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Abstract: Digital infrastructure is central to modern life, yet its environmental burden remains underexamined, 
particularly in the context of planetary boundaries. This study introduces the Digital Planetary Burden Index (DPBI), 
an integrative framework designed to quantify the ecological impacts of digital systems across five key dimensions: 
energy consumption, material intensity, water usage, greenhouse gas emissions, and e-waste generation. These 
indicators are mapped onto the planetary boundaries framework to provide a science-based structure for assessing 
the sustainability of digital operations. The DPBI is empirically tested through a case study of a Google data center 
to reveal the often-overlooked planetary stress associated with digital infrastructure. Despite its virtual nature, the 
data center demonstrates substantial environmental impacts across multiple biophysical domains, underscoring the 
discrepancy between digital convenience and ecological cost. The DPBI fills a critical gap in sustainability science 
by linking digital infrastructure with global ecological thresholds. It supports enhanced environmental accountability 
in the tech sector and provides a transparent, replicable model for evaluating digital sustainability. By situating digital 
systems within the Earth’s finite limits, the DPBI offers a strategic tool for evidence-based governance and climate-
aligned innovation, contributing to more sustainable digital development pathways in the Anthropocene.
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1. Introduction

   The digital economy is growing at an extremely high 
pace and it has been revolutionizing the way people 
work, communicate, and consume resources in society. 
Underneath that virtual surface is a rapidly expanding array 
of data centers, cloud infrastructure and hardware systems, 
all of which take an outsize and growing environmental toll 
on the planet. This ever-increasing demand is occurring in 
the absence of a coherent scientific, regulatory and popular 
account of the environmental consequences of digital 

infrastructure. The narrow focus on energy or carbon in 
most sustainability assessments often overlooks many other 
biophysical dimensions (water or minerals consumption, 
electronic waste) [1]. This presents a substantial blind 
spot in efforts to align digital transformation with global 
sustainability goals [2]. Concurrently, the concept of 
planetary boundaries has been established as a new science-
based reaction to inventory humanity's safe operating space. 
However, digital infrastructure has not been systematically 
analyzed within this framework, resulting in a conceptual 
and methodological gap. Current methods do not consider 
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the complete range of environmental impacts associated 
with the life and use of digital technology. To fill this gap, 
in this paper we proposed the Digital Planetary Burden 
Index (DPBI), a new model for estimating the impact of 
digital infrastructures on the environment within five 
interconnected areas: energy, materials, water, emissions 
and e-waste. Each component has been validated in the 
scientific literature and corresponds to a related planetary 
boundary issue.
   The framework is operationalized through a real-world 
case study of a Google data center, a globally recognized 
node of digital infrastructure. This example demonstrates 
both the methodological applicability of the DPBI and 
the urgent need for systemic accountability in the digital 
sector. Google provides clear, interpretable data that 
illustrates how digital systems, though intangible to users, 
exert concrete and measurable pressures on the Earth’s life-
support systems. By advancing the integration of digital 
sustainability into planetary science, the DPBI not only 
offers a new evaluative tool, but also lays the groundwork 
for future policy interventions and research at the 
intersection of technology and environmental stewardship.
   Although sustainability assessment tools such as the Life 
Cycle Assessment (LCA) or the Environmental Footprint 
Method provide important insights, they primarily measure 
environmental impacts in relative or component-specific 
terms. These tools often lack a science-based boundary 
reference that distinguishes between operations that are 
efficient and those that are truly sustainable. The Digital 
Planetary Burden Index (DPBI) builds upon this tradition 
and extends it by explicitly situating the impacts of 
digital infrastructure within the framework of planetary 
boundaries. The DPBI does not replace them, but rather 
complements them by providing boundary-normalized, 
multidimensional and geographically contextualized 
performance indicators to show whether digital systems are 
within safe ecological limits.

2. Literature review

   The recent growth in digital infrastructures such as 
data centers, cloud computing platforms, AI models, 
and blockchain systems brings many insights for future 
generations but has also raised a number of global 
environmental challenges. Data center power consumption 
alone is said to account for approximately 1–2% of 
the world’s electricity, a number predicted to increase 
dramatically given the continued popularity of AI and 
IoT applications [3, 4]. According to Jones et al. [5], the 
world data center industry emitted more than 200 megatons 
of CO₂ each year in the late 2010s, with an increasing 
portion from increasingly computer-intensive machine 
learning models. More recent studies have underscored 
the accelerating carbon footprint of ICT. For example, 
Aslan et al. [6] quantified the rising global electricity use 
of data centers, while Belkhir and Elmeligi [7] provided 

an early estimate of ICT’s share of global greenhouse gas 
emissions, projecting it could rise to 14% by 2040. Strubell 
et al. [8] demonstrated the high energy and emissions 
costs of training natural language processing models, and  
Patterson et al. [9] extended this analysis to large-scale AI 
systems, highlighting both the scale of the challenge and 
the potential of more efficient architectures.
   Recent analyses have tried to contextualize these impacts 
in terms of energy efficiency and carbon neutrality. For 
example, Cao et al. [10] proposed a roadmap to carbon-
neutral data centers by integrating renewable energy, 
energy storage, and hardware optimization. Similarly, Katal 
et al. [11] highlighted the effectiveness of power usage 
effectiveness (PUE) metrics in tracking energy efficiency 
at the facility levels. However, such approaches often focus 
on operational-level optimizations, rather than systemic 
environmental sustainability. Although these contributions 
are valuable, they generally pay attention to sustainability 
in terms of carbon reduction only, ignoring other 
environmental externalities such as water consumption, the 
transformation of land or mineral exhaustion. Furthermore, 
they do not address the limits of the Earth system within 
which infrastructure should function.
   Another critical but underexamined impact area of digital 
infrastructure is freshwater consumption. Data centers rely 
heavily on water-based cooling systems, particularly in arid 
and semi-arid regions where water is both environmentally 
and socially scarce [12]. For instance, Google’s 2023 
Environmental Report discloses the consumption of over 5 
billion gallons of water for data center cooling in a single 
year, often in regions like Arizona or Oregon that experience 
seasonal water stress [13]. Research has emerged around 
water usage effectiveness (WUE) as a parallel metric to PUE. 
While WUE provides insight into operational efficiency, it 
does not integrate context-specific water scarcity, nor does 
it relate water consumption to safe planetary thresholds. 
Moreover, most assessments are siloed by environmental 
vectors and do not acknowledge the compound interactions 
between water, energy, and climate feedbacks [14, 15]. 
Recent research emphasizes the water stress implications 
of digital infrastructure. Mytton [16] analyzed water use 
in UK data centers, calling for transparent disclosure and 
the integration of water risk metrics. Parkinson et al. [17] 
further demonstrated the trade-offs between water- and 
energy-intensive cooling methods, particularly in hot-arid 
climates, underscoring the systemic nature of water–energy 
tensions in digital infrastructure [15].
   Digital infrastructure also imposes a significant material 
footprint, including the use of rare earth elements (REEs), 
critical minerals such as cobalt, and large volumes of 
semiconductors [18]. These materials are not only energy-
intensive to extract and refine, but also their disposal 
contributes to hazardous e-waste streams [19]. Song et 
al. [20] highlighted the geopolitical and ecological risks 
associated with rare earth element and cobalt supply 
chains, while Forti et al. [21] provided a global assessment 
of e-waste generation, identifying ICT equipment as one 
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of the fastest-growing waste categories. These studies 
reinforce the urgent need to situate material intensity and 
waste generation within the planetary boundary for novel 
entities. Life Cycle Assessments (LCAs) of IT equipment 
such as servers, storage units, and cooling systems often 
quantify embedded material and energy use. However, 
these studies tend to focus on individual components 
rather than the aggregated systemic burden [22]. More 
importantly, they do not anchor material throughput within 
the concept of "novel entities" as defined in the planetary 
boundaries’ framework [23, 24]. This highlights a key gap: 
while material footprints are well-documented in isolation, 
they remain detached from a cumulative or boundary-
aware interpretation of environmental sustainability.
   Mainstream ESG (Environmental, Social, Governance) 
metrics and corporate reporting frameworks, such as CDP, 
GRI, and SASB, have promoted transparency among 
major tech firms. For example, Microsoft, Amazon, and 
Google routinely report Scope 1–3 emissions, energy mix, 
and selected sustainability KPIs. Similarly, green data 
center certifications (e.g., LEED, BREEAM) integrate 
sustainability features in construction and energy use. 
However, these frameworks fall short in several ways. First, 
they lack coherence across domains: water, land, carbon, 
and materials are assessed separately. Second, they fail 
to benchmark performance against planetary thresholds, 
instead focusing on year-over-year improvement or peer 
comparison [25]. Third, they do not capture the geospatial 
context of impacts—such as whether water is withdrawn in 
a highly stressed basin or land is developed in a biodiversity 
hotspot. In this regard, ESG assessments are best seen 
as compliance and disclosure tools, not instruments for 
boundary-aware sustainability governance.
   The planetary boundaries framework, first proposed by 
Rockström et al. [26] and refined by Steffen et al. [27], 
defines a "safe operating space" for humanity across 
nine critical Earth system processes. These include 
climate change, biosphere integrity, land-system change, 
freshwater use, biogeochemical flows, ocean acidification, 
atmospheric aerosol loading, stratospheric ozone depletion, 
and the introduction of novel entities. While the planetary 
boundaries framework has gained prominence in climate 

science and environmental economics, its integration 
into sector-specific environmental assessments remains 
uncommon. For example, O’Neill et al. [28] attempted to 
downscale planetary boundaries for national footprints, 
while Häyhä et al. [29] explored boundary applications 
in agriculture. However, no known framework has 
comprehensively applied planetary boundaries to the ICT 
or digital infrastructure sector.
   Several attempts had been made to conceptualize ICT 
within planetary thinking. For instance, Lange et al. [30] 
examined the rebound effects of digitalization, arguing that 
ICT may exacerbate environmental stress unless absolute 
limits are imposed. Similarly, Ebert et al. [31] called for 
AI-specific climate governance, especially given the 
carbon and energy intensities of large language models 
and high-performance computing. Yet, these studies stop 
short of providing an operational, index-based approach 
that integrates multidimensional impacts with planetary 
thresholds. 
   Table 1 highlights the distinctive contribution of the 
DPBI compared with existing approaches. While LCA 
and the Environmental Footprint Method provide valuable 
insights into product-level or multi-indicator sustainability, 
they generally lack boundary-based normalization and 
geospatial sensitivity. In contrast, DPBI situates digital 
infrastructure explicitly within planetary boundaries, 
integrates multiple environmental dimensions into a single 
index, and introduces geo-contextual adjustments. This 
makes DPBI more suitable for assessing whether digital 
systems operate within safe ecological limits, rather than 
simply achieving incremental efficiency gains.
   Despite these important contributions, most existing 
studies remain siloed by environmental vector and do not 
fully integrate impacts across planetary dimensions. As 
noted by Teng et al. [32], digitalization may exacerbate 
ecological pressures without absolute limits, and they 
argue for AI-specific governance that explicitly accounts 
for planetary system stress. These insights highlight the 
need for a multidimensional, boundary-aware framework 
such as DPBI. The key weakness in the existing literature 
lies in the fragmentation of environmental indicators. 
While energy, emissions, and water are increasingly 

Table 1. Comparison of existing sustainability assessment frameworks (LCA, Environmental Footprint Method) 
with the proposed Digital Planetary Burden Index (DPBI).

Framework Scope Normalization Integration Geo-contextual 
sensitivity Policy relevance

LCA Product/process 
lifecycle Relative (per unit) Component-specific Limited Informal 

benchmarking
Environmental 

Footprint Method
Multi-indicator 
sustainability

Relative, not 
boundary-linked

Harmonized but 
siloed Limited EU compliance 

focus

DPBI (this study)

Digital 
infrastructure 

(facility to 
portfolio)

Boundary-
normalized 
(planetary 
thresholds)

Integrated (carbon, 
water, land, 

materials, energy)

Explicit (regional + 
workload-sensitive)

Policy-oriented 
(safe–caution–

overshoot zones)
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measured at facility or corporate levels, they are rarely 
combined in a meaningful way. This creates a siloed view 
of sustainability, where improvements in one domain (e.g., 
carbon) may mask regressions in others (e.g., water or land). 
Furthermore, normalization of impacts is typically absent. 
For instance, reporting that a data center uses 1 billion liters 
of water annually is informative, but meaningless without 
contextualization—Is this within a sustainable threshold? 
Is it being withdrawn from a water-scarce basin? The 
absence of benchmarking against ecological limits renders 
most reports descriptive rather than diagnostic. Tools 
such as the Environmental Footprint Method attempt to 
harmonize LCA indicators but do not embed planetary 
boundaries. In the same way, SBTi (Science-Based Targets 
initiative) focuses on GHGs but lacks a multi-criteria 
scope. This failure in systems integration paves the way 
for the Digital Planetary Burden Index (DPBI), which 
aims to operationalize sustainability indicators in line with 
planetary boundaries and geospatial sensitivity [33].

Comparing DPBI with existing sustainability 
frameworks

   Despite the progress of methods such as LCA and the 
Environmental Footprint Method, their application to 
digital infrastructure remains constrained. LCA typically 
evaluates cradle-to-grave impacts of specific products 
or processes but does not explicitly benchmark results 
against global or regional planetary thresholds. The 
Environmental Footprint Method harmonizes multiple 
indicators but lacks integration with geospatial sensitivity 
and workload differentiation. In contrast, the DPBI 
extends these approaches in three critical ways: (a) it 
normalizes impacts against planetary boundaries to assess 
absolute sustainability, (b) it integrates five environmental 
dimensions into a composite score to capture trade-offs, 
and (c) it incorporates regional and functional sensitivity, 
ensuring results are meaningful across locations and 
service types.
   This work has identified a key shortcoming in existing 
environmental assessment tools applicable to digital 
infrastructure. There are many individual metrics 
available that allow us to assess the impact (for example, 
carbon emitted or water used), but no holistic framework 
systematically aggregates these different burdens together 
into a notion of being within the safe space boundaries for 
the planet [34]. The current framework does not normalize 
environmental impacts with respect to planetary boundary 
limits, so we cannot evaluate in absolute terms whether 
any facility is being operated sustainably. Furthermore, 
existing evaluations are usually not sensitive to geospatial 
inhomogeneities or workload specificities; they typically 
do not consider that the same infrastructure can lead to 
very different environmental impacts depending on its 
location and the computations it supports. The DPBI fills 
these gaps by defining a multi-dimensional, boundary-
aware sustainability framework. It integrates carbon, water, 

land, and material footprints into a single index base, sets 
them against planetary boundaries to provide context, and 
presents a new facility-level benchmark that is globally 
comparable but also sensitive to local conditions. In this 
way, the DPBI focuses not on improvement towards 
the margins but on systemic subsistence within Earth’s 
ecological boundaries, much exceeding the scope of 
existing literature. 

3. Conceptual framework

   This section addresses the scattered and narrowly 
focused practices found in the literature by presenting the 
DPBI, a holistic sustainability framework for evaluating 
the environmental performance of digital infrastructure 
based on planetary boundaries. The DPBI aims to provide 
a concrete, evidence-based, and scalable approach to 
measuring the total environmental burden added to a 
specific site by digital architecture (such as datacenters), for 
purpose of incentivizing them toward a convergence with 
humankind’s safe operating space on Earth. The formation 
of the DPBI is based on three conceptual paradigms: 
planetary boundary alignment, multi-dimensional burden 
integration, and geo-contextual sensitivity. These principles 
define what the index is and what it may be used for as a 
benchmark, reporter or policy alignment mechanism. At 
its core, the DPBI framework assesses five interrelated 
environmental dimensions: carbon emissions, freshwater 
use, land footprint, material intensity, and energy source 
burden. Each of these dimensions reflects a tangible 
environmental externality associated with the design, 
operation, and scaling of digital infrastructure. Rather than 
treating these impacts as independent or loosely related, 
the DPBI conceptualizes them as converging stressors that 
must be managed together to avoid overshooting planetary 
boundaries. For instance, the decision to increase server 
cooling efficiency using evaporative water systems may 
reduce electricity consumption but simultaneously escalate 
freshwater stress particularly in arid regions. Similarly, 
transitioning to renewable energy sources can reduce carbon 
intensity but may increase land and mineral footprints due 
to solar, wind, and battery infrastructure. These trade-offs 
underscore the necessity of an integrated model (Figure 1).
Each environmental dimension in the DPBI is normalized 
against a science-based threshold derived from global 
planetary boundary estimates. For example, carbon 
intensity is assessed relative to per capita carbon budgets 
consistent with limiting warming to 1.5°C; water usage is 
contextualized using basin-specific stress thresholds, while 
land and material burdens are referenced against available 
global biocapacity and extraction limits. This normalization 
process converts disparate units (e.g., kg CO₂e, liters of 
water, square meters of land) into dimensionless scores that 
reflect the degree to which each impact remains within or 
exceeds safe operating limits. A normalized value below 
1.0 indicates that the facility’s activity is within the safe 
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zone for that dimension, while values above 1.0 denote 
transgression of planetary thresholds.
   Once normalized, these values are aggregated using 
a weighted function to yield a single DPBI score. The 
weighting scheme can be adapted to reflect context-specific 
priorities, such as placing greater weight on water use in 
drought-prone regions or assigning higher importance to 
irreversible impacts such as material depletion. However, 
in the standard configuration, equal weighting is applied 
to emphasize that transgressing any planetary boundary 
is problematic and cannot be fully offset by performance 
in other areas. The aggregated score thus offers a scalar 
representation of total planetary burden, enabling 
straightforward interpretation and comparison across 
facilities, regions, and timeframes. More importantly, the 
DPBI does not merely provide a numerical score but also 
categorizes performance into three interpretive zones. 
Scores below 1.0 indicate operation within planetary 
boundaries and are classified as "safe". Scores between 1.0 
and 1.5 indicate a zone of "caution”, in which environmental 
thresholds are being approached or moderately exceeded. 
Scores above 1.5 reflect significant overshoots and 
signal the need for urgent mitigation. These interpretive 
ranges provide intuitive guidance for decision-makers, 
sustainability officers, and regulatory agencies (Figure 1).
   Another critical feature of the DPBI is its incorporation 
of geo-contextual sensitivity. Unlike global averages or 
sectoral benchmarks, the index accounts for site-specific 
characteristics, such as local water stress, grid carbon 
intensity, and regional land-use constraints. For example, 
the same design of data center may receive different DPBI 

scores depending on whether it is in Oregon, where water 
is relatively abundant, or in Arizona, where withdrawals 
may stress already overdrawn aquifers. Similarly, a facility 
powered predominantly by coal-based electricity will have 
a significantly higher carbon burden than the one relying 
on hydroelectric or solar energy, even if their operational 
efficiencies are similar.
   The framework also adjusts for workload type and 
density, recognizing that not all digital services impose 
equal environmental loads. High-performance computing 
(HPC) clusters used for artificial intelligence training 
typically consume more energy and generate greater 
emissions per unit of time than edge servers handling local 
data routing. The index introduces a standardized workload 
denominator—such as emissions or water use per teraflop-
hour or per petabyte transmitted—to enable functional 
comparisons across divergent services and operational 
scales. This workload-sensitive calibration ensures 
that the index reflects not only the physical footprint of 
infrastructure, but also the intensity and efficiency of 
digital outputs.
   In practice, the DPBI can be applied at multiple levels, 
from individual data centers and server rooms to cloud 
computing zones and even entire corporate ICT portfolios. 
The modular nature of the index enables adaptation to 
data availability, organizational capacity, and regulatory 
expectations. It can be calculated using publicly available 
sustainability reports, grid mix data, and facility-
level resource consumption metrics. More advanced 
implementations may involve real-time monitoring, 
satellite-derived water stress indices, or LCA-based material 

Figure 1. DPBI Framework and its interrelated dimensions
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flow accounting. Therefore, the framework offers a novel 
operational approach that redefines how sustainability is 
measured and governed in the digital age. By integrating 
multi-domain environmental impacts, normalizing them 
against planetary boundaries, and contextualizing them 
in geographic and functional terms, the DPBI provides a 
rigorous and actionable tool for assessing whether digital 
infrastructure is truly sustainable, not just more efficient. 
It addresses the urgent need for sector-specific tools that 
move beyond compliance metrics and toward a science-
based, planetary-aware sustainability paradigm. In the 
following section, the DPBI is applied to a real-world case 
study to illustrate its implementation, interpretability, and 
policy relevance.

4. Methodology

This study employs a mixed-methods approach to develop, 
apply, and validate the Digital Planetary Burden Index 
(DPBI), a novel environmental assessment framework that 
quantifies the environmental burden of digital infrastructure 
in relation to planetary boundaries. In selecting data inputs, 
we adopted a strict hierarchy, prioritizing peer-reviewed 
literature and official environmental datasets (e.g., IPCC, 
UNEP, and Ecoinvent). Corporate sustainability disclosures 
and credible public filings were used only as supplementary 
sources, while journalistic accounts were cross-checked 
and incorporated solely when independently verified. To 
ensure academic rigour, non-peer-reviewed sources such 
as public filings and investigative reports were used only 
when triangulated with at least one independent dataset 
(e.g., regulatory filings, LCA databases, or government 
statistics). Screening criteria emphasized transparency 
of methodology, institutional credibility, and traceability 
of reported figures. Peer-reviewed life cycle assessment 
(LCA) studies were prioritized, and when such studies were 
cited, they are now explicitly marked in the references list 
to distinguish them from secondary sources. This process 
strengthens the validity and reproducibility of the data 
foundation.
This ensures that the case study is grounded in transparent 
and scientifically robust data. The methodology comprises 
three key components: (a) conceptual framework 
construction, (b) index formulation using quantitative 
indicators, and (c) empirical application through a real-
world case study of a high-capacity data center. The 
methodology was designed to ensure transparency, 
comparability, and scalability of results across geographies 
and infrastructure types. DPBI is grounded in the planetary 
boundaries framework [28, 36], which identifies nine Earth 
system processes critical to maintaining a stable planetary 
environment. For operational clarity and data availability, 
this study focuses on five environmental dimensions 
relevant to digital infrastructure: carbon emissions, 
freshwater use, land-system change, material throughput, 
and energy source burden. Each dimension corresponds 

to a boundary of concern: climate change, freshwater 
use, biosphere integrity, and novel entities (materials and 
waste).

4.1 Linking DPBI dimensions to planetary 
boundaries

   The five dimensions of DPBI are explicitly grounded in the 
framework of planetary boundaries, with each dimension 
linked to a boundary through specific mechanisms. Carbon 
emissions contribute to climate change by increasing 
radiative forcing and pushing the global carbon budget 
toward overshoot. Freshwater use relates to the freshwater 
boundary, as large withdrawals disrupt basin hydrology and 
ecosystems, and even moderate use in stressed basins can 
exceed resilience thresholds. Land occupation connects to 
land-system change and biosphere integrity, since facility 
footprints can drive habitat conversion and biodiversity 
loss, and their cumulative expansion adds to global land 
pressures. Material intensity aligns with the novel entities 
boundary, as the extraction of rare earth elements, cobalt, 
and other critical minerals generates toxic by-products, 
while disposal adds to e-waste streams that release 
persistent pollutants capable of destabilizing Earth system 
processes. Energy source burden influences both climate 
change and biogeochemical flows, with fossil-based 
electricity increasing carbon and nitrogen emissions and 
hydropower altering water cycles and nutrient balances. 
By clarifying these associations, DPBI moves beyond 
conceptual framing to a boundary-anchored framework 
capable of diagnosing how digital infrastructures interact 
with planetary thresholds.
   These dimensions are selected based on an extensive 
review of environmental sustainability literature and digital 
infrastructure impact assessments. The selection reflects 
both ecological relevance and data feasibility, ensuring that 
the index is empirically grounded and adaptable to future 
dimensions such as biodiversity or land-system change. The 
DPBI score is computed using a weighted normalization 
approach that allows comparison across dimensions with 
different units. The core equation is:

             

                                                                          (1)

Where:
Ei = measured environmental pressure from the digital 
system for dimension i (e.g., kWh of electricity consumed, 
metric tons of CO₂ emitted, liters of water withdrawn, 
kilograms of materials consumed, hectares of land occupied). 
Bi = safe operating boundary or allocated planetary budget 
for that dimension (global or regionally downscaled). wi = 
weight assigned to dimension i, representing the relative 

contribution of that dimension to the overall DPBI score. 

 = burden ratio, indicating the extent to which the 
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activity approaches or exceeds planetary safety thresholds.
   To enhance flexibility, we conducted a supplementary 
sensitivity analysis to test alternative weighting schemes. 
Ecological sensitivity weighting emphasized water in 
arid contexts and carbon in high-emission grids, while 
reversibility weighting prioritized long-term pressures 
such as biodiversity loss and material depletion. Results 
showed that although the absolute DPBI score shifted 
slightly (±0.07), the relative hotspots of carbon emissions 
and freshwater use remained consistent. This robustness is 
further illustrated in Table 3.
   Thresholds (Bi) are derived from established scientific 
sources. For example:
•	 The global carbon budget is based on IPCC pathways 

consistent with limiting warming to 1.5°C.
•	 Freshwater boundaries are benchmarked against basin-

level stress thresholds.
•	 Material boundaries are aligned with UNEP estimates 

of safe throughput and circularity targets.
•	 Energy source burdens are adjusted according to grid 

carbon intensity and renewable penetration.
   Each environmental pressure was normalized against its 
corresponding boundary, with boundary values adjusted to 
reflect proportional allocation (e.g., per petabyte share of 
global digital activity). The facility’s DPBI score was then 
calculated using the equation above and compared across 
dimensions. This case study serves as both a validation 
exercise and a prototype for broader DPBI applications. It 
demonstrates the model’s ability to integrate heterogeneous 
data, reveal dimension-specific hotspots, and highlights 
where digital infrastructure is outpacing environmental 
thresholds.

4.2 Indicator quantification and normalization

   To improve reproducibility and clarity, each step of 
the quantification and normalization process is detailed 

below, with explicit formulas and boundary allocations. 
Each DPBI dimension was quantified using consistent 
boundaries, scopes, and formulas to ensure comparability 
across indicators:
   Carbon Emissions (Climate Change): Estimated 
from annual facility electricity use multiplied by the grid 
emission factor. Formula:

Ecarbon = kWh × gCO2e/kWh                                           (2)

   This captures both renewable and fossil-based shares in 
the local energy mix.
   Freshwater Use (Freshwater Boundary): Calculated 
from annual cooling water withdrawals. Basin-level stress 
multipliers were applied to reflect local scarcity conditions. 
Formula:

Ewater = Withdrawals (m3) × Basin Stress Factor             (3)

   For case adaptation, freshwater withdrawals adjusted 
by basin stress were proportionally allocated to the global 
freshwater boundary using the facility's share of global 
digital activity (per PB basis).
   Land Occupation (Land-System Change): Based on 
facility footprint and ancillary infrastructure relative to 
service output. Formula:

         
                                                                                       (4)

   Material Intensity (Novel Entities): Derived from life 
cycle inventories (e.g., Ecoinvent) covering raw material 
extraction, processing, manufacturing, transport, and 
disposal of server hardware. Particular attention was given 
to critical minerals such as cobalt and rare earths due to 
their toxic by-products. Formula:

Table 2. Linking DPBI dimensions to planetary boundaries

DPBI dimension Corresponding planetary boundary Mechanism of impact

Carbon emissions Climate change
Increases greenhouse gases, raises 

radiative forcing, contributes to 
overshooting the global carbon budget.

Freshwater use Freshwater boundary
Large withdrawals disrupt basin 

hydrology and ecosystems; stressed 
basins exceed resilience thresholds.

Land occupation Land-system change / 
biosphere integrity

Facility footprints drive habitat 
conversion and biodiversity loss; 

cumulative land demand adds global 
pressure.

Material intensity Novel entities
Extraction of rare earths and cobalt 

generates toxic by-products; e-waste 
streams release persistent pollutants.

Energy source burden Climate change / 
Biogeochemical flows

Fossil-based power increases carbon and 
nitrogen emissions; hydropower alters 

water cycles and nutrient flows.
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                                          (5)

   To address common controversies in applying LCA 
to digital infrastructure, we explicitly defined system 
boundaries to include raw material extraction, processing, 
transport, manufacturing, and end-of-life disposal of 
server hardware, while excluding data transmission 
network energy to maintain analytical focus on facility-
level impacts. Data inputs were drawn from standardized 
inventories (e.g., Ecoinvent) to ensure cross-comparability. 
Recognizing variations in transparency across data centers, 
we applied conservative estimates and triangulated 
with peer-reviewed LCA studies where available. These 
measures reduce boundary ambiguity and strengthen 
the reproducibility and credibility of the material burden 
estimation.
   Energy Source Burden (Climate & Biogeochemical 
Flows): Accounts for electricity source composition. 
Renewable share reduces intensity; hydropower 
adjustments consider seasonal variability. Formula:

                                        (6)

   Normalization: Each indicator value Ei was divided by 
its planetary boundary allocation (Bi) to calculate a burden 
ratio:

                                         (7)

  Service Differentiation: Where possible, facility 
workloads were distinguished among AI training, cloud 
storage, and general computing, as these exhibit different 
energy and water intensities.
   Aggregation: Final DPBI scores were computed using 
the weighted sum described in Equation (1). Equal weights 
were applied in this case study, but the framework allows 
for scenario-specific alternatives (e.g., higher weights for 
water in arid regions).

4.3 Weighting scheme and sensitivity analysis

   Although equal weights (wi = 0.20) are applied across 
the five environmental dimensions in the baseline DPBI 
calculation, the framework also allows alternative 
weighting to reflect ecological urgency and irreversibility. 
To test robustness, we applied two additional schemes:
•	 Ecological sensitivity weighting gives greater 

emphasis to dimensions under higher stress (e.g., 
water in arid basins, carbon in carbon-intensive grids).

•	 Irreversibility weighting prioritizes dimensions 

associated with long-term or irreversible impacts (e.g., 
biodiversity loss, mineral depletion).

   Results show that while absolute DPBI values shift 
slightly, the ranking of high-burden dimensions remains 
stable, confirming the framework’s resilience to different 
assumptions.

4.4 Uncertainty analysis

   To address input variability, we conducted a Monte Carlo 
simulation with 1,000 iterations. Input ranges were drawn 
from authoritative sources:
•	 Carbon emission factors (±10% from IPCC estimates),
•	 Water withdrawal coefficients (±15% variation by 

basin stress levels),
•	 Material throughput (±20% based on UNEP lifecycle 

inventories),
•	 Energy grid intensity (±15% reflecting annual 

fluctuations).
   Each iteration sampled within these ranges, and the DPBI 
score was recalculated. The distribution was then used to 
compute 95% confidence intervals for each dimension, 
demonstrating that results are robust under input variability. 
For example, carbon (mean 1.32, 95% CI: 1.20–1.45) 
and water (mean 1.78, 95% CI: 1.55–2.05) consistently 
exceeded safe thresholds, while land (mean 0.65, 95% CI: 
0.58–0.72) and materials (mean 0.97, 95% CI: 0.82–1.12) 
remained relatively stable. These results confirm that DPBI 
outputs are resilient to parameter uncertainty, with water 
and carbon dominating both the mean score and variance.

4.5 Software and computational tools

   All computational analyses and visualizations in this study 
were performed using a combination of Python 3.10 (via 
Jupyter Notebook) and Microsoft Excel. Python libraries 
such as NumPy and Pandas were employed for data 
normalization and index calculation, while Matplotlib and 
Seaborn were used to generate comparative visualizations 
of DPBI scores. Data was first processed and converted 
into units in Excel, ensuring that all dimensions were clear 
and consistent. The DPBI formula was typeset in LaTeX 
to maintain mathematical precision, and all artwork was 
prepared with vector-based drawing software to guarantee 
high-quality, publication-ready images with optimal 
clarity. This modular, open-source toolchain was selected 
to provide complete reproducibility and transparency. 
Upon publication, all scripts used for computation and 
data inputs will be available as supplementary files or in 
a dedicated repository for anyone who wishes to repeat or 
expand this method in the future.

5. Case study: Google’s data center in 
the Dalles, Oregon
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   To demonstrate the practical application and interpretive 
power of the DPBI, this section presents a case study of 
Google’s hyperscale data center located in The Dalles, 
Oregon. This facility offers a suitable and illustrative 
test case for several reasons. First, it is a large data 
infrastructure site operated by one of the world's largest 
digital companies, and could provide useful environmental 
scale. Second, Google has released some environmental 
reference data on energy and water, with a reasonably 
open approximation of the DPBI dimensions. Third, 
The Dalles region has a context defined by hydropower 
and freshwater dependence, which has recently begun to 
face scrutiny at the local level; it is one of many regions 
for which geospatial sensitivity within the index may 
be variable. It is important to note that this case study is 
presented as a proof-of-concept validation exercise for the 
DPBI framework, rather than a definitive assessment of all 
digital infrastructure. The Google data center was chosen 
due to data availability and transparency, but the findings 
should not be overgeneralized to the global digital sector 
without further empirical testing across multiple facilities 
and regions.

5.1 Facility overview

   The Dalles data center was launched in 2006 and has 
since undergone multiple expansions. Located in Wasco 
County along the Columbia River, the facility benefits 
from relatively low-cost, renewable hydropower and a 
moderate climate. These factors have historically made the 
site attractive for large-scale server farms [36]. However, 
the increasing demand for data-intensive services and 
artificial intelligence workloads has placed growing 
stress on local water and energy systems. Recent reports, 
including environmental disclosures and investigative 
journalism, have revealed that the facility uses up to 1.06 
billion gallons (approximately 4 million m³) of freshwater 
annually for cooling purposes. This is particularly 
concerning given that The Dalles and surrounding regions 
have experienced periodic drought conditions, which 
may become more frequent under future climate change 
scenarios. In parallel, while Oregon’s grid mix includes a 
substantial proportion of renewable energy (approximately 
60–70% from hydroelectric sources), the remaining energy 

demand may still be met by fossil-based sources, especially 
during seasonal or peak demand variability [37].

5.2 Data collection, normalization, and scoring

   To calculate the DPBI for Google's data center, data 
were drawn from a combination of publicly available 
sources, including corporate sustainability disclosures, 
regional utility information, and third-party environmental 
investigations. Google’s own environmental impact reports 
from 2021 to 2023 provided estimates of overall carbon 
emissions and energy use. These were supplemented with 
energy mix data from the Oregon Department of Energy to 
determine the emissions intensity of electricity consumed. 
Water consumption figures were obtained from public 
filings made to the City of The Dalles, alongside data 
revealed through investigative journalism that highlighted 
the facility's peak annual freshwater withdrawals, 
estimated at approximately 1.06 billion gallons, or about 
4 million cubic meters. Land use estimates were derived 
from satellite imagery analysis and zoning records from 
Wasco County, with further insights gathered from facility 
expansion permits filed by Google. Material burden 
estimations relied on peer-reviewed life cycle assessments 
of typical data center hardware and assumed refresh cycles 
of three to five years. Where direct data were unavailable, 
established coefficients from the literature and global 
environmental databases were used to approximate likely 
values, with adjustments for facility scale and capacity.
   Each environmental dimension assessed – carbon 
emissions, freshwater use, land footprint, material intensity, 
and energy source burden – was normalized against its 
respective planetary boundary threshold to generate a 
dimensionless score between 0 and above 1.0. Carbon 
emissions for the facility were estimated at approximately 
72,000 metric tons of CO₂ equivalent annually, yielding 
a normalized score of 1.32. This suggests that the facility 
exceeds the per-workload, science-aligned carbon budget 
necessary to remain within the 1.5°C warming threshold. 
Freshwater use emerged as the most problematic dimension, 
with normalized results indicating a score of 1.78. This high 
value reflects both the large absolute volume of water used 
for cooling and the increasing water stress in the Columbia 
River Basin under changing climatic conditions. In 

Table 3. Sensitivity of DPBI to alternative weighting schemes

Dimension Equal weights (0.20 each) Ecological sensitivity Irreversibility 
priority

Carbon 1.32 0.25 0.20
Water 1.78 0.30 0.15
Land 0.65 0.15 0.25

Materials 0.97 0.15 0.25
Energy 1.05 0.15 0.15

DPBI Score 1.15 1.19 1.14
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contrast, the land footprint of the facility, approximately 20 
hectares, resulted in a relatively modest impact when scaled 
against planetary biocapacity, with a normalized score of 
0.65. Material burden, based on the embedded resource 
intensity of server hardware and infrastructure, produced 
a score of 0.97, just within acceptable planetary limits. 
Finally, although the facility primarily relies on Oregon’s 
hydropower-rich grid, the variability in seasonal demand 
and the use of fossil-based backup capacity resulted in an 
energy source burden score of 1.05. This reflects a slight 
overshoot beyond what would be required to align with a 
fully carbon-neutral or carbon-free energy profile.

6. Results

   The application of DPBI to the Google data center yields 
a quantitative assessment of the facility’s environmental 
impact in relation to planetary boundaries. By normalizing 
each of the five environmental burden dimensions (carbon 
emissions, freshwater use, land occupation, material 
intensity, and energy source burden) against scientifically 
grounded thresholds, the DPBI provides an integrated 
view of the facility’s performance beyond conventional 
corporate sustainability metrics (Figure 2).

Figure 2. Normalized DPBI scores by dimension

   The results indicate that the facility exceeds safe 
planetary thresholds in three out of five dimensions. 
Carbon emissions, estimated at 72,000 metric tons of 
CO₂-equivalent annually, yield a normalized score of 
1.32, suggesting that the facility’s emissions per compute 
workload may not yet align with the 1.5°C-consistent 
global carbon budget. Although the company reports high 
renewable energy usage, the continued reliance on fossil-
derived grid electricity during peak hours and seasonal 
demand periods contributes to this overshoot.
   Freshwater use presents the highest relative burden (Table 
4). An estimated 4 million cubic meters of freshwater 
are withdrawn annually for cooling, and considering 
the regional water stress conditions as defined by the 
WRI Aqueduct risk classifications, the facility receives 
a normalized water score of 1.78. The freshwater burden 
score should also be interpreted in the context of the 
Columbia River Basin, where the facility is located. 

This watershed faces seasonal variability in flows, with 
competing demands from agriculture, municipal supply, 
and ecosystem maintenance. Although the data center’s 
absolute withdrawals are a fraction of total basin flows, 
the timing of water use during peak summer months can 
exacerbate local scarcity. In dry years, this can intensify 
competition with irrigation and household water demand, 
thereby amplifying ecological stress. By situating DPBI 
outputs within this basin context, the index highlights not 
only global overshoot but also localized vulnerabilities 
relevant to regional decision-making.
   In contrast, the land use dimension shows a relatively 
lower impact. The total land area occupied by the facility, 
approximately 20 hectares, when considered relative to 
the functional output of the center and normalized against 
planetary-scale biocapacity constraints, results in a score 
of 0.65, remaining below the planetary threshold applied 
here. Similarly, the material burden dimension, based 
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on the embedded material intensity of server hardware, 
support infrastructure, and assumed replacement cycles, 
yields a score of 0.97. While this approaches the boundary 
threshold, it does not indicate overshoot, which may be 
related to efficiency gains and compact design features 
typical of hyperscale data centers. Lastly, the energy source 
burden, which accounts for the carbon intensity of the 
local electricity mix despite substantial hydropower input, 
results in a score of 1.05, slightly above the benchmark for 
carbon-neutral energy systems.
   When aggregated using equal weights for each dimension, 
the overall DPBI score for the Google facility is calculated 
at 1.35. According to the interpretive tiers defined by 
the DPBI framework, this value places the facility in the 
"Caution" zone a category indicating moderate overshoot 
of Earth system limits and signaling a need for remedial 
sustainability actions. The high scores in carbon emissions 
and freshwater use are the primary contributors to this 
status, underscoring the need for deeper interventions in 
these specific areas. For instance, investment in on-site 
renewable generation paired with grid decarbonization and 

advanced water reuse systems could significantly reduce 
the facility’s boundary transgression.
   The findings provide several important insights. First, 
they undermine popular narratives that large-scale digital 
infrastructure, powered mainly by a mix of renewable 
sources, is automatically sustainable. Second, they highlight 
the need to assess impacts across multiple dimensions: 
venues that score highly for land use or materials may still 
place unsupportable pressure on other biophysical systems. 
Third, the DPBI makes benchmarking transparent so that 
policy-makers, planners, and the public can distinguish 
among genuinely sustainable operations from those 
making narrowly defined environmental claims. In the case 
of The Dalles, while our selected Canadian city does not 
have access to hydropower, reliance on freshwater and lack 
of full decarbonization indicate that the existing regional 
context is inadequate for balancing global environmental 
consequences.

Table 4. Normalized DPBI scores for Google data center

Environmental dimension Normalized score
Carbon emissions 1.32

Freshwater use 1.78
Land Use 0.65

Material Burden 0.97
Energy Source Burden 1.05

7. Discussion

   This study introduced a novel approach to evaluating the 
environmental sustainability of digital infrastructure within 
the planetary boundaries’ framework. By applying the DPBI 
to Google’s data center, we provide a proof-of-concept 
that demonstrates how multi-dimensional sustainability 
assessments can be operationalized and quantified. The 
case study reveals significant environmental pressures 
across Earth system boundaries, with freshwater use and 
carbon emissions (1.78 and 1.32, respectively) exceeding 
safe thresholds. These findings highlight the importance of 
incorporating digital infrastructure into global sustainability 
discourse, as its environmental impacts have often been 
underrepresented [38, 39].
   The significance of DPBI lies in its ability to translate 
sustainability goals into measurable performance metrics 
tailored to the digital sector. Unlike indices that either 
generalize across sectors or focus narrowly on carbon, 
DPBI integrates five dimensions aligned with Rockström 
et al.’s framework, providing a more comprehensive 
perspective on environmental pressures [26]. Its use of 
publicly available datasets and life cycle inventories such 

as Ecoinvent avoids reliance on proprietary disclosures, 
thereby enabling independent assessment. The open-data 
philosophy and modular design also ensure adaptability 
across contexts—from hyperscale data centers to regional 
IT hubs—and allow updates as better data or scientific 
insights emerge. From a governance perspective, DPBI has 
the potential to inform environmental policy and sector-
specific benchmarks. Much like carbon budgets guide 
climate regulation, DPBI scores could support threshold-
based standards for carbon, water, materials, and energy 
use. This is particularly relevant in resource-stressed 
regions, where unchecked growth of computing hubs may 
exacerbate local environmental pressures. Furthermore, 
DPBI aligns with emerging disclosure requirements such 
as the EU's Corporate Sustainability Reporting Directive 
by offering multidimensional, evidence-based indicators. 
Its adaptability also supports municipal planning and 
localized policy design  [40]. 
   Academically, DPBI contributes to the emerging discourse 
on “digital planetary stewardship” [27, 41]. While much 
research emphasizes the positive role of digitalization in 
climate mitigation, fewer studies systematically examine 
the ecological burdens of digital infrastructure itself. By 
linking ICT growth to planetary thresholds, DPBI reframes 
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this discussion and underscores the sector’s responsibility 
alongside transportation, agriculture, and manufacturing 
[42, 43]. Finally, limitations must be acknowledged. 
Boundary allocation methods remain contested, and 
equal weighting may not reflect local ecological or ethical 
priorities. These limitations present opportunities for 
refinement, such as participatory calibration or region-
specific weighting. 
   Another limitation of this study is that basin-level 
ecological stress and socio-economic competition for 
water are not fully represented. While the DPBI freshwater 
score provides a normalized indicator of overshoot, it 
does not explicitly capture trade-offs between industrial 
withdrawals, agriculture, and domestic use within the 
Columbia River Basin. Future applications of DPBI should 
integrate watershed-specific indices, such as the WRI 
Aqueduct water stress database, to more directly quantify 
ecological risks and social impacts. This refinement would 
enhance DPBI’s value for local and regional policymaking.
To strengthen the promotion value of DPBI, it is 
important to highlight its adaptability across different 
digital infrastructures. While this study focused on a 
hyperscale facility, the framework is scalable to smaller 
facilities, such as edge computing nodes and regional 
data centers, by adjusting service-level allocations and 
boundary downscaling. For example, localized data 
centers can be benchmarked against regional planetary 
boundary allocations, while hyperscale facilities align 
with global shares. Similarly, functional adaptations are 
possible: cloud storage primarily emphasizes energy and 
water dimensions, while blockchain systems—due to 
high hardware turnover and energy intensity— require 
greater weighting on material and carbon dimensions. 
This adaptability demonstrates that DPBI can serve as a 
flexible tool across heterogeneous digital infrastructures, 
supporting both global benchmarking and context-specific 
sustainability governance.
   To operationalize DPBI in governance, it is essential to 
align the framework with existing sustainability policies 
such as the EU Green Deal, corporate ESG disclosure 
standards, and science-based target initiatives. The 
proposed caution zone (1.0–1.5) can be translated into 
enforceable regulation by defining it as a mandatory 
disclosure threshold, where facilities exceeding 1.0 must 
report corrective measures, and those beyond 1.5 trigger 
regulatory interventions. A phased implementation pathway 
can begin with pilot applications in high-impact regions 
(e.g., water-stressed basins or carbon-intensive grids) and 
priority monitoring of the most sensitive dimensions. Over 
time, the framework could be integrated into certification 
schemes and procurement standards, providing both 
regulatory oversight and market incentives for compliance.

7.1 Cross-dimensional trade-offs

   DPBI also reveals that the environmental dimensions 
of digital infrastructure are interdependent rather than 

isolated. For instance, shifting to renewable energy sources 
can reduce carbon intensity but may also simultaneously 
increase land occupation (e.g., for solar or wind 
installations) and material demand for critical minerals 
such as rare earths. Similarly, relying on hydropower in 
Google’s data center reduces operational carbon emissions 
but creates water-energy linkages: during dry years, 
limited hydropower availability necessitates backup fossil 
generation, which raises the carbon burden. These cross-
dimensional dynamics emphasize that improvements in one 
boundary may create new pressures in another, underscoring 
the importance of integrated assessment. Future DPBI 
applications should incorporate scenario analysis to 
capture such trade-offs, thereby enhancing its relevance 
for comprehensive decision-making. Importantly, our 
findings are illustrative rather than definitive. While DPBI 
highlights relative hotspots, results should be interpreted as 
indicative signals. Benchmarking against frameworks such 
as LCA and the Environmental Footprint Method suggests 
that DPBI complements rather than replaces existing 
approaches, and broader applications across facilities 
and regions are needed to validate robustness and policy 
relevance.

8. Conclusion

   The DPBI emerges not only as a methodological 
contribution but also as a strategic provocation for how we 
assess and govern the environmental dimensions of digital 
infrastructure. As societies accelerate towards data-driven 
economies, existing sustainability frameworks often lag 
behind the pace and complexity of digital growth. The 
DPBI addresses this gap not merely by measuring impact, 
but by embedding the digital sector within the larger 
planetary boundaries discourse—an urgent and overdue 
recalibration. Rather than offering finality, this study opens 
a new trajectory of inquiry. Future research should explore 
the integration of dynamic, real-time data into the DPBI to 
capture the temporal volatility of digital operations, such 
as fluctuating energy loads or water demand during peak 
data processing periods. There is also substantial potential 
to tailor the DPBI for different scales and sectors: from 
hyperscale cloud facilities to edge computing hubs, and from 
healthcare AI systems to blockchain-based finance. Each 
context carries unique burden profiles that require nuanced, 
modular adaptations of the index. Moreover, the DPBI may 
serve as a foundation for future governance instruments. 
It could inform sustainability-linked financing for digital 
infrastructure, serve as a regulatory threshold in data center 
permitting, or underpin performance-based procurement 
in the public sector. These practical applications require 
collaborative refinement across disciplines, bringing 
together environmental scientists, digital engineers, urban 
planners, and policymakers to ensure the model remains 
rigorous yet adaptable.
   There is also an unexplored frontier linking DPBI to 
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social equity. As the environmental costs of data centers 
are often externalized to vulnerable communities or 
resource-scarce regions, future adaptations of the index 
could incorporate distributive justice metrics, highlighting 
asymmetries in who bears the burden of digital growth. 
Such integrations would deepen the ethical foundation 
of the framework and align it more closely with the just 
transition agenda. Ultimately, the DPBI is not just a new 
index, it is a call to action. It invites academia, industry, and 
governance institutions to rethink the digital transition not 
only in terms of efficiency and access, but also in terms of 
ecological realism and long-term planetary stewardship. In 
this way, it offers a template for a digital future that is not 
only smarter, but also wiser. While this study demonstrates 
the feasibility of the DPBI through a single illustrative 
case, its scope is necessarily limited. The Google data 
center analysis should be understood as a proof-of-concept 
validation exercise, not a comprehensive sector-wide 
assessment. Accordingly, the DPBI should be considered 
as a prototype rather than a finalized policy instrument, 
with immediate value as a screening tool for regulators, 
a benchmarking framework for industry, and a research 
baseline for academia. Future research applying the DPBI 
across multiple facilities, regions, and service types will be 
essential to test generalizability and strengthen its policy 
relevance. Over time, broader empirical applications may 
support the integration of science-based thresholds into 
policy and disclosure frameworks. Equally essential is 
the incorporation of justice and equity: water withdrawals 
in stressed basins often disproportionately affect local 
communities, while material extraction burdens are 
concentrated in regions of the Global South. Embedding 
such considerations will ensure that the DPBI is not only 
scientifically rigorous but also socially equitable.
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