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Abstract: The dominance-based rough sets extend conventional rough sets by substituting the equivalence relation
with a dominance relation. Nonetheless, the current dominance relations remain overly limited in practical utility,
as they consistently require a precise decrease or increase for every attribute to be considered. Indeed, for numerous
practical scenarios, it is sufficient to utilize the ascending or descending arrangement of fractional characteristics
instead of considering all attributes or focusing only on the overall assessment of objects. This research
established two novel dominance relations derived from the observed phenomenon. Subsequently, we formulated
a comprehensive rough set models based on these relations, enabling us to define overall assessments and specific
criteria for individual attributes. First, we established a broader form of dominance relations and created a rough
set model rooted in this generalized dominance concept. We achieved this by employing the Pythagorean fuzzy
additive operator to combine the individualized attribute values of every object in Pythagorean fuzzy environments,
resulting in an overall evaluation. Next, we introduced a different form of dominance relationship indicated as the
"generalized d-dominance relation," along with the corresponding "generalized 6-dominance rough set model."
This is accomplished by integrating a parameter 8, which is within the range of (0, 1), into the general dominance
relationship. The inclusion of this parameter allows us to manage the number of attributes that fulfill dominance
relationships, leading to the derivation of decision rules encompassing both "at least" and "at most" conditions. The
objective is to develop new dominance relations and rough set models in Pythagorean fuzzy settings, including a
generalised d-dominance relation for flexible attribute evaluation. As a result, the models generate effective decision
rules under "at least" and "at most" conditions, with numerical examples validating their applicability. The proposed
models support decision making in complicated and unpredictable situations by producing exact rules that are
helpful in planning, risk analysis, and supply chain management. They can be used by managers to more clearly and
transparently assess options, establish priorities, and justify group decisions.
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1. Introduction such as machine learning, pattern identification, decision

analysis, processes regulation, knowledge discovery in

Pawlak [1] introduced the notion of rough sets in 1982  databases, and expert systems [8-13], yielding successful
to provide a mathematical framework for addressing Outcomes in practical problem-solving scenarios.

imprecision, ambiguity, and uncertainty in data analysis [2- Currently, investigations into rough sets have brought

7). This concept has been widely applied in various domains forth numerous noteworthy topics for consideration. These
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include challenges related to attribute reduction [14-16],
models involving approximation operators [17-19], the
development of axiomatic systems [20-22], expansions and
variations of rough sets [23-26], and more. Within these
areas of study, the exploration of rough set generalizataions
stands out as a vital and significant aspect of rough set
theory. These generalizations have demonstrated their
worth as effective tools for tackling a range of practical
issues.

Pawlak's rough sets were created to handle datasets in
which each object is limited to having a distinct, discrete
value for each attribute. Additionally, in these datasets,
every attribute can establish either an equivalence relation
within the domain of discourse or a partition of discourse.
However, this equivalence or partition approach proves
to be constraining in many applications because it cannot
detect inconsistencies that arise from the assessment of
criteria involving attributes with sequential domains, such
as product excellence, market position, and debt ratio
[24]. Over the last 35 years, various generalized rough set
approaches have been developed to address this issue. One
particularly significant approach is the dominance—based
rough set approach (DRSA) [27-29,38], which replaces
the equivalence relation with a dominance relation. This
substitution enables the resolution of ranking issues related
to criteria. Consequently, DRSA offers a practical solution
for addressing the common inconsistencies found in
MADM problems involving exemplary decisions.

The DRSA and Pawlak's rough set model [1] have
established a strong basis for managing uncertainty and
ranking issues in multicriteria decision making (MCDM).
Building on this basis, a wide range of studies have
expanded fuzzy and rough-set frameworks to include
interval-valued, neutrosophic, hypersoft, Q-rung, and
Pythagorean fuzzy environments. These studies have also
integrated aggregation operators and decision methods
such as TOPSIS for real-world selection problems [31].
As an illustration of how distance-based MCDM tools
supplement rough-set ranking techniques [32], TOPSIS
and its fuzzy variants have been widely used for selection
problems in engineering and medicine. Examples of these
include medical-clinic selection for diagnosis and the
selection of automotive alternatives using intuitionistic
fuzzy TOPSIS [33, 34]. In parallel, the mathematical
primitives for expressing richer and precise information and
for establishing suitable approximations and aggregation
procedures are provided by the algebraic and operational
foundations of generalized set structures, such as interval-
valued neutrosophic hypersoft sets [35, 36], interval-valued
fuzzy soft matrices, and neutrosophic hypersoft matrices.

When combining attribute-level information in MCDM
and medical diagnosis applications, recent developments
in aggregation and interaction operators [30, 37] (such as
interaction geometric, Einstein average, and extensions
for g-rung orthopair contexts) demonstrate how
aggregation behavior can be tuned and how interaction
effects can be captured. The usefulness of combining
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specialized uncertainty models with ranking techniques
is demonstrated by application-driven studies, such as the
selection of UAVs for precision agriculture using interval-
valued g-rung TOPSIS [39-42] and group decision-making
under interval-valued probabilistic-linguistic T-spherical
fuzzy information for cloud-storage selection [43].

Moreover, research from other practical fields, such as
innovative Mobius transformation-based image encryption
algorithms, demonstrates the wide range of applications
for sophisticated mathematical and fuzzy/neutrosophic
tools beyond classical MCDM, and highlights areas
where methods can be cross-fertilized [44]. Our approach
addresses the need to handle rich interval, orthopair, and
neutrosophic information, support both global (overall) and
selective (per-attribute) comparisons, and enable flexible
aggregation and decision rules for "at least" and "at most"
cases in MADM problems. These studies collectively drive
our development of generalized dominance and generalized
d-dominance relations within Pythagorean fuzzy ordered
information systems.

Current procedures in the domain of DRSA primarily
concentrate on extending methods and creating algorithms
to reduce attributes [45-47, 30, 48-51]. The concept of
DRSA was originally introduced by Greco et al.[27], who
established that condition attributes serve as criteria and
are prioritized based on preference. Consequently, the
acquired knowledge consists of a collection of dominance
classes, which represent sets of objects determined by a
dominance relationship. As an illustration, Greco et al. [46]
introduced the dominance-based rough fuzzy set approach
by integrating DRSA within the framework of fuzzy logic.
In this particular approach, the approximation of the
vague objective is achieved by employing a dominance
relationship instead of a fuzzy relationship. In reference
[47], the traditional concept of dominance was extended
to establish a one-on-one comparison-based dominance
relationship. This extension was used to examine the
ordinal characteristics of the preferred levels in pairs
of objects. Btaszczynski et al. [45, 52] introduced the
VC-DRSA, which incorporates the concept of variable
precision rough sets from reference [53] into DRSA and it
explores various versions of VC-DRSA. These variations
yield broader, lower approximations compared to those
computed using DRSA. In other words, they define the
lower approximation as specific objects that exhibit a
robust, though not necessarily causal, relationship with
the sets being approximated. This is achieved by adding
a parameter that controls the coherence of the objects
incorporated within the lower approximations. Hu [54]
introduced an algorithm for determining the reductions in
the VC-DRSA. This approach applies to interval-valued
intuitionistic fuzzy information systems, where objects
are characterized by imprecise evaluations. The concept
of dominance-based rough approximations and their
implementations in this context has been further developed
in these references [55, 48-50, 56].

The dominance relationship in the aforementioned
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study on dominance rough sets are all established based
on the notion of the classical dominance relationship.
This conventional dominance relation represents a strong
preference among elements in a set, often referred to as
"outranking," and signifies a preference for one object
over another concerning each criterion. However, this
conventional dominance relation is somewhat limiting
because it requires that objects satisfy ranking criteria
for all information system, rather than just partial ones.
Consequently, when constructing dominance categories
using conventional dominance relations, even if one
attribute of an object is less superior compared to another,
it will result in the exclusion of the former from the
dominance category of the latter. This characteristic can
be particularly significant, especially when dealing with
MADM [58-60] problems involving large sets of elements.

Novelty and contribution of the study

The study introduces two new dominance relations—
generalized dominance and generalized 6-dominance
within Pythagorean fuzzy systems, enabling both overall
and selective attribute evaluations. It extends DRSA by
deriving decision rules for “at least” and “at most” cases,
supported by numerical examples, thus broadening rough
set applications in MADM.

As widely recognized, in numerous group decision
scenarios, our primary focus is often on identifying entities
with the most favorable composite evaluations while
disregarding their individual attribute values. In other
words, even if an entity exhibits subpar values in certain
individual attributes, it should still be considered among
the optimal choices as long as its composite evaluation
surpasses that of its counterparts. Conversely, in many
real-world situations, it is imperative not only to identify
entities with superior composite evaluations but also to
ensure that they outperform others in specific individual
attributes. For instance, in the context of a computer audit
risk assessment, when seeking entities that outperform
audit objects x in terms of overall evaluation, our task
entails calculating the overall evaluations of all entities
and selecting those that outperform x. In specific cases,
it is important to identify objects that not only have an
overall evaluation that surpasses x but also outperform x
in individual attributes. To manage the extent to which an
object must outperform others across various criteria, we
introduced a parameter & (where 0 < 3§ < 1). Taking these
two factors into consideration, we established two new
dominance relations within Pythagorean fuzzy information
systems. These relations account for both the holistic
evaluations of objects and the ranking of objects according
to specific criteria, rather than evaluating each criterion
individually. The Pythagorean operation is employed to
combine all attribute values into a single Pythagorean
value, which in turn forms the basis for overall evaluations
of objects. Initially, this process leads to the creation of
a new dominance relationship, known as the generalized
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dominance relation, by ranking objects based on their overall
evaluations. This relationship helps identify the group of
objects with superior comprehensive assessments. Next,
the generalized 8-dominance relation is established within
the framework of dominance Pythagorean fuzzy ordered
information systems, and it is determined by incorporating
the parameter 6 into the generalized dominance relation.
Currently, two distinct dominance relations have been
developed to align with decision makers' preferences
regarding "overall evaluations" and "individual attribute
values." This generalized dominance relation is then utilized
in the RSA to introduce the concept of a generalized DRSA
within the framework of a dominance-based Pythagorean
fuzzy ordered information system.

Research gap and motivation of the study

Classical DRSA relies on strict dominance relations, which
require all criteria to be satisfied, limiting its usefulness
in real-world problems where partial dominance is
acceptable. VC-DRSA relaxes this restriction but still bases
dominance on conventional definitions, not addressing
cases where composite evaluations should outweigh
individual weaknesses. There is a lack of models in the
existing literature that integrate overall evaluations with
selective attribute dominance in fuzzy environments, and
insufficient exploration of Pythagorean fuzzy information
systems for generalized dominance-based rough sets.

In many decision-making contexts, the focus is on selecting
entities with superior composite evaluations, even if they
are weaker in some individual attributes. Conversely, in
some applications, decision-makers require assurance that
entities also outperform in specific individual attributes.
To reconcile these perspectives, flexible dominance
relations that can model both overall performance and
selective attribute strength are needed. This motivated the
development of generalized dominance and d-dominance
relations, offering decision-makers more nuanced tools for
handling imprecision and uncertainty in MADM problems.
Furthermore, we introduced the generalized 3-DRSA by
integrating the generalized 6-dominance relationship, which
enables us to generate decision rules for both "at least" and
"at most" scenarios. We supported these concepts with
numerical examples for better understanding. It is important
to note that these two novel approaches introduced in
this article differ from VC-DRSA. Our models primarily
focus on establishing a broader dominance relationship,
which can result in more inclusive dominant categories
compared to those produced by DRSA. This distinction
arises because our novel dominance relations solely
emphasize the order of the comprehensive assessment
value, irrespective of individual attribute orders, or
impose preferences on the order of only certain attributes.
Additionally, the & Approxs in our approach still employ
the “inclusion” relation, akin to DRSA. In contrast, VC-
DRSA is similar to DRSA in terms of dominance relations,
but it introduces the consistency level parameter 1 € (0,
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1] to relax the conditions for inclusion in £ Approxs. This
parameter governs the consistency of approximations.
Consequently, the £ Approxs of VC-DRSA expand upon
those of DRSA, as they can encompass objects that, in line
with the traditional interpretation, would not be included in
the L Approxs. VC-DRSA can identify reliances that DRSA
might overlook and provides a more robust foundation for
generating rules.

The organization of this article can be outlined as
follows: In Section 2, we presented a concise overview of
the initial considerations of our study, which encompass
the explanation of Pythagorean fuzzy set notations,
fundamental operations associated with Pythagorean fuzzy

€E€C€CEECCeL

sets, and a method for determining the dominance classes
of objects based on their attribute values. Section 3 is
dedicated to the development of a generalized dominance
rough set model by defining a broader dominance relation
in a pythagorean fuzzy environment. In section 4, we
proposed the concept of generalized d-dominance rough
sets by integrating a generalized 6-dominance relation,
which allows us to derive "at least" and "at most" decision
rules. Finally, we concluded the research in section 5 with
a summary of our findings and a glimpse into potential
avenues for future research. Figure 1 is added to show the
whole pipline of the proposed research work.

+ Introduction-Rough Set Background Limitations of Classical-DRSA

* Rescarch gap and Motivation-Need for Flexible-Dominance-Composite and
Selective Attributes

* Novelty and Contribution, Generalized Dominance Relation, Generalized

* Methodology, Pythagorean for the Additive Operator, Dominance Classes,
Construct Generated Models

» Model 1 Generalized Dominance Rough Set Model - Model 2 Generalized
Dominance Rough Set Model

* Decision Rules- At least / At most-Certain and Possible Rules
» Numerical Illustrations-Audit risk evaluation-Validation

* Conclusion and Future Work-Broader applicability-Integrated by VC-DRSA

Figure 1. Flowchart of whole research work

2. Preliminaries

This section offers a summary of key information
concerning PFSs, IS, PFOIS, and DPFOIS, as well as
fundamental concepts relevant to the subject matter of this
research. It also touches upon prominent ideas concerning
sequential analysis.

A. Pythagorean fuzzy sets

Definition 1: [60] For the universe of discourse U, and
for xe U. The PFS ‘P’ is defined over U as:

P={()S,up()5),1rp()g)) cup,vp € [0,1] andx € U}

where, 14 p representstheMGand ¥ p representstheNMG of

: . 2
xto P, respectively, with 0 < (up(x)) + (vp(x3))? < 1
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. The indeterminacy degree is
2
7o) = 1~ ()" = Cwp(s))%

For convenience, the pythagorean fuzzy number

(up()s), »yfp(,s)) is denoted by (ep, 15).

Definition 2: [58-60] Suppose 3; = (uey, v;), (1 <i
<2) to be two Pythagorean fuzzy values and A >0, therefore

B1= B2 © wy = uy ANry = v;

.31C = (v, uy);

.= (J1- (-t
pi = (we f1- =)
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B1 U B2 = ((max{ae,, u,}, min{v,v5});

B1 0 By = ((minfu,, w,}, max{v,,v,});

5106, = (Jud + 46 - wiud ores )

B1®F2 = (4&1/“2: J”U’?[ +v5 _”i”’%)-

Clearly, if 8, and f, are pythagorean fuzzy values, it
follows that § Up, and NG, are also PF values. We can
readily extend the operations of union, intersection,
addition, and multiplication from two Pythagorean fuzzy
values to n Pythagorean fuzzy values.

Definition 3: [57] Suppose f; = (u;v;), (1 <i <
n) to be n Pythagorean fuzzy values, with these values we
can establish the union U,__ B, intersection N

&L, p; and product @}, ; of f(1<i<n) as:

B, sum

1<i<n
l=i=n i 1=i=n ' i<i=n '/’

, = | min u;, maxv;);
Mz Bi (1szsn U i<ign ‘)’

1B = (\/1 - H?zl (1 - /u;?'), H?zl’v’i )i

OiifBi = (H?l Ui, Jl - H]::l (1 - ”U’f'))

Definition 4: Let g, = (u,,1,) and B, = (u,,v,) be
two pythagorean fuzzy values, S(B;) = (1,)? — (v,)?
and  S(B;) = (uz)* — (v3)?
of f, and f,, respectively with S(8) and S(B,) both
belongs to [-1, 1 ]; and h(B;) = (u,)* + (v;)? and
h(f,) = (u,)? + (v7,)? be the precisions of p, and B,

respectively, then we can assess the ranking of f, and S,

be the score functions

with these specified criteria.
(DIfS(B,) < S(B,) then B <pB.;
Q)IES(B,) = S(B,)
a)and h(B)) = h(f,), then g = §;
b)and h(8 ) <h(p)), then §, < f;
c)and h(8)) > h(B,), then B > B ;

For any two pythagorean fuzzy values, #,= (0.6, 0.6) and
B,=(0.4,0.4), 5(8,)=0.00, S(8,) =0.00 and h(5,)=0.72, h(8,)
=0.32, thus g, > f,. So we can develop an approach for
prioritizing two items characterized by attribute qualities
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represented by Pythagorean fuzzy values.

B. Information system

Definition 5: An information system (IS) can be defined as
a quadruple S =(U, AT, V, f), where U is a finite non-empty
set of objects, AT is a finite nonempty set of attributes, V=
U .V and V is the domain of attribute g, and f; UXAT —

q€AT" q q

V' is a mapping such that f'(y, g) € v, for each g €AT, ye U,
is an information function.

Definition 6: An IS is known as an OIS if all of its
attributes meet the criteria.

C. Pythagorean fuzzy ordered information system

Definition 7: A Pythagorean fuzzy ordered information
system (PFOIS) is a quadruple S=(U, CU D, V. f), where U
is universe of discourse, C is a set of conditional attributes,
D = {d}is a set of decision attribute, and C N D = Q. V'is
the set of all pythagorean fuzzy values, and V=V, U V,,
where V| and V, are the realms of condition and decision
attributes. The information function f'is a map from U x
C UD onto V, such that fiy, c) € V_forallc € C, VCV,
and fly, )€V, for D ={d}, where fiy, ¢) and f{y, d) are
pythagorean fuzzy values, denoted by fiy, ¢) = (u, (¥) ,
v, () ) andf@,d)=(@u, () ,v, () ) .

We call f (x, c¢) the pythagorean fuzzy value of object
X, pertaining to the condition attribute ¢, f (y, d) the
pythagorean fuzzy value of x pertaining to the decision
attribute d. Specifically, f (3, ¢) and f (y, d) would degenerate
into fuzzy value if u (y) =1-v (y) and u(y) =1-v () for
every x €U. With this perspective in mind, we view a fuzzy
information system as a unique variant of Pythagorean
fuzzy information systems. Such information systems
sometimes are also called decision-making systems.

When evaluating a decision-making process in a practical
context, we consistently examine a binary dominance
relationship between items that could potentially excel
in certain characteristics within a Pythagorean fuzzy
information system. Decision-makers typically consider
both increasing and decreasing preferences. An attribute
qualifies as a criterion when its domain is ordered in
either ascending or descending order of preference. We
confine our examination to dominant Pythagorean fuzzy
information systems without sacrificing generality.

Evaluating and ranking objects using condition attributes
with Pythagorean fuzzy values is a crucial task within
dominant Pythagorean fuzzy information systems. To
achieve this, we utilize the score function and accuracy
function during the ranking procedure for two Pythagorean
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fuzzy values.

Definition 8: Suppose that PFOIS =(U, CU D, V, f), and
BCEC, for y,y € Uare denoted by y<,y=f (3, b)<f (1, b)yof
0, D) VS b)=f( b),V b € B. Obviously, <, is a binary
relation in U, that is

<G, »EUx Ulf(y, b)<f (v, b), V bE B}.
The binary relation described previously is termed a
dominance relation in PFOIS.

The dominance class created by the dominance relation,
<, in terms of BEC, is the set of objects dominating J,ie
[;5]: = {y € Ul(x,y) € x5} where [;5]: defines the group
of entities that could potentially dominate y in regards to
BCC and is called the B-dominating set in terms of y€U.

In the meantime, the B-dominated set in terms of x€U

>
can be defined as [4] 5= {v € Ul(y,x) € <3}. Similarly,

=

5], = v e V(s y) € <5} and [, = [y € VI ) € <)

D. Dominance-based pythagorean fuzzy ordered
information system
This segment explores the set approximation difficulties
regarding the dominance-oriented Pythagorean fuzzy
relation within the dominance-oriented Pythagorean fuzzy
ordered information system (DPFOIS).
Definition 9: Suppose - § = (U, CuU {d},V,f) to be
DPFOIS, and BSC. The universe U is partitioned into m

equivalence classes by d, i.e. U{d}={U, U,,.. .,Up}, where
U< Ux..<U, and U<y, denotes that V yeU, yeuU, =

f (&, d) <f(y, d). Denote U; = Uiz U; (1= k< p),s
Uy = Us<jcp U;j(1 < k < p) and let:

BND3(Uy) = Apps(U) — Apps(Uz);
Apps(Uy) = {xl[x]; S UL }(1 <k < p);
S <
Apps(U7) = {5[x], n U} = 0}

= U XI;(1<k<p);

=
xeU;,

106 | Volume 3 Issue 1, 2025

BNDy(U) = Apps(U7) — Apps(U7):

App > (x) = ﬂ Uy ;

[;g]jmuf ¢

<
App, (x) = ﬂ Uz

<
[x],cuz

—_
BNDF(x) = Appj, () — App ~(x);

App”~(x) = ﬂ Uz

/2
5], nuz=e

App, (%) = ﬂ Uy

[x], <vg

=

BND}(x) = App, (x) - 4pp " (5):

Then, Appg(Us). Apps(Uz)  and BNDy(Uy)

are called the <L Approxs, <U Approxs and boundary
of the dominating class, Uf in regards to <, with
respect to the condition attribute subset B, respectively.
Apps(Uy). Appe(U},) and BNDg(U}) are called the
=L Approxs, =U Approxs and boundary of the dominated
class, UJ E in regards to >, with respect to the condition
attribute subset B, respectively.
—=
Whereas, App :(x), App, (}5) and BN Dg(x) are the
< L Approxs, U Approxs, and boundary of y in regards

to <, with respect to the condition attribute subset B,
respectively. App~ (). A_pp: (3) and BND ; () are the
# L Approxs, zU ‘prroxs, and boundary of y in regards
to >, with respect to the condition attribute subset B,

respectively.
If Appp(U) # Appe(Uz) and
Apps(UT) # Appp(UF) then

(AppB(Uf), AppB(Uf)) and (APPB(UE): APPB(UE))

are referred to as dominating and dominated rough sets.
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3. Dominance-based rough set
approach for pythagorean fuzzy
ordered information system

In this segment, we introduced a generalized rough set
approach based on dominance.

The partition of U by decision attribute d is Uld
={U,,U,U;}, where U= {X,, X, X}, U= {X,.X,, X5, X},
U= {x,,%.,X,,}, then the downward and upward unions are

< <_ _
UT =U, = {X,, %o X;}» Uz = UU U= {X,X, X% XX

X}, Us=UU UU U= U = {X,.%,, X,.%, X5 XeX5 Xgo Xo»
X,0)- UT=U,U U,UU=U= {X X, X3, X,:X%:X 7 X:Xgo X0} s

> >
UZ=U,U U, = {%,, %, X,8%5 %50 X0} US= U, = {x,, %,
X,o)- The L/U Approxs are in Table 3.

A. Generalized dominance-based rough set model

In this portion, we introduced a comprehensive dominance
rough set framework. This framework is established by
introducing a novel dominance relation, which relies on

the principles of dominance Pythagorean fuzzy decision
system.

Suppose S=(U, C U D, V, f) to be DPFOIS, the dominace
class of x€U with respect to conditional attributes is
described as

<
[x], = v e Vix ») € <5}
One can see that it requires /' (x, b)<f (y, b) for each b€

BCC if ye [)5]: In practical applications, this condition
proves to be overly stringent, especially when dealing
with large datasets. It can, at times, result in the omission
of valuable information in decision-making scenarios.
For instance, within the realm of social choice theory

<
[53], the concept of a "dominance class" denoted as [)S] B
may overlook professional candidates with specialized
expertise. Additionally, when considering information
granularity, this "dominance class" can yield a more refined
level of detail, which in turn escalates computational
demands in extensive datasets. Furthermore, the increased
granularity can generate a multitude of decision rules,
causing complications for decision-makers. This issue will
be further elucidated in Example 1.

Table 1. Dominance-based Pythagorean fuzzy ordered information system

u/«c c, c, c, c, c d
X, (0.5,0.4) (0.3,0.4) (0.8,0.2) (0.4,0.5) (0.7,0.2) 1
X, (0.3,0.5) (0.4,0.5) (0.6,0.3) (0.4,0.5) (0.6, 0.3) 2
X, (0.3,0.5) (0.4,0.7) (0.7,0.1) (0.4,0.5) (0.7,0.3) 2
X, (0.3,0.5) (0.1,0.8) (0.4,0.5) (0.2, 0.6) (0.8,0.1) 3
X (0.7,0.4) (0.4,0.5) (0.9,0.1) (0.4,0.5) (0.7,0.2) 2
X, (0.5,0.7) (0.6,0.7) (0.7,0.2) (0.5,0.4) (0.6,0.4) 1
X, (0.5,0.4) (0.4,0.5) (0.7,0.2) (0.5, 0.6) (0.7,0.1) 3
X (0.4, 0.6) (0.4, 0.6) (0.9,0.1) (0.7,0.3) (0.8,0.2) 1
X, (0.5,0.7) (0.7,0.3) (0.9,0.1) (0.5, 0.6) (0.9,0.1) 2
X0 (0.4,0.7) (0.3,0.6) (0.5,0.2) (0.2,0.9) (0.4,0.5) 3

= > .
Table 2. Dominating classes [x] ¢ and dominated classes [x] . induced by <_and >_

<

=

U [xl, ¥,

X, {x,} {X,5%, B30 X1}
X, {X,:%,%5) {X, X

X, X X%} x5}

X, {x, {x,}

Xs x5} (%% X0 X}
X {x¢) X X0}

X, {%,:%,} %55 %10}

Xg {xs) Xe X1}

X, X} X X1}
X {%,5%,:%5 X X:80%0 B0} %0}
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Table 3. < and > £L/U Approxs with respect to C

57 app*(x)  Appi(x) App 7 (x) App,, (%)
X, Uz Uz Uy U3
X, U3 Uz U3 U3
X, U; Uy U3 U3
X, Uz Uz U3 U3
%, U3 Uz U3 U3
9 s s Ui Ui
X, Uz Uz U3 U3
%, Uz Uz Uy U3
X, U; vz U3 U3
X, Uz Uis U3 U3

Example 1

Let us imagine that we are tackling a computer audit
risk evaluation challenge, treating it as a decision-making
problem with multiple criteria. In this scenario, our goal is
to evaluate the risk associated with the audit by considering
five different factors. In this issue, the focus is on the
audited entities being represented as U = {X, X,,X,, X, X,
X X5 Xes X5 X} » decision attribute set is D = d, where d =
"Acceptable Ultimate Computer Auditing Risk", condition
attribute set is C ={c, c,, ¢, , ¢, , c;} where ¢, = "Better
Systems Circumstance", ¢, ="Better Systems Control", c,
"Safer Finance Data", ¢, =" Credible Auditing Software", c,
"Operation Standardization". These condition attributes
provide a clear description of the audit candidates outlined
in Table 1. Initially, by Definition 8, all the dominating

class [x]: and dominated class [>5]C> of XEU in regards to

condition attribute set C are given in Table 2. From Table 2,

we get [Xz]j = {X,.%,,X,}, it means except x,, only x, and x,
dominates x, in regards to each attribute ¢, (k&= 1, 2, 3, 4, 5)
of C. Yet, according to Definition 3, for every x €U, using
C (%) = @;_1f(xicr) signifies the comprehensive
assessment of X in regards to all condition attributes ¢ €C,
k=(1,2,...5), where f (x, ¢) = ¢, (x) = (u, (x) ,

v (%,)) . According to Table 1, C (x,) = @}E:J(}Si; Ck)
are calculated as

C(X1) = @]izlf()gl, Ck) =

5

-] uik(xl)).nvck(xl)

k=1

J(l - (1-053)(1 - 0.32)(1 - 0.82)(1 — 0.42)(1 — 0.72)),
(0.4)(0.4)(0.2)(0.5)(0.2)
= (0.9459, 0.0032).
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Similarly, we can find

C(x2) = @51 f (2, ¢) = (0.85849, 0.01125);
C(x3) = @3, f (53, c) = (0.91268, 0.00525);
C(x4) = @3, f (x4, ) = (0.85933,0.01200);

C(x5) = B f (%5 cx) = (0.98241, 0.00200);
C(%6) = ®7—1f (%6, cx) = (0.93941, 0.01568);
C(%7) = ®j—1f (%7, cx) = (0.93653, 0.00240);
C(xs) = ®;1f (%8 cx) = (0.98761, 0.00216);
C(%0) = @31 f (%0, cx) = (0.99480, 0.00126);
C(%10) = ®3=1f (%10 cx) = (0.73327,0.03780).

By Definition 4 the score function of C(x)(i =1,2, ... ,10
are obtained as follows:
S(C(x,))=0.89472, S(C(x,))=0.73688, S(C(x,))=0.83296,
S(C(x,))=0.73830, S(C(x,))=0.96513, S(C(x,))=0.88225,
S(C(x,)=0.87708, S(C(x,))=0.97537, S(C(x,))=0.98963,
S(C(x,,))=0.53626.

By S(C(x)))(i=1.2, ... ,10) the ranking of objects x_ are as
follows:

Forany x €U, [)si]jR induced by =<\§ is the set of objects
dominate X, concerning the comprehensive assessment
of the condition attribute set C, that is [)gl-]jR={y,EU]
O f (%0 &) < Buf (v Ve € €y and [5]7
is known as the generalized dominating class of x . Similarly

the generalized dominated class of x, can be described as
SR
[Xi]c ={y; € Ul @I/ (%i ci) = B S (v, i )Vey € C}.

These generalized dominating and dominated classes

induced by =<\§ and ?E form a covering of U, that is,
<R "
U=U’, [’Si]c = U, [Xi]c -

Remark 1. For any x,, X,€ U,
if efcn=1f(3Siv Ck) =< egcn=1f(xp Ck)r’

E

< <R
C c

then ], <[]

Decision Making and Analysis

X=X =X =X =X =X =X =X =X =% o (1)

Now, let [%]j denote the collection of entities that dominates
x concerning the holistic assessment of condition attribute
set C, and [)S]C? represent the grouping of entities dominated
by x in terms of the overall evaluation of condition attribute
set C.

From Table 2, we get [Xz]j:{)gl,)gj,)gg}, [Xz]?:{)gz, X0}
However, Equation 1 shows that [)gz]:={)52,>59, Xgs X5 X5
X X0 Xy %, and [52]) =1x,, x,,}. Obviously, X,, X, %o %,»
X,, X, do not belong to [)gz]j The definition of [>s]j proves
limiting in various scenarios, as it leads to the exclusion of
an object from [x]: , even if just a single attribute value fails
to meet the dominance relation <. These characteristics

hold a significant relevance, particularly when dealing with
extensive domains with numerous attributes.
In response to this occurrence, we aim to introduce a
novel approach to defining the dominance relationship.
Definition 10: Let S=(U, CU{d}, V,f) be a DPFOIS with
U={x,, ..., x, } and C={c, , ..., ¢, } . Then generalized
dominance relation is defined as follows:

= {(’Si: yj) EUXU| @fcn=1f(3ii: Ck) < @.’icn=1f(D’j; Ck)VCk € C};
={(x, ;) EUXU| @S (%1 c1) = ®i=s [ (v}, c)Vey € CJ.

<R
C

if Xj € [)Si] , then [Xi]

<R <R
C C

- ije[x::]jR [)S‘i]

Example 2

Example 2 follows Example | calculateing the generalized
classes that dominate and are dominated by %g and ?E
in Table 1. All these classes in Table 4 can be obtained.
The generalized £L/U Approxs with respect to conditional
attributes C are evaluated in Table 5.

From Table 4, it is easy to get [)Sj]jR c [xi]:k ,if x;=<¥ X; .
Hence, generating generalized dominating and dominated

classes by considering the comprehensive assessment of
each item across all attributes would prevent the elimination

of numerous outstanding items.
<R
C

R
From Table 4, it is easy to get [x] . € [xi]j  if <8 X;
. Hence, generating generalized dominating and dominated
classes by considering the comprehensive assessment of
each item across all attributes would prevent the elimination

of numerous outstanding items.
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<R =R
Table 4. Generalized dominating classes [’S]c and generalized dominated classes [’S]C by <& and e

U [, [,

X, XX 5% %o} 1X05%50 X35 Xy X X0 X
X, {300 %1585 Xy X5 XXX Ko} %5 X0

X, {X3:X X5 XX X00X, ) X5 X5 X%}

X, X4 X% Xgo XX X00X, ) X4 X,%,0)

Xs {X5> XgXo} (X5 X1:%05%55 Ko X X7oX}
X4 X6 X1 X5 XgoXo ) {X6 X,%35%4 X0 X

X, X0 X1 X5 XXX} {X7:%,%35%,0 X0}

Xy (X Ko} (XX %% Ko X XXX}
X, {Xo} {Xg> X1:%:% 50 X o X XX X0.X o}
X1 13100 X558 50 Ko X5 XX 75¥e0%o ) %0}

Table 5. Generalized < and > £/U Approxs with respect to C

U ap(x) Wy Al App, ()
% U3 Ut U3 U3
X, U3 Uiy U3 U3
5, U3 Ui U3 U3
s U s Ut Ui
s U s uf Ui
X, Uz Uz U3 U3
s U Ut Uy Us
%, Uz vz [ Us
s U5 U U3 U

Moreover, Table 2 represents that [)gz]j ={X,.%,,%,}, but

as presented in Table 4, [Xz]jR =X, X585 X35 X5 XXX 5% -
It demonstrates that x,,X., X,, X5, X,X,,Xs,X, are all surpass
to x, in terms of overall assessment, while only the specific
attribute values of x, X ., X ,X_,X..,X, do not satisfy f{x, c)<f(y,
c) for ceC. For example, for object x, and x,, only f(x,
c)>f(x., ¢,) , except c,= "Credible Auditing Software",
f (x,¢) <f (x,c) holds for any c,EC(k#4).

C

In summary, for any x €U, [%] . includes only those

objects that completely dominate x, across all attributes of
C. This makes it less suitable for addressing multi-attribute
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collaborative decision-making challenges involving large
datasets. Consequently, across various practical contexts,
in which there are no specific attribute requirements for
objects, it is more practical to focus on the comprehensive
assessment of the objects. Particularly, if m=1, then [)51]?
=[}gi]jﬂ. This means that [)gl-]j =[}gi]jR consistently applies to
individual attributes.

Previous analyses are limited to cases where the relative
importance of attributes is not taken into account. However,
in most real-world decision-making problems, condition
attributes often have varying degrees of significance.
Recognizing this practical necessity, the proposed approach

Decision Making and Analysis



introduces attribute weighting and defines a weighting
dominance relation, offering a more realistic and effective
framework than existing DRSA or VC-DRSA methods.

Adding a comparison table to summarize the key
differences, advantages, and computational implications
between the proposed model and classical DRSA/
VC-DRSA would further highlight its strengths and
contributions.

ng = {()Siv yj) EUXU|®L; W kf()Sia Ck) <

R = {()Siryj) EUxU| ®7kn=1ka()Siack) 7

Now by Definition 3,

Definition 11: Suppose S=(U, CU{d}, V.f) to be a DPFOIS
with U={x, X,,..., X, } and C={c,, ..., ¢, } . Suppose that
W={w,, W,... W, } denotes weight set assigned to condition
attribute set, where w (i=1,2,...,m) is the weight of ¢, and
xrow,=1. Then the generalized weighting dominance

relation <" and »¥* in S are described as:

@ZL:]_ Wk f(yja Ck)l v Cr € C}I

k=1 W kf(yja Ck),VCk € C}_

O w i f(x0 i) = ‘/(1 ol | (1 - ugk(&')))w . (Hzl:l”ck(&))w ¢

Similarly, For any x€U, [i]jw generated by

S?R is the collection of objects that dominates
x, with respect to the comprehensive assessment

<WR
of condition attributes set C, that is [z]c =

{vieUl @y w i f(30c) < By w i f(¥) ci)Vey € C}

WR

,and [ L]j is known as generalized-weighting-dominating
class of x.. Similarly, the generalized-weighting-dominated
class of x, can be described as

FWR
k]T ={y U@, wif(x c) > Ly w i f() c)Ver € C).
C

Thus, based on Definition 10 and Definition 11 the
<R
subsequent characteristics are defined for [)Si]c , [)Si]c

<WR SWR . ..
,[x]. and [x] . For the sake of simplicity, we solely
[x]. and [)SL]C For the sake of licit lel

enumerate the properties of [}gi]jR and [)gi]iﬂ, which also
hold for [)sL] “and [&rw

Theorem 1. Let S=(U, CU{d}, V,f) be a DPFOIS with
U={,, Xpevns %, and C={e, 0y oo, - 5] and [x]

are the generalized dominating and dominated classes

R R < ”
generated by <, and 2., [)Si]c and [Xﬁ]c are the

dominating and dominated classes generated by < .and >,

respectively. Then

(1) %g and ?? are reflexive and transitive;
<R <R <R =R =R
g elx]. ekl ekl ekl 2] :

<P =R SR <R <R
Oxelx] =kl skl ekl 20l :

Decision Making and Analysis

@ [s]; =U {[x,] 15 € [l

CE D= PY = O

(6) [’Si]c n [ i]c = {)Sj € U} | e’?cn:lf(&a Ck)
= @7, f (%} cx)Vey, € C:

=R

= U];:l[ i]c 5

8 <R <R =R =R
® 1 = 51 or sl =[]
= eaf’(.n:lf(}Su Ck) = @Elzlf(fip Ck)lv Cr € C.

(7) U= U?:l [?Sg]:R

Proof. We exclusively demonstrate (2) and (5) concerning
%?; the remaining ones can be directly derived from
Definition 10.
(2) "=" By if x€ [)gi]jk
O f (% 1) < @1 f (%), ¢1). Similarly, for any x €
[’Sj]jﬂ then @Elzlf(%j, Ck) =< @Elzlf(}gl, Ck). Thus we

<R
have @il 1f(>Sir Ck) < 931:1]0(?511 Ck)- Hence x € [)Si];

, that is [x]] [)gl
"It can be easily proved from Definition 10.

Definition 10, then

R
(5) for any ¢ €C, if X.€ [)gi]j , then f(x,, ck)ﬁf()gj, c,), thus
sR
Do f (3 1) < B f (x5, ci). Hence x€ [xl.

R
is [&]: < [&]:

that

. Similarly, it ekl
Similarly, it can be proved [’Sl]c c [’Sl]c
We are now presenting the generalized DRSA, which
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includes the incorporation of the generalized dominance
relation as defined in Definition 10.
Definition 12: Let S=(U, CU{d}, V,f) be a DPFOIS

R
with U={x} (=1, 2, ..., n) and C={¢, ¢,y .o ¢} - [x:]
R
and [}gi]: are the generalized dominating and dominated
and =R

classes generated by 4‘? > » respectively. The

universe U is partioned into p equivalence classes by
d that is, U/[{d}={U, Uz,...,Up}, where U< UKX...
<U, and AN denotes that V x€U, yeu, = fx,
A=Ay, d). Denote Uy = Ui U (1 =k =p),
Up = Upejp Uj(1 < k < p) and let:

<R
4

APP(UF) = [&I[&] c Uf}(l <k<p);

_ R
U‘I??C(Uf) = {}Sll[}SL]Z n UE * @}

= | sl asksp;

}giEUf
BND(UF) = APPL(UF) - APP(U);

;R
C

arPc(U7) = sl cvijask<py
——rr= <® =
APP.(U}) = {&I[}si]c nU; # o}

= sl asksp;

}SiEUf
BND(Uy) = APP(U;) — APP(UL);
App(s)= [ i
<R
aly nvi=o
w7 = ()
by <ui
<
BND(x;) = APPc(x;) — APP 2 (x:);
APp(s)= (] Ui
[}gi]?RﬂUficb
w7 = ) v
b v
—_—
BND ¢ (%) = APP(x;) — APP 7 (x,):
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Then, APP(U; ). APP(Ur) and BND((UF) are
called the <L Approxs, <U Approxs and boundary of
the dominating class, U % in terms of sg , respectively.
APP(UT). APP-(U}) and BND(U7) are the »L
MS, #U Approxs and boundary of the dominated
class, U7 in terms of ;E , respectively.

Whereas ,  APP *(x;). mj (x;) and BNVDZ(x;)
are the < L Approxs, <U Approxs, and boundary of x,
in terms of %?, respectively. ﬂ?(&), m? (x:)
and BN'D 7(x;) are the > £ Approxs, >U Approxs, and
boundary of x, in terms of ?‘g, respectively.

If APPc(UF) # APP(UF) and
APP(UF) = FPFL(UF)
then, (AP (U7), APPL(U7))
and (app, (), APPL(U}))
are known as the generalized dominating and generalized
dominated RSs, which are derived from the utilization
of generalized dominating and dominated relations.

In contrast, we can derive the generalized-weighting
R R
dominance RSs by employing [gi]jw and | l]:w in a
comparable manner.
Remark 2. If U7 € P(U), then we can define
APP: (U7 (%)) = min, UF(x);

?SjE[?Si];

APP, (Uf(}gl)) = max Uf(}gj).
sl

The operators APP. (Uf (;51)) and WSPC(UE(&)) are
denoted as the £/U generalized dominating Pythagorean
fuzzy rough approximation operators of Uf, respectively.
So, this pair (@ (Uf(}gl)) , WPC(U? (!SL))) is termed as

a generalized dominating Pythagorean fuzzy rough set.
Based on Definition 12, the subsequent properties are
valid.

Theorem 2. Let S=(U, CU{d}, V,f) be a DPFOIS with
U=(5) (=12, o), C=1e, oy} - ] and s]]
are the generalized dominating and dominated classes
generated by %? and %g , respectively.

Forany UF, Uf € P(U), the following properties hold:
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(1) APP(UF) € UF, UT € APP(UT);

@) ~ APP(UT) = APP(U),
~ APP(UF) = APP(UF);

(3) APP(0%) = 0, APP(0¥) = 0;

(@) APP(U%) = U, APP(U) = U;

(5) APP(UF N UF) = APP(UT) n APP(UF),
APP(UT VU}) = APP(UT) U APP(U});

(6) APP(UF U UT) 2 APP(UF) U APPL(U)),
APP(UT N U}) € APP(UT) n APP(U});

(N UT S U = APP(UT) € APP(U}),

APP(U) € APP(U).

Proof. The proofs for (1)-(7) can be readily derived using
Definition 12.

4. Generalized oJ-dominance-based
rough set model and decision rules
exteraction

In this part, we introduced a generalized d-dominance
relation and constructed a corresponding generalized
o-dominance rough set model by incorporating an
additional parameter J into the generalized dominance
relation. Then we extracted decision rules from this
generalized d-dominance rough set model
A.Generalized J-dominance-based rough set model

<2 = {50 ) € U X U1 FLf (50 1) < B /(5 ) A1)

22 = () € U X U O f (5. 1) > @)

For any x,€U, the generalized J-dominating class of x,

. <OR
generated by SE;R is represented as [x;] . » and defined

as [s]T = {5 € VIO (50 60) < B f (x5 ) A,

l{ex1£ Cso e )= (550 cx))|

i\é‘R
Icl ¢

>6Vc, € C} where  [x/] comprises

items that possess both an overall assessment and,

at minimum [J.|C|] individual attributes surpass
those of x, where [6.|C|]] denotes the smallest
integer greater than 6.|C|. In the meantime, the

generalized J-dominated class of x, can be described

Decision Making and Analysis

In this segment, we demonstrated the concept of a broader
d-dominance relationship and proceeded to suggest the
generalized 0-DRSA.

As widely recognized, in numerous practical situations,
our objective is not just to identify objects with the highest
overall assessment, but also to ensure that these objects
outperform others in specific attributes. Consequently, the
concept of Definition 12 of generalized dominance rough
sets no longer holds relevance in such cases.

In the forthcoming passage, Example 1 is consistently used
to depict the phenomenon mentioned 2b0ve. Table 2 shows
[’Sﬁ]j = {x,} and Table 4 shows [)gé]j = {X6, X1, X5, Xg, X0 }
. If our goal is to identify objects that not only dominate
X, in comprehensive assessment but also in at least
three attribute values, we should introduce a parameter

0=3/4=0.75 in generalized dominance relation. It is evident

that the items meet these two criteria form a distinct set

{Xj@ckecf(%& ) < Deyecf (%, cx) /\w = %}

sﬂ.?SR
={Xe X,» X, Xg>%, }» and denoted as [Jgé]c . Thus, for any
$0.75R
X,€ [}gé] c , X, dominates x, regarded to comprehensive

assessment and at least about three attribute values.
< sO.?SR <R
Clearly, it indicates that [Xe]c c [Xﬁ]c c [Xﬁ]c .Asa

result, the inclusion of a parameter makes the classification
broader in scope compared to the traditional dominance
relation.

Definition 13: Let S=(U, CU{d}, V,f) be a DPFOIS with
U={x} (=1, 2, ..., n) and C={c, ,c,, ..., ¢, } . For ¢ €(0,
1], the generalized 6-dominance relation 2% and %gR are
defined as:

el f G e )= G e} S 6ve, € C};
(% 1) A Helf s c,;glaf(xj-. My sy, e C}.
»OR
as [}Si]c = {)S} € Ul @Elzlf(&, Ck) ? @;cn:lf(}sj, Ck) A
ci|f (30 cx ) 2f (55 ¢ <8R »OR
W > 5‘ \vd C = C} [}Si]c and [&]C are

both referred to as the generalized J-dominance classes of
)S['
The complete set of generalized d-dominance classes
. . _ R
collectively covers U, i.e. U_U?: ) [}Sz] — U?: ) [XL]

<0 =0R
C C

..Example 3.
Example 3 follows Example 1. Take 6=0.75, by using
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<OR

Table 6. Generalized 3-dominating classes [’S]; and generalized d-dominated classes

SR |
[;5]; induced by <8R and >;gR

0.75R 0.75R
v [x]; [x],
X, %%} {X1:%0 X0 Xy X0 X5 X}
X, X, XX X%, X0 Xy}
X, {%35% %5 X} (X35 X5 X%}
X, (X4 X% XXX} {3,
Xs X X0 X1%,%50 X X X%}
X, (X6 Xp> X5 KXo} {X6 X0}
X, X0 X1 X0 Xof {X,:%,% X}
Xy X4} {XpX3 XX o}
X, {x, } X0 Xy XX}
X1 X100 315,85 Xso B XXX, ) %0}

Table 7. Generalized < and > £/U Approxs with respect to C

U app’(x)  App,(x) App (%) App,(x)
X, Uz Uis P U3
X, Uz Ui U3 U3
s U5 U U Ui
T
% U3 Ut U3 U3
5, Uis Ufs Uy U3
N S
. Uz Uig U3 U3

Example 3.
Example 3 follows Example 1. Take §=0.75, by using

Definition 13, the generalized J-dominating classes [;Si]:ﬂ

SR
and dominated classes [xl]i of x, are gained in Table 6 as

below:
0.75R

={Xp X%5 XX,
which means that x,x,, XX, dominates X, in terms

From Table 6, we obtained [;52]:

of overall assessment values and at least [0.75*5]=3
attributes. Particularly, it can be observed that x, dominates
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x, regarding cl ,c,, c,.c,, c,, X, dominates x, regarding
€1 C3Cys Cs5 X dom.lnates x, regarding ¢, ,c,, ¢,,c,, C, X,
dominates x, regarding €)oCp Cp s .

Of course, the generalized J-dominance classes specified
in Definition 13 possess the subsequent properties:

Theorem 3. Let S=(U, CU{d}, V,f) be a DPFOIS with
U={x} (=1,2,...,n) and C=cl ,c2, ..., c . Ford €(0, 1].
Then

(1)< and $9R are are reflexive and transitive;
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<OR <OR
C ’

@yell] okl =k

=0R
4

yelsl, =kl <kl :

= 0R OR
c

ol =] el |

R
= -8R
C

Ol N R e

<SR
C

()8 € ©51Afx]. Nls]

= {x; € Ulf (% i) = f(3 i), ¥ ¢ € C);

<8 OR
c C

6 U= U:I:I [PSL] ’ = U?:l [?SL] ;

%‘SR <6R >5R %é'R
maeos Akl =kl o (s, =[], )
= f(}sil Ck) = f(}Sjl Ck)lv C €C.
Proof. We only established (5) and (7); the remaining can

be directly derived from Definition 13.

s sﬁR
(8)For any ¢,€C. if x€[x]. Nfx]  then
C

¢ |f Xir € <f>5'lc
O (5 ) < @ 00 ML B W LTl
and

Lel) = (s

O () > B f (5 0) L2V B C’])Cl Il all,

It follows that

O f (%0 c1) = @11 S (x5 <)
By Definition 13 if there exists ¢, €C such that f{x, ck);ﬁf()g,.,
c,), then we get

|{Ck|f(>5u o) < f()sl’ Ck)}| > 5o |{Ck|f(>5lr &) f(%ﬂ Ck)}l <1-

8,
€1 €]

Which contradicts to

ewlf G en) = £ (30 )l
IC]

>65,6€(05,1].

}d

R
- then for every ¢,€C, f (x,

. <§R
Thus if %; € [x]. N[x]

c) = (x,¢) -

<6
C

R <\5R <§R sd‘R
(NIt [x] = [)Sj]C , then x € [Xj]C and X€ [)Si]c . Thus,

there are

{ewlf (57 i) < f (o i)}

El:lf()sil Ck) A |C| = é

O f (%) ) <
and
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|{eul f (i i) < £ 550 )|

=)
Ic]

@7;:1:1f()§i: Ck) < @zlzlf(}ﬁj: Ck) A

It follows that @, f(x; cx) < O, f(x; cx). Since 6 >
0.5, we obtained f(x,, ck)zf(pgj, c)VceC.
A novel rough set model can be presented below by
utilizing the generalized d-dominance relation:
Definition 14. Suppose S=(U, CU{d}, V,f) to be a DPFOIS

<8R

e} Let[x]

<
m C

with U={x } (i=1,2,...,n)and C={c, ,c,,
be the generalized -dominating classes of x, generated by

;6}2
%'gR and [&] - be the generalized J-dominated classes of

x, generated by ?ER . For any 0€0, 1], we defined:

<8
C

R
AP P (UF) = {)Sil[)Si] c Uf] (1 <k<p);

_— ;é‘R
ap# (UF) = {sllx]] nui =0}

BND(UZ) = AP P (UF) — AP # (U);

?6}?
C

@(UE) = {Xil[’&] c Uf} (1<k<p);

- - <§R .
ae # (U7) = {xil[xi]c nUy =+ o},-

BND(U) = AP P (U7) — AP # (U});

<§R
AP P (x)= ﬂ ifs
—C

<6112 .
[x], nuz=é

<8R
SR
]S <u;

BNDG (x:) = AP P . (x)—4P P — (x);
<6R
ap e (x)= ﬂ Uz
—C

2R
[}gi]C NUZ=d
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ar e ") = M i

BNDZ " (x) = AP P (&)

(%) - AP P P

Then, AP P c(U;) AP P c(U;) and BND.(Uf) are
called the <L Approxs, <U Approxs and boundary of
the dominating class, U :‘ in terms of <&, respectively.
AP P C(UE)R(UE) and BND.(U;) are the >L
AKOXS, #U Approxs and boundary of the dominated
class, U,f in terms of &R, respectively.

< =
Wh , AP P ), AP P (x;) and BND 3 (x; th
ereas (x:) (%) an 3(x;) are the
< L Approxs, KU Approxs and boundary of X, in terms of
<8R respectively. AP P ()5) AP P ()SL) and BND 7 (x;)
are the > L Approxs, =U Approxs, and boundary of X, in

terms of =R , respectively.

it APP(UY)#AP P (U])  and
4P 2 (U7) # A2 # ((U7) hen, (&(U?), Ap—h(uf))
and (@(Uﬁ), AP P (U,f)) arereferred to as generalized
J-dominating and generalized d-dominated rough sets, this

can be achieved by utilizing generalized dominating and

dominated relations.
Conversely, we can derive the generalized-weighting

WER =W IR
and [x]_
in a manner analogous to the aforementioned approach.

Remark 3. If U; € P(U), then we can define

dominance rough sets by employing [&]j

AP 2 (Ui(x)) = min_ UF(x);

KJE[&]E
AP P (Uf()gl)) = ma);;(m Uf()gj).

%€ [’Si]g

The operators %(Uf(&)) and ATFPC(UE(&)) are
denoted as the L/U generalized d-dominating Pythagorean
fuzzy rough approximation operators of [J3, respectively.
So, this pair (@(U?(&)).AP—PC (Uf(xi))) is termed
as a a generalized J-dominating Pythagorean fuzzy rough
set of [J} regarding <@R. AP P o (Uf ()gl)) is the just the
degree to which x, certainly belongs to U f, szPc (U P ()Si))
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is the degree to which xi possibily belongs to {J f
. . <R |
Particularly, if we take UF = Df = [)gj]d (i=1,2,..,n)

in Definition 14, then AP P C(Dﬂ is called the lower
generalized - domlnatlng approximation of D} regarding
<¢R , whereas [)SJ] is the generalized dominating class of
x, generated by decision attribute d. Similarly, @(Df)
will be the lower generalized -dominating approximation
of D7 regarding <8R In a similar way ﬂ(Dﬁ) and
AP P (D7) could be obtained through 2R .

Eorem 4. Let S=(U, Cu{d}, V,f) be a DPFOIS with
U={x}(=1,2,...,n)and C={c ., ...,c, } . Let [&rm be
the generalized d-dominating class of x, generated by <¢F .

Then for U € P(U), the subsequent results are valid:

() AP P (UF) S UZ, UF AP P (UF);
(2) ~ AP P (UF) = AP P (UF),

~ AP P (UF) = AP P (UF);

AP P (D) =0,AP P (D) =0

(4) AP P C(U) =UAP P C(U) =U

G)AP P (UNUT)=AP P (UF)nAP P (UT),

AP P (UFWUT)=4AP P (UF)u AP » (UT)
6) AP P (U VUT) 24P ¢ (UF)u AP # (U7),

AP P (UinUF) S AP P (UF)nAP P (UT);
(MU U = AP P (UF) 2 AP # (UT),

AP P (UF) S AP P (UT):

(8) If §1<52 then

- ﬁﬁﬁi - ﬁd‘zR

— <Gk — <5
and AP P (U7) by [)Si]C c AP P (UF) by [)Si]g

Proof 1. For any X: € AP P o(UF), then by Definition
<§R ﬁd‘R
14 [ E]C € [)Si]c )

% € UY. Thus Ap o(U7) e UF; similarly, for x; € Uy

cU;. this implies that
, since [?Si]jMﬂUf 0, S0 %; € AP P -(U3). Therefore

U c AP # (UF)-
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Proof for (2)-(7) can easily prove directly by Definition
14.
If 61<62 then for any x,€U and by Definition 13
<52 <51R -
[)SE]C c [)Si]c , so by Definition 14 we have

<61 <8R
] and
C

R

<% <61R
c C

_ e
AP P (UF)by[x]. < AP P (UF) by [x]

B. Decision rules extration

In this segment, we explored the topic of obtaining rules
within the context of the generalized J-dominance rough
set model in the realm of dominance Pythagorean fuzzy
decision systems.

%R }R .
Suppose that D = [)Sj]d and D7 = [;Sj]d (G=1,2,..,n)
are the generalized 6-dominance class of X, generated by

sﬁ*‘* and ?gR. Indeed, the outcome of the generalized
o-dominance rough set methodology is a depiction of the
information present in the data management solution,
expressed as "if... then..." decision rules. Within a
Dominance Pythagorean Fuzzy Decision System (DPFDS),
four distinct types of dominance rules can be identified.

(1) Certain "at least" rule with the following syntax:
For  all yeAP P (D7), if
(Gﬁ;lf@’a ) < B (% Ck)) Af, ¢,) < fix, ¢,) A
. ) SAX, ¢,) Ao Ay, ¢,) S AX, ¢,)), then x € D
. In fact, for any y € AP P C(Df), then by Definition 14
. . . SR

this implies that [y]¥" € DF. On the other hand, as
(S1L1f O ) < BILS (5 ) ) AUy, €)=A%, e )M,
c)SAX, A M, ¢, )SAX, ¢,)), then by Definition 13
SR . %aR <6R <§R <

y <%, it means that [)S]C c [y]7 . Hence [)g]c cD;

, it follows that x € D,

(2)Possible “at least” rule with the following syntax:

For all y € BND.(DY), if
(S /0 e) S B f(56)) A (s ) < A,
c) AN, ¢,) S fx, ¢,) Ao Afly, ¢,) S AX, ¢,)), then
x could belong to DF. If y € BND.(D;), then we

have and

W& nDf %0 vIe™ ¢ D From

(®1-1f O, 1) < B f (5 €1) ) A (0, €,) <%, ¢,) AfL,
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. <SR R
c) SAx )AL Ay, c,) <X, c,)), thereis [)S]C c I

<0R SR <%R
, it is clear that if [}g]c c [y]Z n D}, then [x]. <D7,

<8R
s <
c

ﬁ\ﬁ'}i
otherwise [x] ;€ D7, which means that [x] . nDf =0
<§R %6‘1?
or [)S]C NDF#0A [)S]C N DS = DF. Hence X

could belong to DF.

(3)Certain “at most” rule with the following syntax:
Forall y € AP P (D7) if (®}-1/ (0, 1) > BfLaf (5 1))

/\(ﬂ)/, c/]) >f()59 cll)/\f(ya c[z) )f()& c/z)/\"‘ Af(y’ c/n)>ﬂ¥9
c,)), then X € D;.

(4)Possible “at least” rule with the following syntax:
Forall y € BND (D} ) ,if (@1 f 0 i) = B f (5. 1))
AU, €,) = f5. € AP, €) =[5 A M. €)% s,
¢,)), then x could belong to D7 ; where U, .. 1 E{1,2,
onpand D> g€ (1,2, .0}

(3) and (4) can be elucidated in a comparable manner to
(1) and (2), respectively.

Consequently, in a DPFDS, and for Df = [)gj]j

or Df = [}gj]:R(j =1,2,..,n), the rules established
based on a hypothesis that

objects pertain to

AP # (D7) (AP»P C(Df)) are certain "at least" ("at

most") rules; the rules established based on a hypothesis
that objects pertain to BND.(D;) (BNQ)C(Df)) are
possible "at least" ("at most") rules. Thus, the rules
established based on a hypothesis that objects pertain to
a» # (D7) (FPC(D?)) are "at least" ("at most") rules

(including certain and possible) "at least" ("at most") rules).

5. Limitations

Without thorough validation on substantial or diverse
real-world datasets, this study is primarily restricted to
theoretical development and an instructive example. The
usefulness of the proposed parameter 6 has not been fully
investigated, particularly in terms of its sensitivity and
robustness in various circumstances.

6. Conclusions and future work
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In this article, we established a generalized dominance
relationship by evaluating each object with the condition
attribute set, ultimately created a generalized dominance-
based rough set model in a Pythagorean fuzzy context.
We also explored various advantageous characteristics of
this model, demonstrating its effectiveness in addressing
numerous real-world issues, particularly those involving
multi-criteria group decision-making with extensive data
sets. In addition, to accommodate specific needs for distinct
attribute values in practical scenarios, we proposed an
additional rough set model referred to as the generalized
d-dominance rough set model within the Pythagorean fuzzy
framework. This model introduces constraints on selected
distinct attributes based on the generalized dominance-
based rough set model. The introduction of the parameter
d results in the generation of decision rules. Finally, we
provided an illustrative example to clarify the concept.

Practical and managerial implications: The proposed
models support decision-making in complex and uncertain
environments by generating precise rules that are useful
in areas such as supply chain management, risk analysis,
and planning. Managers can use these models to evaluate
alternatives, set priorities, and justify group decisions with
greater clarity and transparency.

This work extends classical and intuitionistic rough set
approaches by using the Pythagorean fuzzy framework and
introducing the novel d-dominance model with attribute-
specific constraints to enhance decision accuracy.

Future studies should investigate the integration of these
two novel models with the VC-DRSA, which presents a
significant and intriguing topic for further exploration.

Abbreviations

IS Information System

PFOIS Pythagorean Fuzzy Ordered Information
System

DPFOIS Dominance-Based Pythagorean
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RSA Rough Set Approach

DRSA Dominance-Based Rough Set Approach

MADM Multi-Attribute Decision Making

VC-DRSA  Variable Consistency Dominance-Based
Rough Set Approach

DPFDS Dominance-Based Pythagorean Fuzzy

Decision System
L/U Approxs Lower/Upper Approximations
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