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Abstract: The dominance-based rough sets extend conventional rough sets by substituting the equivalence relation 
with a dominance relation. Nonetheless, the current dominance relations remain overly limited in practical utility, 
as they consistently require a precise decrease or increase for every attribute to be considered. Indeed, for numerous 
practical scenarios, it is sufficient to utilize the ascending or descending arrangement of fractional characteristics 
instead of considering all attributes or focusing only on the overall assessment of objects. This research 
established two novel dominance relations derived from the observed phenomenon. Subsequently, we formulated 
a comprehensive rough set models based on these relations, enabling us to define overall assessments and specific 
criteria for individual attributes. First, we established a broader form of dominance relations and created a rough 
set model rooted in this generalized dominance concept. We achieved this by employing the Pythagorean fuzzy 
additive operator to combine the individualized attribute values of every object in Pythagorean fuzzy environments, 
resulting in an overall evaluation. Next, we introduced a different form of dominance relationship indicated as the 
"generalized δ-dominance relation," along with the corresponding "generalized δ-dominance rough set model." 
This is accomplished by integrating a parameter δ, which is within the range of (0, 1), into the general dominance 
relationship. The inclusion of this parameter allows us to manage the number of attributes that fulfill dominance 
relationships, leading to the derivation of decision rules encompassing both "at least" and "at most" conditions. The 
objective is to develop new dominance relations and rough set models in Pythagorean fuzzy settings, including a 
generalised δ-dominance relation for flexible attribute evaluation. As a result, the models generate effective decision 
rules under "at least" and "at most" conditions, with numerical examples validating their applicability. The proposed 
models support decision making in complicated and unpredictable situations by producing exact rules that are 
helpful in planning, risk analysis, and supply chain management. They can be used by managers to more clearly and 
transparently assess options, establish priorities, and justify group decisions. 

Keywords: Pythagorean Fuzzy Sets, Fuzzy Ordered Information System, Rough Sets, Dominance Relation

Received: Jul.28, 2025; Revised: Oct.9, 2025; Accepted: Oct.20, 2025; Published: Nov.8, 2025
Copyright © 2025 Wajid Ali, et al. 
DOI: https://doi.org/10.55976/dma.32025143786-121
This is an open-access article distributed under a CC BY license (Creative Commons Attribution 4.0 International License) 
https://creativecommons.org/licenses/by/4.0/

1. Introduction

   Pawlak [1] introduced the notion of rough sets in 1982 
to provide a mathematical framework for addressing 
imprecision, ambiguity, and uncertainty in data analysis [2-
7]. This concept has been widely applied in various domains 

such as machine learning, pattern identification, decision 
analysis, processes regulation, knowledge discovery in 
databases, and expert systems [8-13], yielding successful 
outcomes in practical problem-solving scenarios.
   Currently, investigations into rough sets have brought 
forth numerous noteworthy topics for consideration. These 
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include challenges related to attribute reduction [14-16], 
models involving approximation operators [17-19], the 
development of axiomatic systems [20-22], expansions and 
variations of rough sets [23-26], and more. Within these 
areas of study, the exploration of rough set generalizataions 
stands out as a vital and significant aspect of rough set 
theory. These generalizations have demonstrated their 
worth as effective tools for tackling a range of practical 
issues.
   Pawlak's rough sets were created to handle datasets in 
which each object is limited to having a distinct, discrete 
value for each attribute. Additionally, in these datasets, 
every attribute can establish either an equivalence relation 
within the domain of discourse or a partition of discourse. 
However, this equivalence or partition approach proves 
to be constraining in many applications because it cannot 
detect inconsistencies that arise from the assessment of 
criteria involving attributes with sequential domains, such 
as product excellence, market position, and debt ratio 
[24]. Over the last 35 years, various generalized rough set 
approaches have been developed to address this issue. One 
particularly significant approach is the dominance−based 
rough set approach (DRSA) [27-29,38], which replaces 
the equivalence relation with a dominance relation. This 
substitution enables the resolution of ranking issues related 
to criteria. Consequently, DRSA offers a practical solution 
for addressing the common inconsistencies found in 
MADM problems involving exemplary decisions.
   The DRSA and Pawlak's rough set model [1] have 
established a strong basis for managing uncertainty and 
ranking issues in multicriteria decision making (MCDM). 
Building on this basis, a wide range of studies have 
expanded fuzzy and rough-set frameworks to include 
interval-valued, neutrosophic, hypersoft, Q-rung, and 
Pythagorean fuzzy environments. These studies have also 
integrated aggregation operators and decision methods 
such as TOPSIS for real-world selection problems [31]. 
As an illustration of how distance-based MCDM tools 
supplement rough-set ranking techniques [32], TOPSIS 
and its fuzzy variants have been widely used for selection 
problems in engineering and medicine. Examples of these 
include medical-clinic selection for diagnosis and the 
selection of automotive alternatives using intuitionistic 
fuzzy TOPSIS [33, 34]. In parallel, the mathematical 
primitives for expressing richer and precise information and 
for establishing suitable approximations and aggregation 
procedures are provided by the algebraic and operational 
foundations of generalized set structures, such as interval-
valued neutrosophic hypersoft sets [35, 36], interval-valued 
fuzzy soft matrices, and neutrosophic hypersoft matrices.
   When combining attribute-level information in MCDM 
and medical diagnosis applications, recent developments 
in aggregation and interaction operators [30, 37] (such as 
interaction geometric, Einstein average, and extensions 
for q-rung orthopair contexts) demonstrate how 
aggregation behavior can be tuned and how interaction 
effects can be captured. The usefulness of combining 

specialized uncertainty models with ranking techniques 
is demonstrated by application-driven studies, such as the 
selection of UAVs for precision agriculture using interval-
valued q-rung TOPSIS [39-42] and group decision-making 
under interval-valued probabilistic-linguistic T-spherical 
fuzzy information for cloud-storage selection [43].
   Moreover, research from other practical fields, such as 
innovative Möbius transformation-based image encryption 
algorithms, demonstrates the wide range of applications 
for sophisticated mathematical and fuzzy/neutrosophic 
tools beyond classical MCDM, and highlights areas 
where methods can be cross-fertilized [44]. Our approach 
addresses the need to handle rich interval, orthopair, and 
neutrosophic information, support both global (overall) and 
selective (per-attribute) comparisons, and enable flexible 
aggregation and decision rules for "at least" and "at most" 
cases in MADM problems. These studies collectively drive 
our development of generalized dominance and generalized 
δ-dominance relations within Pythagorean fuzzy ordered 
information systems.
   Current procedures in the domain of DRSA primarily 
concentrate on extending methods and creating algorithms 
to reduce attributes [45-47, 30, 48-51]. The concept of 
DRSA was originally introduced by Greco et al.[27], who 
established that condition attributes serve as criteria and 
are prioritized based on preference. Consequently, the 
acquired knowledge consists of a collection of dominance 
classes, which represent sets of objects determined by a 
dominance relationship. As an illustration, Greco et al. [46] 
introduced the dominance-based rough fuzzy set approach 
by integrating DRSA within the framework of fuzzy logic. 
In this particular approach, the approximation of the 
vague objective is achieved by employing a dominance 
relationship instead of a fuzzy relationship. In reference 
[47], the traditional concept of dominance was extended 
to establish a one-on-one comparison-based dominance 
relationship. This extension was used to examine the 
ordinal characteristics of the preferred levels in pairs 
of objects. Błaszczynski et al. [45, 52] introduced the 
VC-DRSA, which incorporates the concept of variable 
precision rough sets from reference [53] into DRSA and it 
explores various versions of VC-DRSA. These variations 
yield broader, lower approximations compared to those 
computed using DRSA. In other words, they define the 
lower approximation as specific objects that exhibit a 
robust, though not necessarily causal, relationship with 
the sets being approximated. This is achieved by adding 
a parameter that controls the coherence of the objects 
incorporated within the lower approximations. Hu [54] 
introduced an algorithm for determining the reductions in 
the VC-DRSA. This approach applies to interval-valued 
intuitionistic fuzzy information systems, where objects 
are characterized by imprecise evaluations. The concept 
of dominance-based rough approximations and their 
implementations in this context has been further developed 
in these references [55, 48-50, 56].
   The dominance relationship in the aforementioned 
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study on dominance rough sets are all established based 
on the notion of the classical dominance relationship. 
This conventional dominance relation represents a strong 
preference among elements in a set, often referred to as 
"outranking," and signifies a preference for one object 
over another concerning each criterion. However, this 
conventional dominance relation is somewhat limiting 
because it requires that objects satisfy ranking criteria 
for all information system, rather than just partial ones. 
Consequently, when constructing dominance categories 
using conventional dominance relations, even if one 
attribute of an object is less superior compared to another, 
it will result in the exclusion of the former from the 
dominance category of the latter. This characteristic can 
be particularly significant, especially when dealing with 
MADM [58-60] problems involving large sets of elements.

Novelty and contribution of the study

   The study introduces two new dominance relations—
generalized dominance and generalized δ-dominance 
within Pythagorean fuzzy systems, enabling both overall 
and selective attribute evaluations. It extends DRSA by 
deriving decision rules for “at least” and “at most” cases, 
supported by numerical examples, thus broadening rough 
set applications in MADM.
   As widely recognized, in numerous group decision 
scenarios, our primary focus is often on identifying entities 
with the most favorable composite evaluations while 
disregarding their individual attribute values. In other 
words, even if an entity exhibits subpar values in certain 
individual attributes, it should still be considered among 
the optimal choices as long as its composite evaluation 
surpasses that of its counterparts. Conversely, in many 
real-world situations, it is imperative not only to identify 
entities with superior composite evaluations but also to 
ensure that they outperform others in specific individual 
attributes. For instance, in the context of a computer audit 
risk assessment, when seeking entities that outperform 
audit objects ӽ in terms of overall evaluation, our task 
entails calculating the overall evaluations of all entities 
and selecting those that outperform ӽ. In specific cases, 
it is important to identify objects that not only have an 
overall evaluation that surpasses ӽ but also outperform ӽ 
in individual attributes. To manage the extent to which an 
object must outperform others across various criteria, we 
introduced a parameter δ (where 0 < δ ≤ 1). Taking these 
two factors into consideration, we established two new 
dominance relations within Pythagorean fuzzy information 
systems. These relations account for both the holistic 
evaluations of objects and the ranking of objects according 
to specific criteria, rather than evaluating each criterion 
individually. The Pythagorean operation is employed to 
combine all attribute values into a single Pythagorean 
value, which in turn forms the basis for overall evaluations 
of objects. Initially, this process leads to the creation of 
a new dominance relationship, known as the generalized 

dominance relation, by ranking objects based on their overall 
evaluations. This relationship helps identify the group of 
objects with superior comprehensive assessments. Next, 
the generalized δ-dominance relation is established within 
the framework of dominance Pythagorean fuzzy ordered 
information systems, and it is determined by incorporating 
the parameter δ into the generalized dominance relation. 
Currently, two distinct dominance relations have been 
developed to align with decision makers' preferences 
regarding "overall evaluations" and "individual attribute 
values." This generalized dominance relation is then utilized 
in the RSA to introduce the concept of a generalized DRSA 
within the framework of a dominance-based Pythagorean 
fuzzy ordered information system.

Research gap and motivation of the study

   Classical DRSA relies on strict dominance relations, which 
require all criteria to be satisfied, limiting its usefulness 
in real-world problems where partial dominance is 
acceptable. VC-DRSA relaxes this restriction but still bases 
dominance on conventional definitions, not addressing 
cases where composite evaluations should outweigh 
individual weaknesses. There is a lack of models in the 
existing literature that integrate overall evaluations with 
selective attribute dominance in fuzzy environments, and 
insufficient exploration of Pythagorean fuzzy information 
systems for generalized dominance-based rough sets.
   In many decision-making contexts, the focus is on selecting 
entities with superior composite evaluations, even if they 
are weaker in some individual attributes. Conversely, in 
some applications, decision-makers require assurance that 
entities also outperform in specific individual attributes. 
To reconcile these perspectives, flexible dominance 
relations that can model both overall performance and 
selective attribute strength are needed. This motivated the 
development of generalized dominance and δ-dominance 
relations, offering decision-makers more nuanced tools for 
handling imprecision and uncertainty in MADM problems.
Furthermore, we introduced the generalized δ-DRSA by 
integrating the generalized δ-dominance relationship, which 
enables us to generate decision rules for both "at least" and 
"at most" scenarios. We supported these concepts with 
numerical examples for better understanding. It is important 
to note that these two novel approaches introduced in 
this article differ from VC-DRSA. Our models primarily 
focus on establishing a broader dominance relationship, 
which can result in more inclusive dominant categories 
compared to those produced by DRSA. This distinction 
arises because our novel dominance relations solely 
emphasize the order of the comprehensive assessment 
value, irrespective of individual attribute orders, or 
impose preferences on the order of only certain attributes. 
Additionally, the ℒ Approxs in our approach still employ 
the “inclusion” relation, akin to DRSA. In contrast, VC-
DRSA is similar to DRSA in terms of dominance relations, 
but it introduces the consistency level parameter l ∈ (0, 
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1] to relax the conditions for inclusion in ℒ Approxs. This 
parameter governs the consistency of approximations. 
Consequently, the ℒ Approxs of VC-DRSA expand upon 
those of DRSA, as they can encompass objects that, in line 
with the traditional interpretation, would not be included in 
the ℒ Approxs. VC-DRSA can identify reliances that DRSA 
might overlook and provides a more robust foundation for 
generating rules.
   The organization of this article can be outlined as 
follows: In Section 2, we presented a concise overview of 
the initial considerations of our study, which encompass 
the explanation of Pythagorean fuzzy set notations, 
fundamental operations associated with Pythagorean fuzzy 

sets, and a method for determining the dominance classes 
of objects based on their attribute values. Section 3 is 
dedicated to the development of a generalized dominance 
rough set model by defining a broader dominance relation 
in a pythagorean fuzzy environment. In section 4, we 
proposed the concept of generalized δ-dominance rough 
sets by integrating a generalized δ-dominance relation, 
which allows us to derive "at least" and "at most" decision 
rules. Finally, we concluded the research in section 5 with 
a summary of our findings and a glimpse into potential 
avenues for future research. Figure 1 is added to show the 
whole pipline of the proposed research work.

Figure 1. Flowchart of whole research work

2. Preliminaries

   This section offers a summary of key information 
concerning PFSs, IS, PFOIS, and DPFOIS, as well as 
fundamental concepts relevant to the subject matter of this 
research. It also touches upon prominent ideas concerning 
sequential analysis.

A. Pythagorean fuzzy sets
   Definition 1: [60] For the universe of discourse U, and 
for ӽ∈U. The PFS ‘P’ is defined over U as:

where,  represents the MG and  represents the NMG  of 

ӽ to P, respectively, with 

. The indeterminacy degree is 

 

   For convenience, the pythagorean fuzzy number 

 is denoted by .

   Definition 2: [58-60] Suppose , (1 ≤ i 

≤2) to be two Pythagorean fuzzy values and λ >0, therefore
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   Clearly, if β1 and β2 are pythagorean fuzzy values, it 
follows that β1∪β2 and β1∩β2 are also PF values. We can 
readily extend the operations of union, intersection, 
addition, and multiplication from two Pythagorean fuzzy 
values to n Pythagorean fuzzy values.

   Definition 3: [57] Suppose , (1 ≤ i ≤ 

n) to be n Pythagorean fuzzy values, with these values we 

can establish the union ∪1≤i≤n βi, intersection ∩1≤i≤n βi, sum 

 and product  of βi(1≤i≤n) as:

   Definition 4: Let  and be 
two pythagorean fuzzy values,  
and  be the score functions 
of β1 and β2, respectively with S(β1) and S(β2) both 
belongs to [-1, 1 ]; and  and 

be the precisions of β1 and β2, 
respectively, then we can assess the ranking of β1 and β2 
with these specified criteria.
(1)If S(β1) < S(β2) then β1≺β2;
(2)If S(β1) = S(β2)

a)and h(β1) = h(β2), then β1= β2;
b)and h(β1) < h(β2), then β1 ≺ β2;
c)and h(β1) > h(β2), then β1 ≻ β2;

   For any two pythagorean fuzzy values, β1= (0.6, 0.6) and 
β2= (0.4, 0.4), S(β1) =0.00, S(β2) =0.00 and h(β1)=0.72, h(β2) 
=0.32, thus β1 ≻ β2. So we can develop an approach for 
prioritizing two items characterized by attribute qualities 

represented by Pythagorean fuzzy values.

B. Information system
Definition 5: An information system (IS) can be defined as 
a quadruple S =(U, AT, V, f), where U is a finite non-empty 
set of objects, AT is a finite nonempty set of attributes, V= 
∪ą∈ATVą and Vą is the domain of attribute ą, and f: U×AT → 
V is a mapping such that f (ӽ, ą) ∈ Vą for each ą ∈AT, ӽ∈U, 
is an information function.

   Definition 6: An IS is known as an OIS if all of its 
attributes meet the criteria.

C. Pythagorean fuzzy ordered information system
   Definition 7: A Pythagorean fuzzy ordered information 
system (PFOIS) is a quadruple S =(U, C ∪ D, V, f), where U 
is universe of discourse, C is a set of conditional attributes, 
D = {d}is a set of decision attribute, and C ∩ D = ∅. V is 
the set of all pythagorean fuzzy values, and V = V1 ∪ V2, 
where V1 and V2 are the realms of condition and decision 
attributes. The information function f is a map from U × 
C ∪D onto V, such that f(ӽ, c) ∈ Vc for all c ∈ C , Vc⊆V1, 
and f(ӽ, d)∈V2 for D ={d}, where f(ӽ, c) and f(ӽ, d) are 
pythagorean fuzzy values, denoted by f(ӽ, c) = (uc（ӽ）, 
vc（ӽ）） and f (ӽ, d) = (ud（ӽ）, vd（ӽ））.
   We call f (ӽ, c) the pythagorean fuzzy value of object 
ӽ, pertaining to the condition attribute c, f (ӽ, d) the 
pythagorean fuzzy value of ӽ pertaining to the decision 
attribute d. Specifically, f (ӽ, c) and f (ӽ, d) would degenerate 
into fuzzy value if uc(ӽ）= 1−vc(ӽ) and ud(ӽ）= 1−vd(ӽ) for 
every ӽ ∈U. With this perspective in mind, we view a fuzzy 
information system as a unique variant of Pythagorean 
fuzzy information systems. Such information systems 
sometimes are also called decision-making systems.
   When evaluating a decision-making process in a practical 
context, we consistently examine a binary dominance 
relationship between items that could potentially excel 
in certain characteristics within a Pythagorean fuzzy 
information system. Decision-makers typically consider 
both increasing and decreasing preferences. An attribute 
qualifies as a criterion when its domain is ordered in 
either ascending or descending order of preference. We 
confine our examination to dominant Pythagorean fuzzy 
information systems without sacrificing generality.
   Evaluating and ranking objects using condition attributes 
with Pythagorean fuzzy values is a crucial task within 
dominant Pythagorean fuzzy information systems. To 
achieve this, we utilize the score function and accuracy 
function during the ranking procedure for two Pythagorean 
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fuzzy values.
   Definition 8: Suppose that PFOIS =(U, C ∪ D, V, f), and 
B⊆C, for ӽ,y ∈ U are denoted by ӽ≼B y⇔f (ӽ, b)≼ f (y, b)⇔f 
(y, b) ∨ f (y, b) = f (y, b), ∀ b ∈ B. Obviously, ≼B is a binary 
relation in U, that is
≼B={(ӽ, y)∈ U × U∣ f (ӽ, b)≼f (y, b), ∀ b∈ B}.
   The binary relation described previously is termed a 
dominance relation in PFOIS.
   The dominance class created by the dominance relation, 
≼B, in terms of B⊆C, is the set of objects dominating ӽ,ie 

 where  defines the group 
of entities that could potentially dominate ӽ in regards to 

B⊆C and is called the B-dominating set in terms of ӽ∈U. 

In the meantime, the B-dominated set in terms of ӽ∈U 

can be defined as . Similarly, 

 and 

.
D. Dominance-based pythagorean fuzzy ordered 
information system
   This segment explores the set approximation difficulties 
regarding the dominance-oriented Pythagorean fuzzy 
relation within the dominance-oriented Pythagorean fuzzy 
ordered information system (DPFOIS).
   Definition 9: Suppose  to be 
DPFOIS, and B⊆C. The universe U is partitioned into m 
equivalence classes by d, i.e. U/{d}={U1, U2,…,Up}, where 
U1≺ U2≺…≺Up and Ui≺Uj denotes that ∀ ӽ∈Ui, y∈Uj ⟹ 

f (ӽ, d) < f (y, d). Denote , 

 and let:

  
   Then,  and  
are called the ≼ℒ Approxs, ≼U Approxs and boundary 
of the dominating class,  in regards to ≼B with 
respect to the condition attribute subset B, respectively. 

 and  are called the 
≽ℒ Approxs, ≽U Approxs and boundary of the dominated 
class,  in regards to ≽B with respect to the condition 

attribute subset B, respectively.

   Whereas,  and  are the 
≼ ℒ Approxs, ≼U Approxs, and boundary of ӽ in regards 
to ≼B with respect to the condition attribute subset B, 

respectively.  are the 

≽ ℒ Approxs, ≽U Approxs, and boundary of ӽ in regards 

to ≽B with respect to the condition attribute subset B, 

respectively.

  If   and 

then

  and  

are referred to as dominating and  dominated rough sets. 
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3. Dominance-based rough set 
approach for pythagorean fuzzy 
ordered information system

   In this segment, we introduced a generalized rough set 
approach based on dominance. 
  The partition of U by decision attribute d is U/d 
={U1,U2,U3}, where U1= {ӽ1, ӽ6, ӽ8}, U2= {ӽ2,ӽ3, ӽ5, ӽ9}, 

U3= {ӽ4, ӽ7, ӽ10}, then the downward and upward unions are 

 =U1 = {ӽ1, ӽ6, ӽ8}, = U1∪ U2= {ӽ1,ӽ2, ӽ3,ӽ5, ӽ6,ӽ8, 

ӽ9}, =U1∪ U2∪ U3= U = {ӽ1,ӽ2, ӽ3,ӽ4, ӽ5, ӽ6,ӽ7, ӽ8, ӽ9, 

ӽ10). =U1∪ U2∪U3= U= {ӽ1,ӽ2, ӽ3, ӽ4,ӽ5,ӽ6,ӽ7, ӽ8,ӽ9, ӽ10}, 

=U2 ∪ U3 = {ӽ2, ӽ3, ӽ4,ӽ5,ӽ7, ӽ9, ӽ10}, = U3 = {ӽ4, ӽ7, 
ӽ10}. The ℒ/U Approxs are in Table 3.

A. Generalized dominance-based rough set model
   In this portion, we introduced a comprehensive dominance 
rough set framework. This framework is established by 
introducing a novel dominance relation, which relies on 

the principles of dominance Pythagorean fuzzy decision 
system.
   Suppose S=(U, C ∪ D, V, f) to be DPFOIS, the dominace 
class of ӽ∈U with respect to conditional attributes is 
described as

   One can see that it requires f (ӽ, b)≼f (y, b) for each b∈ 

B⊆C if y∈ . In practical applications, this condition 
proves to be overly stringent, especially when dealing 
with large datasets. It can, at times, result in the omission 
of valuable information in decision-making scenarios. 
For instance, within the realm of social choice theory 

[53], the concept of a "dominance class" denoted as  
may overlook professional candidates with specialized 
expertise. Additionally, when considering information 
granularity, this "dominance class" can yield a more refined 
level of detail, which in turn escalates computational 
demands in extensive datasets. Furthermore, the increased 
granularity can generate a multitude of decision rules, 
causing complications for decision-makers. This issue will 
be further elucidated in Example 1.

Table 1. Dominance-based Pythagorean fuzzy ordered information system

U/C c1 c2 c3 c4 c5 d
ӽ1 (0.5, 0.4) (0.3, 0.4) (0.8, 0.2) (0.4, 0.5) (0.7, 0.2) 1
ӽ2 (0.3, 0.5) (0.4, 0.5) (0.6, 0.3) (0.4, 0.5) (0.6, 0.3) 2
ӽ3 (0.3, 0.5) (0.4, 0.7) (0.7, 0.1) (0.4, 0.5) (0.7, 0.3) 2
ӽ4 (0.3, 0.5) (0.1, 0.8) (0.4, 0.5) (0.2, 0.6) (0.8, 0.1) 3
ӽ5 (0.7, 0.4) (0.4, 0.5) (0.9, 0.1) (0.4, 0.5) (0.7, 0.2) 2
ӽ6 (0.5, 0.7) (0.6, 0.7) (0.7, 0.2) (0.5, 0.4) (0.6, 0.4) 1
ӽ7 (0.5, 0.4) (0.4, 0.5) (0.7, 0.2) (0.5, 0.6) (0.7, 0.1) 3
ӽ8 (0.4, 0.6) (0.4, 0.6) (0.9, 0.1) (0.7, 0.3) (0.8, 0.2) 1
ӽ9 (0.5, 0.7) (0.7, 0.3) (0.9, 0.1) (0.5, 0.6) (0.9, 0.1) 2
ӽ10 (0.4, 0.7) (0.3, 0.6) (0.5, 0.2) (0.2, 0.9) (0.4, 0.5) 3

Table 2. Dominating classes  and dominated classes  induced by ≼C and ≽C

U

ӽ1 {ӽ1} {ӽ1,ӽ2, ӽ3, ӽ10}
ӽ2 {ӽ1,ӽ2,ӽ5} {ӽ2, ӽ10}
ӽ3 {ӽ1, ӽ3,ӽ5} {ӽ3}
ӽ4 {ӽ4} {ӽ4}
ӽ5 {ӽ5} {ӽ2,ӽ3, ӽ5, ӽ10}
ӽ6 {ӽ6} {ӽ6, ӽ10}
ӽ7 {ӽ1,ӽ7} {ӽ7, ӽ10}
ӽ8 {ӽ8} {ӽ8, ӽ10}
ӽ9 {ӽ9} {ӽ9, ӽ10}
ӽ10 {ӽ1,ӽ2,ӽ5, ӽ6,ӽ7,ӽ8,ӽ9, ӽ10} {ӽ10}
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Example 1
   Let us imagine that we are tackling a computer audit 
risk evaluation challenge, treating it as a decision-making 
problem with multiple criteria. In this scenario, our goal is 
to evaluate the risk associated with the audit by considering 
five different factors. In this issue, the focus is on the 
audited entities being represented as U = {ӽ1, ӽ2,ӽ3, ӽ4, ӽ5, 
ӽ6, ӽ7, ӽ8, ӽ9, ӽ10}, decision attribute set is D = d, where d = 
"Acceptable Ultimate Computer Auditing Risk", condition 
attribute set is C ={c1, c2, c3 , c4 , c5} where c1 = "Better 
Systems Circumstance", c2 ="Better Systems Control", c3 = 
"Safer Finance Data", c4 =" Credible Auditing Software", c5  
= "Operation Standardization". These condition attributes 
provide a clear description of the audit candidates outlined 
in Table 1. Initially, by Definition 8, all the dominating 
class  and dominated class  of ӽ∈U in regards to 
condition attribute set C are given in Table 2. From Table 2, 

we get = {ӽ1,ӽ2,ӽ5}, it means except ӽ2, only ӽ1 and ӽ5 
dominates ӽ2 in regards to each attribute ck (k= 1, 2, 3, 4, 5) 
of C. Yet, according to Definition 3, for every ӽi∈U, using 
C（ӽi）=  signifies the comprehensive 
assessment of ӽi in regards to all condition attributes ck∈C, 
k=(1,2,…5), where f（ӽi, ck）= ck （ӽi）=（uck（ӽi）, 
vck(ӽi)）. According to Table 1, C（ӽi）=  
are calculated as

Table 3. ≼ and ≽ ℒ/U Approxs with respect to C

U

ӽ1

ӽ2

ӽ3

ӽ4

ӽ5

ӽ6

ӽ7

ӽ8

ӽ9

ӽ10



Decision Making and Analysis 109 | Volume 3 Issue 1, 2025

Similarly, we can find

   By Definition 4 the score function of C(ӽi)(i =1,2, … ,10 
are obtained as follows:
S(C(ӽ1))=0.89472, S(C(ӽ2))=0.73688, S(C(ӽ3))=0.83296, 
S(C(ӽ4))=0.73830, S(C(ӽ5))=0.96513, S(C(ӽ6))=0.88225, 
S(C(ӽ7)=0.87708, S(C(ӽ8))=0.97537, S(C(ӽ9))=0.98963, 
S(C(ӽ10))=0.53626.
   By S(C(ӽi))(i=1,2, … ,10) the ranking of objects ӽi are as 
follows:

ӽ9≻ӽ8≻ӽ5≻ӽ1≻ӽ6≻ӽ7≻ӽ3≻ӽ4≻ӽ2≻ӽ10     (1)

   Now, let  denote the collection of entities that dominates 
ӽ concerning the holistic assessment of condition attribute 
set C, and  represent the grouping of entities dominated 
by ӽ in terms of the overall evaluation of condition attribute 
set C. 
   From Table 2, we get ={ӽ1,ӽ2,ӽ5}, ={ӽ2, ӽ10}.
However, Equation 1 shows that ={ӽ2,ӽ9, ӽ8, ӽ5, ӽ1, 
ӽ6, ӽ7, ӽ3, ӽ4} and ={ӽ2, ӽ10}. Obviously, ӽ9, ӽ8, ӽ6, ӽ7, 
ӽ3, ӽ4 do not belong to . The definition of  proves 
limiting in various scenarios, as it leads to the exclusion of 
an object from  , even if just a single attribute value fails 
to meet the dominance relation ≼C. These characteristics 
hold a significant relevance, particularly when dealing with 
extensive domains with numerous attributes.
   In response to this occurrence, we aim to introduce a 
novel approach to defining the dominance relationship.
   Definition 10: Let S=(U, C∪{d}, V,f) be a DPFOIS with 
U={ӽ1, …, ӽn} and C={c1 , …, cm} . Then generalized 
dominance relation is defined as follows:

   For any ӽi∈U,  induced by  is the set of objects 

dominate ӽi concerning the comprehensive assessment 

of the condition attribute set C, that is ={yj∈U| 

}, and  

is known as the generalized dominating class of ӽi. Similarly 

the  generalized dominated class of ӽi can be described as 

   These generalized dominating and dominated classes 
induced by  and  form a covering of U, that is, 

   Remark 1. For any ӽi, ӽj∈U, 

if , 

then 

if 

Example 2
   Example 2 follows Example 1 calculateing the generalized 
classes that dominate and are dominated by  and 
in Table 1. All these classes in Table 4 can be obtained. 
The generalized ℒ/U Approxs with respect to conditional 
attributes C are evaluated in Table 5.
   From Table 4, it is easy to get  , if . 
Hence, generating generalized dominating and dominated 
classes by considering the comprehensive assessment of 

each item across all attributes would prevent the elimination 

of numerous outstanding items.

   From Table 4, it is easy to get  , if 
. Hence, generating generalized dominating and dominated 
classes by considering the comprehensive assessment of 
each item across all attributes would prevent the elimination 
of numerous outstanding items.
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   Moreover, Table 2 represents that ={ӽ1,ӽ2,ӽ5}, but 

as presented in Table 4, ={ӽ2, ӽ1,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9}. 
It demonstrates that ӽ1,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9 are all surpass 
to ӽ2 in terms of overall assessment, while only the specific 
attribute values of ӽ3, ӽ4, ӽ6,ӽ7,ӽ8,ӽ9 do not satisfy f(ӽ, c)≼f(y, 
c) for c∈C. For example, for object ӽ6 and ӽ7, only f(ӽ6, 
c4)≻f(ӽ7, c4）, except c4= "Credible Auditing Software", 
f（ӽ6, ck）≼f（ӽ7, ck） holds for any ck∈C(k≠4).
   In summary, for any ӽi∈U,  includes only those 
objects that completely dominate ӽi across all attributes of 
C. This makes it less suitable for addressing multi-attribute 

collaborative decision-making challenges involving large 
datasets. Consequently, across various practical contexts, 
in which there are no specific attribute requirements for 
objects, it is more practical to focus on the comprehensive 
assessment of the objects. Particularly, if m=1, then 
= . This means that =  consistently applies to 
individual attributes.
   Previous analyses are limited to cases where the relative 
importance of attributes is not taken into account. However, 
in most real-world decision-making problems, condition 
attributes often have varying degrees of significance. 
Recognizing this practical necessity, the proposed approach 

Table 4. Generalized dominating classes  and generalized dominated classes  by  and 

U 

ӽ1 {ӽ1,ӽ5,ӽ8,ӽ9} {ӽ1,ӽ2, ӽ3, ӽ4, ӽ6, ӽ7, ӽ10}
ӽ2 {ӽ2, ӽ1,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9} {ӽ2, ӽ10}
ӽ3 {ӽ3,ӽ1,ӽ5, ӽ6,ӽ7,ӽ8,ӽ9} {ӽ3, ӽ2, ӽ4,ӽ10}
ӽ4 {ӽ4, ӽ1,ӽ3, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9} {ӽ4, ӽ2,ӽ10}
ӽ5 {ӽ5, ӽ8,ӽ9} {ӽ5, ӽ1,ӽ2,ӽ3, ӽ4, ӽ6, ӽ7,ӽ10}
ӽ6 {ӽ6, ӽ1, ӽ5, ӽ8,ӽ9} {ӽ6, ӽ2,ӽ3,ӽ4, ӽ7, ӽ10}
ӽ7 {ӽ7, ӽ1, ӽ5, ӽ6,ӽ8,ӽ9} {ӽ7,ӽ2,ӽ3,ӽ4, ӽ10}
ӽ8 {ӽ8, ӽ9} {ӽ8,ӽ1,ӽ2,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ10}
ӽ9 {ӽ9} {ӽ9, ӽ1,ӽ2,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ8,ӽ10}
ӽ10 {ӽ10, ӽ1,ӽ2,ӽ3, ӽ4, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9} {ӽ10}

Table 5. Generalized ≼ and ≽ ℒ/U Approxs with respect to C

U

ӽ1

ӽ2

ӽ3

ӽ4

ӽ5

ӽ6

ӽ7

ӽ8

ӽ9

ӽ10
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introduces attribute weighting and defines a weighting 
dominance relation, offering a more realistic and effective 
framework than existing DRSA or VC-DRSA methods.
   Adding a comparison table to summarize the key 
differences, advantages, and computational implications 
between the proposed model and classical DRSA/
VC-DRSA would further highlight its strengths and 
contributions.

   Definition 11: Suppose S=(U, C∪{d}, V,f) to be a DPFOIS 
with U={ӽ1, ӽ2,…, ӽn} and C={c1 , …, cm} . Suppose that 
Ꝡ={ꝡ1, ꝡ2,… ꝡm} denotes weight set assigned to condition 
attribute set, where ꝡi(i=1,2,…,m) is the weight of ci and 

. Then the generalized weighting dominance 
relation  and  in S are described as:

                               Now by Definition 3, 

   Similarly, For any ӽi∈U,  generated by 
 is the collection of objects that dominates 

ӽi with respect to the comprehensive assessment 

of condition attributes set C, that is =

, and  is known as generalized-weighting-dominating 
class of ӽi. Similarly, the  generalized-weighting-dominated 
class of ӽi can be described as 

   

   Thus, based on Definition 10 and  Definition 11 the 

subsequent characteristics are defined for , 

, and . For the sake of simplicity, we solely 

enumerate the properties of  and , which also 

hold for and .

   Theorem 1. Let S=(U, C∪{d}, V,f) be a DPFOIS with 

U={ӽ1, ӽ2,…, ӽn} and C={c1 ,c2, …, cm} .  and 

are the generalized dominating and dominated classes 

generated by  and ,  and  are the 

dominating and dominated classes generated by ≼C and ≽C, 

respectively. Then

(1)  and  are reflexive and transitive;

( 2 )

(3) 

(4) 

(5) 

(6) 

      

(7) 

(8) 

     

   Proof. We exclusively demonstrate (2) and (5) concerning 

; the remaining ones can be directly derived from 

Definition 10.

(2) "⟹" By Definition 10, if ӽj∈  then 

. Similarly, for any ӽl∈ 

 then . Thus we 

have . Hence ӽl∈ 

, that is ⊆ .
"⟸"It can be easily proved from Definition 10.

(5) for any ck∈C, if ӽj∈ , then f(ӽi, ck)≼f(ӽj, ck), thus  

. Hence ӽj∈  , that 

is . Similarly, it can be proved 

.
   We are now presenting the generalized DRSA, which 
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includes the incorporation of the generalized dominance 
relation as defined in Definition 10.
   Definition 12: Let S=(U, C∪{d}, V,f) be a DPFOIS 

with U={ӽi} (i=1, 2, …, n) and C={c1 ,c2, …, cm} .  

and are the generalized dominating and dominated 
classes generated by  and  , respectively. The 
universe U is partioned into p equivalence classes by 

d that is, U/{d}={U1, U2,…,Up}, where U1≺ U2≺…

≺Up and Ui≺Uj denotes that ∀ ӽ∈Ui, y∈Uj ⟹ f(ӽ, 

d)≼f(y, d). Denote , 

 and let:

   Then,  and  are 

called the ≼ℒ Approxs, ≼U Approxs and boundary of 

the dominating class,  in terms of , respectively. 

 and  are the ≽ℒ 

Approxs, ≽U Approxs and boundary of the dominated 

class,  in terms of , respectively.

   Whereas ,  and  

are the ≼ ℒ Approxs, ≼U Approxs, and boundary of ӽi 

in terms of , respectively.  

and  are the ≽ ℒ Approxs, ≽U Approxs, and 

boundary of ӽi in terms of , respectively.

   If  and 

 

then, 

and  

are known as the generalized dominating and generalized 
dominated RSs, which are derived from the utilization 
of generalized dominating and dominated relations. 
In contrast, we can derive the generalized-weighting 
dominance RSs by employing  in a 
comparable manner.

   Remark 2. If , then we can define

   The operators and  are 

denoted as the ℒ/U generalized dominating Pythagorean 

fuzzy rough approximation operators of , respectively. 

So, this pair  is termed as 

a generalized dominating Pythagorean fuzzy rough set.
   Based on Definition 12, the subsequent properties are 
valid.

   Theorem 2. Let S=(U, C∪{d}, V,f) be a DPFOIS with 

U={ӽi} (i=1, 2, …, n), C={c1 ,c2, …, cm} .  and  
are the generalized dominating and dominated classes 

generated by  and  , respectively.

For any , the following properties hold:
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   Proof. The proofs for (1)-(7) can be readily derived using 
Definition 12.

4. Generalized δ-dominance-based 
rough set model and decision rules 
exteraction

   In this part, we introduced a generalized δ-dominance 
relation and constructed a corresponding generalized 
δ-dominance rough set model by incorporating an 
additional parameter δ into the generalized dominance 
relation. Then we extracted decision rules from this 
generalized δ-dominance rough set model
A.Generalized δ-dominance-based rough set model

   In this segment, we demonstrated the concept of a broader 
δ-dominance relationship and proceeded to suggest the 
generalized δ-DRSA.
   As widely recognized, in numerous practical situations, 
our objective is not just to identify objects with the highest 
overall assessment, but also to ensure that these objects 
outperform others in specific attributes. Consequently, the 
concept of Definition 12 of generalized dominance rough 
sets no longer holds relevance in such cases.
   In the forthcoming passage, Example 1 is consistently used 
to depict the phenomenon mentioned above. Table 2 shows 

 and Table 4 shows 
. If our goal is to identify objects that not only dominate 
ӽ6 in comprehensive assessment but also in at least 
three attribute values, we should introduce a parameter 
δ=3/4=0.75 in generalized dominance relation. It is evident 

that the items meet these two criteria form a distinct set 

={ӽ6, ӽ1, ӽ5, ӽ8,ӽ9}, and denoted as . Thus, for any 

ӽi∈ , ӽi dominates ӽ6 regarded to comprehensive 

assessment and at least about three attribute values.

   Clearly, it indicates that . As a 

result, the inclusion of a parameter makes the classification 
broader in scope compared to the traditional dominance 
relation.
   Definition 13: Let S=(U, C∪{d}, V,f) be a DPFOIS with 
U={ӽi} (i=1, 2, …, n) and C={c1 ,c2, …, cm} . For δ ∈(0, 
1], the generalized δ-dominance relation  and  are 
defined as:

   For any ӽi∈U, the generalized δ-dominating class of ӽi 
generated by  is represented as , and defined 

as = , 

where  comprises 

items that possess both an overall assessment and, 
at minimum [δ.|C|] individual attributes surpass 
those of ӽi, where [δ.|C|] denotes the smallest 
integer greater than δ.|C|. In the meantime, the 

generalized δ-dominated class of ӽi can be described 

as  

  and are 

both referred to as the generalized δ-dominance classes of 

ӽi.

   The complete set of generalized δ-dominance classes 

collectively covers U, i.e. U=

..Example 3. 

Example 3 follows Example 1. Take δ=0.75, by using 
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Example 3. 

   Example 3 follows Example 1. Take δ=0.75, by using 

Definition 13, the generalized δ-dominating classes 

and dominated classes  of ӽi are gained in Table 6 as 

below:

   From Table 6, we obtained ={ӽ2, ӽ1,ӽ3, ӽ5,ӽ7}, 
which means that ӽ1,ӽ3, ӽ5,ӽ7 dominates ӽ2 in terms 
of overall assessment values and at least [0.75*5]=3 
attributes. Particularly, it can be observed that ӽ1 dominates 

ӽ2 regarding c1 ,c2, c3,c4, c5, ӽ3 dominates ӽ2 regarding 
c1 ,c3,c4, c5, ӽ5 dominates ӽ2 regarding c1 ,c2, c3,c4, c5, ӽ7 
dominates ӽ2 regarding c1 ,c2, c3, c5.
   Of course, the generalized δ-dominance classes specified 
in Definition 13 possess the subsequent properties:

   Theorem 3. Let S=(U, C∪{d}, V,f) be a DPFOIS with 

U={ӽi} (i=1, 2, …, n) and C=c1 ,c2, …, cm . For δ ∈(0, 1]. 
Then
(1)  and are are reflexive and transitive;

Table 6. Generalized δ-dominating classes  and generalized δ-dominated classes 

 induced by  and 

U 

ӽ1 {ӽ1,ӽ5} {ӽ1,ӽ2, ӽ3, ӽ4, ӽ6, ӽ7, ӽ10}
ӽ2 {ӽ2, ӽ1,ӽ3, ӽ5,ӽ7} {ӽ2, ӽ10}
ӽ3 {ӽ3,ӽ1,ӽ5, ӽ8} {ӽ3, ӽ2, ӽ4,ӽ10}
ӽ4 {ӽ4, ӽ1,ӽ3, ӽ5,ӽ7,ӽ9} {ӽ4}
ӽ5 {ӽ5} {ӽ5, ӽ1,ӽ2,ӽ3, ӽ4, ӽ6, ӽ7,ӽ10}
ӽ6 {ӽ6, ӽ1, ӽ5, ӽ8,ӽ9} {ӽ6, ӽ10}
ӽ7 {ӽ7, ӽ1, ӽ5, ӽ9} {ӽ7,ӽ2,ӽ4, ӽ10}
ӽ8 {ӽ8} {ӽ8,ӽ3, ӽ6,ӽ10}
ӽ9 {ӽ9 } {ӽ9, ӽ4, ӽ6,ӽ7,ӽ10}
ӽ10 {ӽ10, ӽ1,ӽ2,ӽ3, ӽ5, ӽ6,ӽ7,ӽ8,ӽ9} {ӽ10}

Table 7. Generalized ≼ and ≽ ℒ/U Approxs with respect to C

U

ӽ1

ӽ2

ӽ3

ӽ4

ӽ5

ӽ6

ӽ7

ӽ8

ӽ9

ӽ10



Decision Making and Analysis 115 | Volume 3 Issue 1, 2025

   Proof. We only established (5) and (7); the remaining can 

be directly derived from Definition 13.

(8)For any ck∈C, if ӽj∈  then

and

It follows that

By Definition 13 if there exists ck∈C such that f(ӽi, ck)≠f(ӽj, 

ck), then we get 

Which contradicts to

   Thus if  then for every ck∈C, f（ӽi, 

ck）=f（ӽj, ck）.

(7)If = , then ӽi∈  and ӽj∈ . Thus, 

there are 

and

It follows that . Since δ > 

0.5, we obtained f(ӽi, ck)=f(ӽj, ck) ∀ ck∈C.

   A novel rough set model can be presented below by 

utilizing the generalized δ-dominance relation:

   Definition 14. Suppose S=(U, C∪{d}, V,f) to be a DPFOIS 

with U={ӽi} (i=1, 2, …, n) and C={c1 ,c2, …, cm} . Let  

be the generalized δ-dominating classes of ӽi generated by 

 and  be the generalized δ-dominated classes of 

ӽi generated by . For any δ∈0, 1], we defined:
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   Then,  and  are 

called the ≼ℒ Approxs, ≼U Approxs and boundary of 

the dominating class,  in terms of , respectively. 

 and  are the ≽ℒ 

Approxs, ≽U Approxs and boundary of the dominated 

class,  in terms of , respectively.

   Whereas,  and  are the 

≼ ℒ Approxs, ≼U Approxs, and boundary of ӽi in terms of 

, respectively.  and  

are the ≽ ℒ Approxs, ≽U Approxs, and boundary of ӽi in 

terms of , respectively.

   If  and 

 then,  

and  are referred to as generalized 

δ-dominating and generalized δ-dominated rough sets, this 

can be achieved by utilizing generalized dominating and 

dominated relations.
   Conversely, we can derive the generalized-weighting 
dominance rough sets by employing  and  
in a manner analogous to the aforementioned approach.
   Remark 3. If , then we can define

   The operators  and  are 
denoted as the ℒ/U generalized δ-dominating Pythagorean 

fuzzy rough approximation operators of , respectively. 

So, this pair  is termed 

as a a generalized δ-dominating Pythagorean fuzzy rough 

set of  regarding .  is the just the 

degree to which ӽi certainly belongs to ,  

is the degree to which ӽi possibily belongs to .

   Particularly, if we take  

in Definition 14, then  is called the lower 

generalized δ-dominating approximation of  regarding 

, whereas  is the generalized dominating class of 

ӽj generated by decision attribute d. Similarly,  

will be the lower generalized δ-dominating approximation 

of  regarding . In a similar way  and 

 could be obtained through .

   Theorem 4. Let S=(U, C∪{d}, V,f) be a DPFOIS with 

U={ӽi}(i=1, 2, …, n) and C={c1 ,c2, …, cm} . Let  be 

the generalized δ-dominating class of ӽi generated by . 

Then for , the subsequent results are valid:

(8) If δ1≤δ2 then 

   Proof 1. For any , then by Definition 

14 . As , this implies that 

. Thus ; similarly, for 

, since , so . Therefore 

.
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   Proof for (2)-(7) can easily prove directly by Definition 

14.

   If δ1≤δ2 then for any ӽi∈U and by Definition 13 

, so by Definition 14 we have 

 and 

 ⊆ .

B. Decision rules extration
In this segment, we explored the topic of obtaining rules 
within the context of the generalized δ-dominance rough 
set model in the realm of dominance Pythagorean fuzzy 
decision systems.

   Suppose that  

are the generalized δ-dominance class of ӽj generated by 

 and . Indeed, the outcome of the generalized 
δ-dominance rough set methodology is a depiction of the 
information present in the data management solution, 
expressed as "if... then..." decision rules. Within a 
Dominance Pythagorean Fuzzy Decision System (DPFDS), 
four distinct types of dominance rules can be identified.

(1) Certain "at least" rule with the following syntax:

   For all , if 

 ∧(f(y, cl1) ≼ f(ӽ, cl1) ∧ 

f(y, cl2) ≼ f(ӽ, cl2) ∧… ∧ f(y, cln) ≼ f(ӽ, cln)), then  

. In fact, for any , then by Definition 14 

this implies that . On the other hand, as 

∧(f(y, cl1)≼f(ӽ, cl1)∧f(y, 

cl2)≼f(ӽ, cl2)∧… ∧f(y, cln)≼f(ӽ, cln)), then by Definition 13 

, it means that . Hence 

, it follows that .

(2)Possible “at least” rule with the following syntax:

 For all , if 

 ∧ (f(y, cl1) ≼ f(ӽ, 

cl1) ∧ f(y, cl2) ≼ f(ӽ, cl2) ∧… ∧ f(y, cln) ≼ f(ӽ, cln)), then 

ӽ could belong to . If , then we 

have  and . From 

∧ (f(y, cl1) ≼ f(ӽ, cl1) ∧ f(y, 

cl2) ≼ f(ӽ, cl2) ∧… ∧ f(y, cln) ≼ f(ӽ, cln)), there is 

, it is clear that if , then , 

otherwise , which means that  

or . Hence ӽ 

could belong to .

(3)Certain “at most” rule with the following syntax:

   For all , if 

∧(f(y, cl1) ≽ f(ӽ, cl1)∧ f(y, cl2) ≽ f(ӽ, cl2)∧… ∧f(y, cln)≽ f(ӽ, 

cln)), then .

(4)Possible “at least” rule with the following syntax:

   For all , if 

∧(f(y, cl1) ≽ f(ӽ, cl1)∧ f(y, cl2) ≽ f(ӽ, cl2)∧… ∧f(y, cln)≽ f(ӽ, 

cln)), then ӽ could belong to ; where {l1,l2, …, ln}⊆{1, 2, 

…, n} and .

   (3) and (4) can be elucidated in a comparable manner to 

(1) and (2), respectively.

   Consequently, in a DPFDS, and for  

or , the rules established 

based on a hypothesis that objects pertain to 

 are certain "at least" ("at 

most") rules; the rules established based on a hypothesis 

that objects pertain to  are 

possible "at least" ("at most") rules. Thus, the rules 

established based on a hypothesis that objects pertain to 

 are "at least" ("at most") rules 

(including certain and possible) "at least" ("at most") rules).

5. Limitations

   Without thorough validation on substantial or diverse 
real-world datasets, this study is primarily restricted to 
theoretical development and an instructive example. The 
usefulness of the proposed parameter δ has not been fully 
investigated, particularly in terms of its sensitivity and 
robustness in various circumstances. 

6. Conclusions and future work
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   In this article, we established a generalized dominance 
relationship by evaluating each object with the condition 
attribute set, ultimately created a generalized dominance-
based rough set model in a Pythagorean fuzzy context. 
We also explored various advantageous characteristics of 
this model, demonstrating its effectiveness in addressing 
numerous real-world issues, particularly those involving 
multi-criteria group decision-making with extensive data 
sets. In addition, to accommodate specific needs for distinct 
attribute values in practical scenarios, we proposed an 
additional rough set model referred to as the generalized 
δ-dominance rough set model within the Pythagorean fuzzy 
framework. This model introduces constraints on selected 
distinct attributes based on the generalized dominance-
based rough set model. The introduction of the parameter 
δ results in the generation of decision rules. Finally, we 
provided an illustrative example to clarify the concept.
   Practical and managerial implications: The proposed 
models support decision-making in complex and uncertain 
environments by generating precise rules that are useful 
in areas such as supply chain management, risk analysis, 
and planning. Managers can use these models to evaluate 
alternatives, set priorities, and justify group decisions with 
greater clarity and transparency. 
   This work extends classical and intuitionistic rough set 
approaches by using the Pythagorean fuzzy framework and 
introducing the novel δ-dominance model with attribute-
specific constraints to enhance decision accuracy. 
   Future studies should investigate the integration of these 
two novel models with the VC-DRSA, which presents a 
significant and intriguing topic for further exploration.
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