from global
planetary boundary estimates. For example, carbon
intensity is assessed relative to per capita carbon budgets
consistent with limiting warming to 1.5°C; water usage is
contextualized using basin-specific stress thresholds, while
land and material burdens are referenced against available
global biocapacity and extraction limits. This normalization
process converts disparate units (e.g., kg CO-e, liters of
water, square meters of land) into dimensionless scores that
reflect the degree to which each impact remains within or
exceeds safe operating limits. A normalized value below
1.0 indicates that the facility’s activity is within the safe
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zone for that dimension, while values above 1.0 denote
transgression of planetary thresholds.
Once normalized, these values are aggregated using
a weighted function to yield a single DPBI score. The
weighting scheme can be adapted to reflect context-specific
priorities, such as placing greater weight on water use in
drought-prone regions or assigning higher importance to
irreversible impacts such as material depletion. However,
in the standard configuration, equal weighting is applied
to emphasize that transgressing any planetary boundary
is problematic and cannot be fully offset by performance
in other areas. The aggregated score thus offers a scalar
representation of total planetary burden, enabling
straightforward interpretation and comparison across
facilities, regions, and timeframes. More importantly, the
DPBI does not merely provide a numerical score but also
categorizes performance into three interpretive zones.
Scores below 1.0 indicate operation within planetary
boundaries and are classified as "safe". Scores between 1.0
and 1.5 indicate a zone of ""caution”, in which environmental
thresholds are being approached or moderately exceeded.
Scores above 1.5 reflect significant overshoots and
signal the need for urgent mitigation. These interpretive
ranges provide intuitive guidance for decision-makers,
sustainability officers, and regulatory agencies (Figure 1).
Another critical feature of the DPBI is its incorporation
of geo-contextual sensitivity. Unlike global averages or
sectoral benchmarks, the index accounts for site-specific
characteristics, such as local water stress, grid carbon
intensity, and regional land-use constraints. For example,
the same design of data center may receive different DPBI

scores depending on whether it is in Oregon, where water
is relatively abundant, or in Arizona, where withdrawals
may stress already overdrawn aquifers. Similarly, a facility
powered predominantly by coal-based electricity will have
a significantly higher carbon burden than the one relying
on hydroelectric or solar energy, even if their operational
efficiencies are similar.

The framework also adjusts for workload type and
density, recognizing that not all digital services impose
equal environmental loads. High-performance computing
(HPC) clusters used for artificial intelligence training
typically consume more energy and generate greater
emissions per unit of time than edge servers handling local
data routing. The index introduces a standardized workload
denominator—such as emissions or water use per teraflop-
hour or per petabyte transmitted—to enable functional
comparisons across divergent services and operational
scales. This workload-sensitive calibration ensures
that the index reflects not only the physical footprint of
infrastructure, but also the intensity and efficiency of
digital outputs.

In practice, the DPBI can be applied at multiple levels,
from individual data centers and server rooms to cloud
computing zones and even entire corporate ICT portfolios.
The modular nature of the index enables adaptation to
data availability, organizational capacity, and regulatory
expectations. It can be calculated using publicly available
sustainability reports, grid mix data, and facility-
level resource consumption metrics. More advanced
implementations may involve real-time monitoring,
satellite-derived water stress indices, or LCA-based material

Carbon Load
CO,-equivalent emissions
per compute cycle or petabyte

Normalization
- Relative to

planetary boundaries

‘Water Stress
Water used for cooling
per unit of data or processing

Material Intensity
Rare earth metals and
critical materials used

v
DPBI Score

Land Footprint
Area of land used per MW
of data center capacity

Energy Source Burden
% of renew able vs fossil-bacd
energy used

> Weighted
composite index

Y

Applications
Benchmarking

\4

ESG reporting
Digital policy

Figure 1. DPBI Framework and its interrelated dimensions
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flow accounting. Therefore, the framework offers a novel
operational approach that redefines how sustainability is
measured and governed in the digital age. By integrating
multi-domain environmental impacts, normalizing them
against planetary boundaries, and contextualizing them
in geographic and functional terms, the DPBI provides a
rigorous and actionable tool for assessing whether digital
infrastructure is truly sustainable, not just more efficient.
It addresses the urgent need for sector-specific tools that
move beyond compliance metrics and toward a science-
based, planetary-aware sustainability paradigm. In the
following section, the DPBI is applied to a real-world case
study to illustrate its implementation, interpretability, and
policy relevance.

4. Methodology

This study employs a mixed-methods approach to develop,
apply, and validate the Digital Planetary Burden Index
(DPBI), a novel environmental assessment framework that
quantifies the environmental burden of digital infrastructure
in relation to planetary boundaries. In selecting data inputs,
we adopted a strict hierarchy, prioritizing peer-reviewed
literature and official environmental datasets (e.g., IPCC,
UNEDP, and Ecoinvent). Corporate sustainability disclosures
and credible public filings were used only as supplementary
sources, while journalistic accounts were cross-checked
and incorporated solely when independently verified. To
ensure academic rigour, non-peer-reviewed sources such
as public filings and investigative reports were used only
when triangulated with at least one independent dataset
(e.g., regulatory filings, LCA databases, or government
statistics). Screening criteria emphasized transparency
of methodology, institutional credibility, and traceability
of reported figures. Peer-reviewed life cycle assessment
(LCA) studies were prioritized, and when such studies were
cited, they are now explicitly marked in the references list
to distinguish them from secondary sources. This process
strengthens the validity and reproducibility of the data
foundation.

This ensures that the case study is grounded in transparent
and scientifically robust data. The methodology comprises
three key components: (a) conceptual framework
construction, (b) index formulation using quantitative
indicators, and (c) empirical application through a real-
world case study of a high-capacity data center. The
methodology was designed to ensure transparency,
comparability, and scalability of results across geographies
and infrastructure types. DPBI is grounded in the planetary
boundaries framework [28, 36], which identifies nine Earth
system processes critical to maintaining a stable planetary
environment. For operational clarity and data availability,
this study focuses on five environmental dimensions
relevant to digital infrastructure: carbon emissions,
freshwater use, land-system change, material throughput,
and energy source burden. Each dimension corresponds
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to a boundary of concern: climate change, freshwater
use, biosphere integrity, and novel entities (materials and
waste).

4.1 Linking DPBI dimensions to planetary
boundaries

The five dimensions of DPBI are explicitly grounded in the
framework of planetary boundaries, with each dimension
linked to a boundary through specific mechanisms. Carbon
emissions contribute to climate change by increasing
radiative forcing and pushing the global carbon budget
toward overshoot. Freshwater use relates to the freshwater
boundary, as large withdrawals disrupt basin hydrology and
ecosystems, and even moderate use in stressed basins can
exceed resilience thresholds. Land occupation connects to
land-system change and biosphere integrity, since facility
footprints can drive habitat conversion and biodiversity
loss, and their cumulative expansion adds to global land
pressures. Material intensity aligns with the novel entities
boundary, as the extraction of rare earth elements, cobalt,
and other critical minerals generates toxic by-products,
while disposal adds to e-waste streams that release
persistent pollutants capable of destabilizing Earth system
processes. Energy source burden influences both climate
change and biogeochemical flows, with fossil-based
electricity increasing carbon and nitrogen emissions and
hydropower altering water cycles and nutrient balances.
By clarifying these associations, DPBI moves beyond
conceptual framing to a boundary-anchored framework
capable of diagnosing how digital infrastructures interact
with planetary thresholds.

These dimensions are selected based on an extensive
review of environmental sustainability literature and digital
infrastructure impact assessments. The selection reflects
both ecological relevance and data feasibility, ensuring that
the index is empirically grounded and adaptable to future
dimensions such as biodiversity or land-system change. The
DPBI score is computed using a weighted normalization
approach that allows comparison across dimensions with
different units. The core equation is:

n

opei=) v (5) (1)

i=1

Where:

E, = measured environmental pressure from the digital
system for dimension i (e.g., kWh of electricity consumed,
metric tons of CO. emitted, liters of water withdrawn,
kilograms of materials consumed, hectares ofland occupied).
B, = safe operating boundary or allocated planetary budget
for that dimension (global or regionally downscaled). w, =
weight assigned to dimension i, representing the relative

contribution of that dimension to the overall DPBI score.
(B—i) = burden ratio, indicating the extent to which the
j
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Table 2. Linking DPBI dimensions to planetary boundaries

DPBI dimension

Corresponding planetary boundary

Mechanism of impact

Carbon emissions

Freshwater use

Land occupation

Material intensity Novel entities

Energy source burden

Climate change

Freshwater boundary

Land-system change /
biosphere integrity

Climate change /
Biogeochemical flows

Increases greenhouse gases, raises
radiative forcing, contributes to
overshooting the global carbon budget.

Large withdrawals disrupt basin
hydrology and ecosystems; stressed
basins exceed resilience thresholds.

Facility footprints drive habitat
conversion and biodiversity loss;
cumulative land demand adds global
pressure.

Extraction of rare earths and cobalt
generates toxic by-products; e-waste
streams release persistent pollutants.

Fossil-based power increases carbon and
nitrogen emissions; hydropower alters
water cycles and nutrient flows.

activity approaches or exceeds planetary safety thresholds.

To enhance flexibility, we conducted a supplementary
sensitivity analysis to test alternative weighting schemes.
Ecological sensitivity weighting emphasized water in
arid contexts and carbon in high-emission grids, while
reversibility weighting prioritized long-term pressures
such as biodiversity loss and material depletion. Results
showed that although the absolute DPBI score shifted
slightly (£0.07), the relative hotspots of carbon emissions
and freshwater use remained consistent. This robustness is
further illustrated in Table 3.

Thresholds (B) are derived from established scientific
sources. For example:

*  The global carbon budget is based on IPCC pathways
consistent with limiting warming to 1.5°C.

*  Freshwater boundaries are benchmarked against basin-
level stress thresholds.

*  Material boundaries are aligned with UNEP estimates
of safe throughput and circularity targets.

*  Energy source burdens are adjusted according to grid
carbon intensity and renewable penetration.

Each environmental pressure was normalized against its
corresponding boundary, with boundary values adjusted to
reflect proportional allocation (e.g., per petabyte share of
global digital activity). The facility’s DPBI score was then
calculated using the equation above and compared across
dimensions. This case study serves as both a validation
exercise and a prototype for broader DPBI applications. It
demonstrates the model’s ability to integrate heterogeneous
data, reveal dimension-specific hotspots, and highlights
where digital infrastructure is outpacing environmental
thresholds.

4.2 Indicator quantification and normalization

To improve reproducibility and clarity, each step of
the quantification and normalization process is detailed
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below, with explicit formulas and boundary allocations.
Each DPBI dimension was quantified using consistent
boundaries, scopes, and formulas to ensure comparability
across indicators:

Carbon Emissions (Climate Change): Estimated
from annual facility electricity use multiplied by the grid
emission factor. Formula:

E_,. =kWhx gCO,/kWh

carbon

2

This captures both renewable and fossil-based shares in
the local energy mix.

Freshwater Use (Freshwater Boundary): Calculated
from annual cooling water withdrawals. Basin-level stress
multipliers were applied to reflect local scarcity conditions.
Formula:

E_ = Withdrawals (m®) x Basin Stress Factor

water

3)

For case adaptation, freshwater withdrawals adjusted
by basin stress were proportionally allocated to the global
freshwater boundary using the facility's share of global
digital activity (per PB basis).

Land Occupation (Land-System Change): Based on
facility footprint and ancillary infrastructure relative to
service output. Formula:

Occupied Hectares
PB of Data Processed

“4)

Eland:

Material Intensity (Novel Entities): Derived from life
cycle inventories (e.g., Ecoinvent) covering raw material
extraction, processing, manufacturing, transport, and
disposal of server hardware. Particular attention was given
to critical minerals such as cobalt and rare earths due to
their toxic by-products. Formula:
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kg of Critical Materials per Server Lifetime
PB of Data Processed

(6))

Ematerials =

To address common controversies in applying LCA
to digital infrastructure, we explicitly defined system
boundaries to include raw material extraction, processing,
transport, manufacturing, and end-of-life disposal of
server hardware, while excluding data transmission
network energy to maintain analytical focus on facility-
level impacts. Data inputs were drawn from standardized
inventories (e.g., Ecoinvent) to ensure cross-comparability.
Recognizing variations in transparency across data centers,
we applied conservative estimates and triangulated
with peer-reviewed LCA studies where available. These
measures reduce boundary ambiguity and strengthen
the reproducibility and credibility of the material burden
estimation.

Energy Source Burden (Climate & Biogeochemical
Flows): Accounts for electricity source composition.
Renewable share reduces intensity; hydropower
adjustments consider seasonal variability. Formula:

Eenergy = Z (kWh; x Emission/Impact Factor;)

(6)

Normalization: Each indicator value £, was divided by
its planetary boundary allocation (B)) to calculate a burden
ratio:

(7

Service Differentiation: Where possible, facility
workloads were distinguished among Al training, cloud
storage, and general computing, as these exhibit different
energy and water intensities.

Aggregation: Final DPBI scores were computed using
the weighted sum described in Equation (1). Equal weights
were applied in this case study, but the framework allows
for scenario-specific alternatives (e.g., higher weights for
water in arid regions).

4.3 Weighting scheme and sensitivity analysis

Although equal weights (w, = 0.20) are applied across
the five environmental dimensions in the baseline DPBI
calculation, the framework also allows alternative
weighting to reflect ecological urgency and irreversibility.
To test robustness, we applied two additional schemes:

* Ecological sensitivity weighting gives greater
emphasis to dimensions under higher stress (e.g.,
water in arid basins, carbon in carbon-intensive grids).

» Irreversibility —weighting prioritizes dimensions
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associated with long-term or irreversible impacts (e.g.,

biodiversity loss, mineral depletion).

Results show that while absolute DPBI values shift
slightly, the ranking of high-burden dimensions remains
stable, confirming the framework’s resilience to different
assumptions.

4.4 Uncertainty analysis

To address input variability, we conducted a Monte Carlo
simulation with 1,000 iterations. Input ranges were drawn
from authoritative sources:

e Carbon emission factors (£10% from IPCC estimates),

*  Water withdrawal coefficients (+15% variation by
basin stress levels),

*  Material throughput (£20% based on UNEP lifecycle
inventories),

*  Energy grid
fluctuations).

Each iteration sampled within these ranges, and the DPBI
score was recalculated. The distribution was then used to
compute 95% confidence intervals for each dimension,
demonstrating that results are robust under input variability.
For example, carbon (mean 1.32, 95% CI: 1.20-1.45)
and water (mean 1.78, 95% CI: 1.55-2.05) consistently
exceeded safe thresholds, while land (mean 0.65, 95% CI:
0.58-0.72) and materials (mean 0.97, 95% CI: 0.82—1.12)
remained relatively stable. These results confirm that DPBI
outputs are resilient to parameter uncertainty, with water
and carbon dominating both the mean score and variance.

intensity (£15% reflecting annual

4.5 Software and computational tools

All computational analyses and visualizations in this study
were performed using a combination of Python 3.10 (via
Jupyter Notebook) and Microsoft Excel. Python libraries
such as NumPy and Pandas were employed for data
normalization and index calculation, while Matplotlib and
Seaborn were used to generate comparative visualizations
of DPBI scores. Data was first processed and converted
into units in Excel, ensuring that all dimensions were clear
and consistent. The DPBI formula was typeset in LaTeX
to maintain mathematical precision, and all artwork was
prepared with vector-based drawing software to guarantee
high-quality, publication-ready images with optimal
clarity. This modular, open-source toolchain was selected
to provide complete reproducibility and transparency.
Upon publication, all scripts used for computation and
data inputs will be available as supplementary files or in
a dedicated repository for anyone who wishes to repeat or
expand this method in the future.

5. Case study: Google’s data center in
the Dalles, Oregon
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Table 3. Sensitivity of DPBI to alternative weighting schemes

Dimension Equal weights (0.20 each) Ecological sensitivity Irr;\;eis(l;iiilt))i,lity
Carbon 1.32 0.25 0.20
Water 1.78 0.30 0.15
Land 0.65 0.15 0.25
Materials 0.97 0.15 0.25
Energy 1.05 0.15 0.15
DPBI Score 1.15 1.19 1.14

To demonstrate the practical application and interpretive
power of the DPBI, this section presents a case study of
Google’s hyperscale data center located in The Dalles,
Oregon. This facility offers a suitable and illustrative
test case for several reasons. First, it is a large data
infrastructure site operated by one of the world's largest
digital companies, and could provide useful environmental
scale. Second, Google has released some environmental
reference data on energy and water, with a reasonably
open approximation of the DPBI dimensions. Third,
The Dalles region has a context defined by hydropower
and freshwater dependence, which has recently begun to
face scrutiny at the local level; it is one of many regions
for which geospatial sensitivity within the index may
be variable. It is important to note that this case study is
presented as a proof-of-concept validation exercise for the
DPBI framework, rather than a definitive assessment of all
digital infrastructure. The Google data center was chosen
due to data availability and transparency, but the findings
should not be overgeneralized to the global digital sector
without further empirical testing across multiple facilities
and regions.

5.1 Facility overview

The Dalles data center was launched in 2006 and has
since undergone multiple expansions. Located in Wasco
County along the Columbia River, the facility benefits
from relatively low-cost, renewable hydropower and a
moderate climate. These factors have historically made the
site attractive for large-scale server farms [36]. However,
the increasing demand for data-intensive services and
artificial intelligence workloads has placed growing
stress on local water and energy systems. Recent reports,
including environmental disclosures and investigative
journalism, have revealed that the facility uses up to 1.06
billion gallons (approximately 4 million m?) of freshwater
annually for cooling purposes. This is particularly
concerning given that The Dalles and surrounding regions
have experienced periodic drought conditions, which
may become more frequent under future climate change
scenarios. In parallel, while Oregon’s grid mix includes a
substantial proportion of renewable energy (approximately
60-70% from hydroelectric sources), the remaining energy
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demand may still be met by fossil-based sources, especially
during seasonal or peak demand variability [37].

5.2 Data collection, normalization, and scoring

To calculate the DPBI for Google's data center, data
were drawn from a combination of publicly available
sources, including corporate sustainability disclosures,
regional utility information, and third-party environmental
investigations. Google’s own environmental impact reports
from 2021 to 2023 provided estimates of overall carbon
emissions and energy use. These were supplemented with
energy mix data from the Oregon Department of Energy to
determine the emissions intensity of electricity consumed.
Water consumption figures were obtained from public
filings made to the City of The Dalles, alongside data
revealed through investigative journalism that highlighted
the facility's peak annual freshwater withdrawals,
estimated at approximately 1.06 billion gallons, or about
4 million cubic meters. Land use estimates were derived
from satellite imagery analysis and zoning records from
Wasco County, with further insights gathered from facility
expansion permits filed by Google. Material burden
estimations relied on peer-reviewed life cycle assessments
of typical data center hardware and assumed refresh cycles
of three to five years. Where direct data were unavailable,
established coefficients from the literature and global
environmental databases were used to approximate likely
values, with adjustments for facility scale and capacity.

Each environmental dimension assessed — carbon
emissions, freshwater use, land footprint, material intensity,
and energy source burden — was normalized against its
respective planetary boundary threshold to generate a
dimensionless score between 0 and above 1.0. Carbon
emissions for the facility were estimated at approximately
72,000 metric tons of CO: equivalent annually, yielding
a normalized score of 1.32. This suggests that the facility
exceeds the per-workload, science-aligned carbon budget
necessary to remain within the 1.5°C warming threshold.
Freshwater use emerged as the most problematic dimension,
with normalized results indicating a score of 1.78. This high
value reflects both the large absolute volume of water used
for cooling and the increasing water stress in the Columbia
River Basin under changing climatic conditions. In
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contrast, the land footprint of the facility, approximately 20
hectares, resulted in a relatively modest impact when scaled
against planetary biocapacity, with a normalized score of
0.65. Material burden, based on the embedded resource
intensity of server hardware and infrastructure, produced
a score of 0.97, just within acceptable planetary limits.
Finally, although the facility primarily relies on Oregon’s
hydropower-rich grid, the variability in seasonal demand
and the use of fossil-based backup capacity resulted in an
energy source burden score of 1.05. This reflects a slight
overshoot beyond what would be required to align with a
fully carbon-neutral or carbon-free energy profile.

2.00
1.75
1.50

1.25

6. Results

The application of DPBI to the Google data center yields
a quantitative assessment of the facility’s environmental
impact in relation to planetary boundaries. By normalizing
each of the five environmental burden dimensions (carbon
emissions, freshwater use, land occupation, material
intensity, and energy source burden) against scientifically
grounded thresholds, the DPBI provides an integrated
view of the facility’s performance beyond conventional
corporate sustainability metrics (Figure 2).

1.00

0.75

0.50

0.25

Normalized Score (relative to planetary boundary)

Figure 2. Normalized DPBI scores by dimension

The results indicate that the facility exceeds safe
planetary thresholds in three out of five dimensions.
Carbon emissions, estimated at 72,000 metric tons of
COz-equivalent annually, yield a normalized score of
1.32, suggesting that the facility’s emissions per compute
workload may not yet align with the 1.5°C-consistent
global carbon budget. Although the company reports high
renewable energy usage, the continued reliance on fossil-
derived grid electricity during peak hours and seasonal
demand periods contributes to this overshoot.

Freshwater use presents the highest relative burden (Table
4). An estimated 4 million cubic meters of freshwater
are withdrawn annually for cooling, and considering
the regional water stress conditions as defined by the
WRI Aqueduct risk classifications, the facility receives
a normalized water score of 1.78. The freshwater burden
score should also be interpreted in the context of the
Columbia River Basin, where the facility is located.
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This watershed faces seasonal variability in flows, with
competing demands from agriculture, municipal supply,
and ecosystem maintenance. Although the data center’s
absolute withdrawals are a fraction of total basin flows,
the timing of water use during peak summer months can
exacerbate local scarcity. In dry years, this can intensify
competition with irrigation and household water demand,
thereby amplifying ecological stress. By situating DPBI
outputs within this basin context, the index highlights not
only global overshoot but also localized vulnerabilities
relevant to regional decision-making.

In contrast, the land use dimension shows a relatively
lower impact. The total land area occupied by the facility,
approximately 20 hectares, when considered relative to
the functional output of the center and normalized against
planetary-scale biocapacity constraints, results in a score
of 0.65, remaining below the planetary threshold applied
here. Similarly, the material burden dimension, based

Decision Making and Analysis



on the embedded material intensity of server hardware,
support infrastructure, and assumed replacement cycles,
yields a score of 0.97. While this approaches the boundary
threshold, it does not indicate overshoot, which may be
related to efficiency gains and compact design features
typical of hyperscale data centers. Lastly, the energy source
burden, which accounts for the carbon intensity of the
local electricity mix despite substantial hydropower input,
results in a score of 1.05, slightly above the benchmark for
carbon-neutral energy systems.

When aggregated using equal weights for each dimension,
the overall DPBI score for the Google facility is calculated
at 1.35. According to the interpretive tiers defined by
the DPBI framework, this value places the facility in the
"Caution" zone a category indicating moderate overshoot
of Earth system limits and signaling a need for remedial
sustainability actions. The high scores in carbon emissions
and freshwater use are the primary contributors to this
status, underscoring the need for deeper interventions in
these specific areas. For instance, investment in on-site
renewable generation paired with grid decarbonization and

Table 4. Normalized DPBI

advanced water reuse systems could significantly reduce
the facility’s boundary transgression.

The findings provide several important insights. First,
they undermine popular narratives that large-scale digital
infrastructure, powered mainly by a mix of renewable
sources, is automatically sustainable. Second, they highlight
the need to assess impacts across multiple dimensions:
venues that score highly for land use or materials may still
place unsupportable pressure on other biophysical systems.
Third, the DPBI makes benchmarking transparent so that
policy-makers, planners, and the public can distinguish
among genuinely sustainable operations from those
making narrowly defined environmental claims. In the case
of The Dalles, while our selected Canadian city does not
have access to hydropower, reliance on freshwater and lack
of full decarbonization indicate that the existing regional
context is inadequate for balancing global environmental
consequences.

scores for Google data center

Environmental dimension

Normalized score

Carbon emissions
Freshwater use
Land Use
Material Burden

Energy Source Burden

1.32
1.78
0.65
0.97
1.05

7. Discussion

This study introduced a novel approach to evaluating the
environmental sustainability of digital infrastructure within
the planetary boundaries’ framework. By applying the DPBI
to Google’s data center, we provide a proof-of-concept
that demonstrates how multi-dimensional sustainability
assessments can be operationalized and quantified. The
case study reveals significant environmental pressures
across Earth system boundaries, with freshwater use and
carbon emissions (1.78 and 1.32, respectively) exceeding
safe thresholds. These findings highlight the importance of
incorporating digital infrastructure into global sustainability
discourse, as its environmental impacts have often been
underrepresented [38, 39].

The significance of DPBI lies in its ability to translate
sustainability goals into measurable performance metrics
tailored to the digital sector. Unlike indices that either
generalize across sectors or focus narrowly on carbon,
DPBI integrates five dimensions aligned with Rockstrom
et al.’s framework, providing a more comprehensive
perspective on environmental pressures [26]. Its use of
publicly available datasets and life cycle inventories such
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as Ecoinvent avoids reliance on proprietary disclosures,
thereby enabling independent assessment. The open-data
philosophy and modular design also ensure adaptability
across contexts—ifrom hyperscale data centers to regional
IT hubs—and allow updates as better data or scientific
insights emerge. From a governance perspective, DPBI has
the potential to inform environmental policy and sector-
specific benchmarks. Much like carbon budgets guide
climate regulation, DPBI scores could support threshold-
based standards for carbon, water, materials, and energy
use. This is particularly relevant in resource-stressed
regions, where unchecked growth of computing hubs may
exacerbate local environmental pressures. Furthermore,
DPBI aligns with emerging disclosure requirements such
as the EU's Corporate Sustainability Reporting Directive
by offering multidimensional, evidence-based indicators.
Its adaptability also supports municipal planning and
localized policy design [40].

Academically, DPBI contributes to the emerging discourse
on “digital planetary stewardship” [27, 41]. While much
research emphasizes the positive role of digitalization in
climate mitigation, fewer studies systematically examine
the ecological burdens of digital infrastructure itself. By
linking ICT growth to planetary thresholds, DPBI reframes
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this discussion and underscores the sector’s responsibility
alongside transportation, agriculture, and manufacturing
[42, 43]. Finally, limitations must be acknowledged.
Boundary allocation methods remain contested, and
equal weighting may not reflect local ecological or ethical
priorities. These limitations present opportunities for
refinement, such as participatory calibration or region-
specific weighting.

Another limitation of this study is that basin-level
ecological stress and socio-economic competition for
water are not fully represented. While the DPBI freshwater
score provides a normalized indicator of overshoot, it
does not explicitly capture trade-offs between industrial
withdrawals, agriculture, and domestic use within the
Columbia River Basin. Future applications of DPBI should
integrate watershed-specific indices, such as the WRI
Aqueduct water stress database, to more directly quantify
ecological risks and social impacts. This refinement would
enhance DPBI’s value for local and regional policymaking.
To strengthen the promotion value of DPBI, it is
important to highlight its adaptability across different
digital infrastructures. While this study focused on a
hyperscale facility, the framework is scalable to smaller
facilities, such as edge computing nodes and regional
data centers, by adjusting service-level allocations and
boundary downscaling. For example, localized data
centers can be benchmarked against regional planetary
boundary allocations, while hyperscale facilities align
with global shares. Similarly, functional adaptations are
possible: cloud storage primarily emphasizes energy and
water dimensions, while blockchain systems—due to
high hardware turnover and energy intensity— require
greater weighting on material and carbon dimensions.
This adaptability demonstrates that DPBI can serve as a
flexible tool across heterogeneous digital infrastructures,
supporting both global benchmarking and context-specific
sustainability governance.

To operationalize DPBI in governance, it is essential to
align the framework with existing sustainability policies
such as the EU Green Deal, corporate ESG disclosure
standards, and science-based target initiatives. The
proposed caution zone (1.0-1.5) can be translated into
enforceable regulation by defining it as a mandatory
disclosure threshold, where facilities exceeding 1.0 must
report corrective measures, and those beyond 1.5 trigger
regulatory interventions. A phased implementation pathway
can begin with pilot applications in high-impact regions
(e.g., water-stressed basins or carbon-intensive grids) and
priority monitoring of the most sensitive dimensions. Over
time, the framework could be integrated into certification
schemes and procurement standards, providing both
regulatory oversight and market incentives for compliance.

7.1 Cross-dimensional trade-offs

DPBI also reveals that the environmental dimensions
of digital infrastructure are interdependent rather than
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isolated. For instance, shifting to renewable energy sources
can reduce carbon intensity but may also simultaneously
increase land occupation (e.g., for solar or wind
installations) and material demand for critical minerals
such as rare earths. Similarly, relying on hydropower in
Google’s data center reduces operational carbon emissions
but creates water-energy linkages: during dry years,
limited hydropower availability necessitates backup fossil
generation, which raises the carbon burden. These cross-
dimensional dynamics emphasize that improvements in one
boundary may create new pressures in another, underscoring
the importance of integrated assessment. Future DPBI
applications should incorporate scenario analysis to
capture such trade-offs, thereby enhancing its relevance
for comprehensive decision-making. Importantly, our
findings are illustrative rather than definitive. While DPBI
highlights relative hotspots, results should be interpreted as
indicative signals. Benchmarking against frameworks such
as LCA and the Environmental Footprint Method suggests
that DPBI complements rather than replaces existing
approaches, and broader applications across facilities
and regions are needed to validate robustness and policy
relevance.

8. Conclusion

The DPBI emerges not only as a methodological
contribution but also as a strategic provocation for how we
assess and govern the environmental dimensions of digital
infrastructure. As societies accelerate towards data-driven
economies, existing sustainability frameworks often lag
behind the pace and complexity of digital growth. The
DPBI addresses this gap not merely by measuring impact,
but by embedding the digital sector within the larger
planetary boundaries discourse—an urgent and overdue
recalibration. Rather than offering finality, this study opens
a new trajectory of inquiry. Future research should explore
the integration of dynamic, real-time data into the DPBI to
capture the temporal volatility of digital operations, such
as fluctuating energy loads or water demand during peak
data processing periods. There is also substantial potential
to tailor the DPBI for different scales and sectors: from
hyperscale cloud facilities to edge computing hubs, and from
healthcare Al systems to blockchain-based finance. Each
context carries unique burden profiles that require nuanced,
modular adaptations of the index. Moreover, the DPBI may
serve as a foundation for future governance instruments.
It could inform sustainability-linked financing for digital
infrastructure, serve as a regulatory threshold in data center
permitting, or underpin performance-based procurement
in the public sector. These practical applications require
collaborative refinement across disciplines, bringing
together environmental scientists, digital engineers, urban
planners, and policymakers to ensure the model remains
rigorous yet adaptable.

There is also an unexplored frontier linking DPBI to
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social equity. As the environmental costs of data centers
are often externalized to vulnerable communities or
resource-scarce regions, future adaptations of the index
could incorporate distributive justice metrics, highlighting
asymmetries in who bears the burden of digital growth.
Such integrations would deepen the ethical foundation
of the framework and align it more closely with the just
transition agenda. Ultimately, the DPBI is not just a new
index, it is a call to action. It invites academia, industry, and
governance institutions to rethink the digital transition not
only in terms of efficiency and access, but also in terms of
ecological realism and long-term planetary stewardship. In
this way, it offers a template for a digital future that is not
only smarter, but also wiser. While this study demonstrates
the feasibility of the DPBI through a single illustrative
case, its scope is necessarily limited. The Google data
center analysis should be understood as a proof-of-concept
validation exercise, not a comprehensive sector-wide
assessment. Accordingly, the DPBI should be considered
as a prototype rather than a finalized policy instrument,
with immediate value as a screening tool for regulators,
a benchmarking framework for industry, and a research
baseline for academia. Future research applying the DPBI
across multiple facilities, regions, and service types will be
essential to test generalizability and strengthen its policy
relevance. Over time, broader empirical applications may
support the integration of science-based thresholds into
policy and disclosure frameworks. Equally essential is
the incorporation of justice and equity: water withdrawals
in stressed basins often disproportionately affect local
communities, while material extraction burdens are
concentrated in regions of the Global South. Embedding
such considerations will ensure that the DPBI is not only
scientifically rigorous but also socially equitable.
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