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Abstract: This paper studies the influence of different picking policies in a stock of perishable items on the quantity 
of waste, the degree of freshness of the stored products and the profit. We consider a push-pull supply chain with 
three echelons (an agricultural producer, a manufacturer and a retailer), in which the quantity ordered from the 
upstream supplier is determined using a forecast based on a simple exponential smoothing of historical sales data 
of perishable products. To meet a stochastic demand that is symmetrically distributed around a given average, the 
stock of this perishable product must be sufficient without exceeding the expiration dates to avoid any waste. If the 
demand exceeds the available stocks, the manufacturer can resort to external suppliers on a spot market to deliver the 
products very quickly. We developed a simulation model to compare three picking policies (FIFO: first-in-first-out, 
LIFO: last-in-first-out and RDM: random picking policy) and their performance in terms of the average age of stored 
goods, the quantity of waste and the profit. A counterintuitive result showed that under certain conditions, the LIFO 
policy led to better performance than the FIFO policy, a result we proved mathematically. We then simulated different 
scenarios by varying product depreciation and margin rates. When margins decrease linearly with product age, the 
FIFO policy is the least competitive. In the case of normally distributed demand, LIFO is the most efficient picking 
policy, whereas in the case of uniform demand, the RDM policy performs better. We also studied the sensitivity of 
the model to the parameters of the demand function and the smoothing coefficients used to forecast the quantities of 
perishable products to be supplied. Finally, we applied our model to some specific features of the poultry and meat 
industry and simulated a policy of preventive production reduction. 
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Introduction 

   In Europe, around 11 million tons of waste are generated 
every year by the manufacture of food and drink products 
(Eurostat 2024 [1]). EU members have set a target of 
reducing food waste by 10% by the end of 2030, both 
at the processing and manufacturing level [2]. Garonne 

et al. [3] explained how food manufacturers can prevent 
the degradation of surplus food and propose a structured 
system to control surplus food. For example, La Scalia 
et al. [4], Bertonlini et al. [5] and Salinas Segura et al. 
[6] have noted a rise in new technologies for monitoring 
inventory operations, aimed at reducing this waste. 
When it comes to product picking strategies such as 
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FIFO (First-In First-Out) or LIFO (Last-In First-Out), the 
FIFO method is most often used for perishable products. 
Derman and Klein [7] and Lieberman [8] were the first 
to model LIFO and FIFO picking policies for perishable 
inventory. They considered that the FIFO policy is used to 
avoid waste, while the LIFO policy is used to maximize 
the total life of the inventory [9].
   The main causes of waste in the food industry can be 
explained by non-optimized inventory management, 
although numerous models have been proposed in the 
literature [7-9], or by inefficient product picking methods. 
Although our research aims to investigate the influence 
of different picking policies on loss reduction, product 
freshness and profits, we considered it worth citing work 
on optimizing the replenishment of perishable products, 
taking picking policies into account. Cohen and Prastacos 
[10] optimized the replenishment policies for perishable 
products in a retail store, comparing FIFO and LIFO 
methods, as did Keilson and Seidman [11], who relied on 
Markov processes. They considered Poisson distributions 
of delivery rates and demand as well as a deterministic 
delivery time and found that a LIFO policy reduced the 
average age of delivered products. They also compared 
inventory holding costs and shortage costs. More recently, 
Parlar et al [12] considered an inventory system for 
perishable products with arrival times λ of products to 
be stocked and arrival times μ of demands that follow 
independent Poisson processes. Their objective was to 
maximize the long-term average net profit as a function 
of the system parameters λ and μ over their permissible 
ranges in FIFO and LIFO, taking into account the revenue 
generated by a satisfied demand, the cost of shelf space 
per item per unit of time, the penalty for an unsatisfied 
demand, and the obligation to pay for each incoming 
item stored on the shelf. Haijema and Minner [13] found 
that current technologies enable many supermarkets and 
retailers to determine replenishment quantities based on 
stock age. They cited research based on this principle 
([14-16]) and proposed a simulation-based method for 
optimizing order quantity according to two new policies 
that depend on inventory age, one of which gives a lower 
weight to products that are likely to expire soon and the 
other increases the order quantity by adding an estimate of 
product wastage. Hendrix et al. [17] studied an inventory 
control problem for a perishable product with a short-fixed 
shelf life in Dutch retail practice. They considered a non-
stationary demand during the week, but stationary over the 
weeks, with mixed LIFO and FIFO picking on products 
whose age distribution is not always known. In this 
context, they proposed a new heuristic that provides a low 
level of cost and waste and does not require information 
on product age. Broekmeulen and Van Donselaar [18] 
proposed a discrete-event simulation model to compare 
different age-based replenishment policies for perishable 
products. Ding and Peng [19] analyzed the impact of 
issue policies on the age distribution of available stock. 
They proposed two heuristics to obtain the order quantity 

under the LIFO issue policy based on a LIFO and a 
combination of FIFO and LIFO, which corresponds to 
observed consumer behavior in retail stores. For a given 
issue policy and a given stock level, their objective was to 
minimize the expected total cost over a given time horizon 
using dynamic programming.
   Of these different works, which essentially sought to 
optimize inventory management, only a few have focused 
on the impact of different inventory selection policies on 
the average age of products sold, on waste generation 
and on economic performance. A number of studies have 
focused more specifically on picking policies as a function 
of product age and degree of deterioration. Akkas et 
al. [20] proposed that manufacturers establish shipping 
policies linked to product age, taking into account variable 
product characteristics. Boxma et al. [21] considered a 
process known as virtual obsolescence, with a time that 
would elapse from an instant t until the next outdating if 
no new demands arrived after t. Yang et al. [22] assumed 
that the rate of deterioration decreases with the effort 
required to maintain freshness, which is an additional 
cost. Tromp et al. [23] developed a simulation model for 
a Dutch pork supply chain, in which the expiry date was 
adjusted according to the increase in microbial numbers as 
a function of time and temperature.
   Our research is based on field observations of different 
picking policies for perishable products in the buffer 
stock of an integrated push-pull supply chain with 
three echelons. We found no research dealing with this 
configuration specific to certain food industries, such 
as the poultry industry, where all chickens must be 
slaughtered after a fixed, contractually agreed number of 
days (Figure 1).
   The specific characteristics of this type of hybrid supply 
chain are as follows. At the upstream stage, the farmer 
produces in batches on the basis of prior contracts with 
his manufacturer, and delivery times are often long and 
fixed, as in the case of breeding. The food manufacturer 
produces on a pull-flow basis according to a demand 
from the retailer at the start of each day, and delivers the 
products to the retailer after a fixed lead time of one day. 
Demand is highly uncertain, so the manufacturer must 
manage a buffer stock as efficiently as possible, to (1) 
ensure that there are enough goods to produce and meet 
demand, (2) not have too many goods in stock and run the 
risk of exceeding expiry dates, which will cause waste, 
and (3) not be out of stock when an order arrives and have 
to buy finished products on external spot markets at higher 
costs to meet demand. In each period, the manufacturer 
must decide on the quantity of perishable goods to order 
based on consumption forecasts. After each customer 
order, we evaluate the amount of waste, the average age 
of the remaining stock and the profit for three picking 
policies LIFO, FIFO and RANDOM.
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2. Simulated-based research 
methodology

   We chose to model the supply chain presented in Figure 
1 and analyzed the performance as a function of picking 
policies, using a simulation-based research methodology 
[24]. After the introduction, in which we set our research 
objective in relation to the existing literature, we formalize 
the research question using a simulation model (Figure 
2), which we test on a simple data set (Section 3). After 
calibration and robustness tests, the results obtained on this 
basis are then demonstrated mathematically. Based on this 
model, we simulated different scenarios for the depreciation 
of perishable goods and the margins on products sold 
(Section 4).
   Then, based on the scenario closest to reality, we 
investigated the sensitivity of this model to different 
demand smoothing coefficients that predict the quantities to 
be supplied and to different stochastic demand parameters 
(Section 5). Finally, we showed the applicability of our 
model to specific problems of certain push-pull food 
chains, such as the meat production and processing industry 
(Section 6).

3. Model description

   We considered a manufacturer who faces a stochastic 
demand Dt for a single perishable item in each time period 
t = 1,…,T.  We assumed that Dt fluctuates according to a 
symmetric probability distribution. This allows the company 
to replenish its product at  = t + k, considering a fixed 
supply lead time k and a quantity St varying according to 
forecasts Ft derived from a simple exponential smoothing 
model. We assumed that the quantity ordered from the 
supplier and the delivery time are deterministic. The age 
of the quantity delivered is dated to day j = 0,..., J, where 
J is the product's expiration date, and evolves according to 
a process of deterioration or perishability of the product. 
To meet demand Dt , a certain quantity of product of age 
j is withdrawn from the stock, depending on the choice of 
picking policy. If the total stock falls short of demand, the 
manufacturer calls in a subcontractor to supply the missing 
products. We did not focus on the commitment between 
the manufacturer and the subcontractor and therefore we 
assumed that the availability of these external purchases EP 
is deterministic and unlimited. At the end of each discrete 
time period, each remaining stock will age by one day if 
its age j was less than J. Remaining stocks Wt at the end of 

Figure 1. Management of a perishable buffer stock in a three-echelon supply chain

Figure 2. Modeling approach
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period J are scrapped (waste).
Let ( )b

jInv t (respectively ( )e
jInv t  ) be the level of stock of 

age j at the beginning and b (respectively e) of each period 
t. Sales at each period t are then equal to Dt and can be 
expressed by the following equation

(1)

   The aim is to compare three different picking policies. Two 
of them, FIFO and LIFO, are well known and commonly 
used in food production and distribution. The third one 
was mentioned by Nahmias [25] in cases where there is no 
information on the actual age of products in stock, or where 
inventory management is disorganized. Han et al. [26] 
defined such a policy as a mixed issue policy, and Haijema  
[27] modeled it as a random order service issue policy. For 
this case of "random" sampling (RDM), a table is created 

for each period t that randomly selects the sampling 
sequence in each inventory with age j = 0,..., J. The method 
consists of picking the first item drawn at random and, if 
the demand is not met, picking the second, and so on. Table 
1 shows an example of the principle of picking the same 
item using three different policies for a demand Dt = 15 
and quantities available in the buffer stock of 7, 3, 1, 2, 1, 
4 corresponding to the age between 0 and J = 5 days, i.e. 

a total quantity of 18. The principle of FIFO method starts 

with picking from the stock available 5 ( )bInv t to 0 ( )bInv t
, while for LIFO, it starts from 0 ( )bInv t to 5 ( )bInv t . In the 

case of RDM, picking is conducted in the order of product 

age, products of age i =1 will first be picked, i.e. 3 products, 

then of age i =4, 1 product etc., until demand is met with 

only 2 products of age i = 5.

Table 1. Example of three picking policies

0 ( )bInv t 1 ( )bInv t 2 ( )bInv t 3 ( )bInv t 4 ( )bInv t 5 ( )bInv t

Actual level 7 3 1 2 1 4
FIFO 4 3 1 2 1 4
LIFO 7 3 1 2 1 1

Random order 3 1 6 4 2 5
RDM picking 7 3 0 2 1 2

   These policies are then converted into a discrete-time 
simulation model using a structural algorithm. Let the set 
K(t) = {k0(t),…, kJ(t)}, where ki(t) is the age of the inventory 
from which we will pick in period t, and Stockoutki(t) (t)is 
the part of the demand that is not satisfied before we pick 
the inventory with age ki(t). We denote by StockoutkJ+1(t) (t) 
the demand that is not satisfied after all stocks have been 
withdrawn. For t = 1,…,T and i = 0,…, J, the set K(t) is 
defined as ki(t) = (J – i) for FIFO and ki(t) = i for LIFO. 
In the example shown in Table 1, the set K(t) is defined by 
K(t) = {1, 4, 0, 3, 5, 2} for a random RDM picking policy. 

The simulation algorithm is defined as follows:

Init

(0)b
jInv  and (0)e

jInv  = 0 j=0,...,J

Forecast (F) and supply (S)

Ft = α Dt-1 + (1 - α) Ft-1 with F1 = D1

St = Ft-k with St = D1 for t = 1,…,k

Main procedure

For t = 1 to T
      0 ( )bInv t  = St and ( )b

jInv t  = 1( 1)e
jInv t− −  j =1, ...J

  
      Stockoutk0(t) (t) = D t
  
       For i = 1 to J 
       Sales ki(t) = min{Stockoutki(t) (t); ( ) ( )b

ki tInv t }
       Stockoutki+1(t) (t) = max {0; Stockoutki(t) (t) - ( ) ( )b

ki tInv t }

       EndFor i

       ( ) ( )e
ki tInv t  = max {0: ( ) ( )b

ki tInv t  - Stockoutki(t) (t)}
       i = 0, ..., J
       EP(t) = StockoutJ +1(t) (t) and W (t) = ( )e

JInv t

EndFor t
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4. Case study of perishable buffer stock 
picking in a three-echelon supply chain

4.1 Initial model calibration

   First, we simulated two stochastic demands that are 
normally and uniformly distributed with an equal mean μ 
= 2000 : N (μ, σ) = N (2000, 500) and U ( [1000, 3000] ). 
The lead time of an item is assumed to be deterministic and 
equal to 2 days, and the forecasting model is based on a 
smoothing coefficient α = 0.3 (values between 0.2 and 0.3 
are generally used [28]). The items can be withdrawn from 
the buffer stock at 6 different ages j = 0,..., J = 5 days. The 
simulation model was run 500 times with different types 

of demand over a long period of time (T = 122 days) and 
for each stock picking policy. To simulate RDM random 
picking, we generated six different samples based on 122 
different picking sequences.

4.2 Simulation results

   Table 2 and Figures 3 and 4 show the simulation results 
after a period T. The Di sales with i = 1,...,5 are made from 
perishable products of different ages i and their percentage 
of total sales is shown. Also presented are the volume of 
external purchases (EP) made in the event of stock-outs, 
and the quantity of waste at the end of the period.

Table 2. Comparison of three picking policies with normal and uniform distributions of retailer demand

Normal Sales
D0

Sales
D1

Sales
D2

Sales
D3

Sales
D4

Sales
D5 EP Waste

FIFO
20,646 112,842 89,824 23,744 161 0 0 0

8% 46% 36% 10% 0% 0% 0% 0%

LIFO
224,152 8,581 1,467 2,707 996 1,433 7,881 12,195

91% 3% 1% 1% 0% 1% 3% 5%

RDM
154,347 47,791 26,776 9,789 2,884 4,585 1,044 4,769

62% 19% 11% 4% 1% 2% 0% 2%

Uniform Sales
D0

Sales
D1

Sales
D2

Sales
D3

Sales
D4

Sales
D5 EP Waste

FIFO
56,077 103,539 63,619 15,996 1,924 87 2,812 0
23% 42% 26% 7% 1% 0% 1% 0%

LIFO
212,130 8,949 3,472 2,930 2,257 1,678 12,638 11,860

87% 4% 1% 1% 1% 1% 5% 5%

RDM
154,869 39583 25,735 9,517 5,483 3,392 5,482 4,040

63% 16% 11% 4% 2% 1% 2% 2%
        
             Note: The accuracy of the forecast model is expressed as the mean absolute percentage error MAPE = 1

1 | |n
t t tD F

n = −∑  .
             In the simulations presented, for n = 122 and α = 0.3, MAPE= 23%.



Decision Making and Analysis 93 | Volume 2 Issue 1, 2024

Figure 3. Average age of products in the buffer with normal demand distribution
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   The RDM picking policy is an intermediate situation 
between LIFO and FIFO for all indicators. LIFO gives 
priority to the freshest products. As a result, the sales rates 
according to the age of the products used are less dispersed 
with LIFO than with RDM and FIFO. Moreover, the lowest 
average age of products used for sales is obtained by 
following the LIFO policy. Customers will consume fresher 
and possibly less risky products assuming that health 
risks increase with age. Nevertheless, LIFO generates 
more external purchases and waste than RDM and FIFO. 
These initial observations underline the importance of a 
compromise between waste and freshness.

4.3 Mathematical demonstration of the 
difference between LIFO and FIFO 
performance

   Simulations have shown that both FIFO and LIFO policies 
have their advantages. For example, the FIFO policy 
reduces waste and cuts external purchasing costs. On the 
other hand, LIFO is preferable when the main objective is 
product freshness. 
   We will prove these results analytically by considering a 
uniformly distributed demand Dt ~ U(0, 2μ) with μ ∈ *

+


 , 
two stocks of perishable products with ages 0 and 1, and a 
quantity to be ordered from the farmer St = μ. Although we 
simplified for the sake of clarity, the proofs can easily be 
extended to more general cases.

   With this model, we can see that E(Dt) = μ and P (Dt = 

i) = 
1

2 1µ +
 for i = 0,…,2μ. We denote by ( )e

iInvL t  and  

( )e
iInvF t  i = 0, 1 the inventory levels at time t for the LIFO 

and the FIFO policies respectively. The inventory levels 

can be described as follows:

0 ( ) ( )e
tInvL t Dµ += −  and 

1 0( ) ( 1) ( )e e
tInvL t InvL t D µ += − − −                     (2)

0 0( ) ( ( ( 1))e e
tInvF t D InvF tµ += − − −  and 

1 0( ) ( ( 1) )e e
tInvF t InvF t D += − −

                                                                                 (3)
where a += max (a,0).

• Amount of waste
   LIFO and FIFO waste quantities WL(t) and WF(t) are 
defined as follows:

1
0 1( ) ( )L t e

iW t InvL i−
== ∑    and  

1
0 1( ) ( )F t e

iW t InvF i−
== ∑

   To show that the average amount of waste is greater in 
LIFO than that in FIFO, we first calculated the expectations 
of 1

eInvL  and 1
eInvF :

(4)

The relationship between E (InvF1(t)) and E (InvL1(t)) leads 
directly to the conclusion: 

Figure 4. Average age of products in the buffer with uniform demand distribution

Remark: In Figures 3 and Figure 4, sample values between the 1st and 3rd quartiles are symbolized by a rectangle (the median is 
indicated by a bar). The lower value is the minimum and the upper value is the maximum.
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The average wastage is greater when products are taken 
from buffer stock using a LIFO picking policy than a FIFO 
policy.

• Average age of inventory
   We started by calculating the average age for each 
policy. Let us denote by AL(t) the average age of the 
products for the LIFO policy and by AF(t) the average age 
of the products for the FIFO policy. We get:

  
                                                                                 and

Using equations (2), (3) and (4), we can show that:

                                       and

To compare these quantities, we introduce the function  
 given by:

We first remark that f (0) = 0 and 

That is,  f is increasing and starts from 0, so 

and AF (t) > AL (t)

From this we concluded that the average age is lower for 
the LIFO picking policy than for the FIFO policy.

• External purchases
   External purchases are made when stock is insufficient 
to meet demand. We have:

(5)

 =

This shows that external purchases are lower when the 
FIFO picking policy is applied. This analytical model 
proves and corroborates the simulation results we obtained 
for waste, average age and external purchases.

4.4 Simulation of different scenarios

   To evaluate the three inventory policies, our research 
focused on waste production, the average age of products 
sold associated with food safety and the external purchases 
needed to satisfy demand in the event of a stock shortage. 
In order to assess economic performance, we associate 
the following exogenous parameters for each product sold 
from the stock of age j (j=1,..., J):

• a margin mj for each product sold from perishable 
goods of age j ;

• a margin mEP for each product sold from products 
purchased from an external supplier;

• a negative waste margin mw;
• a quality rate rj(rEP) which indicates the freshness 

of the products.

   We define the margin as the percentage gain between the 
selling price of an item, regardless of its age or remaining 
stock, and the cost price. Producers or retailers often offer 
discounts on perishable products with a short shelf life 
to encourage consumers to buy them (Solari et al. 2024 
Hou et al. 2024, Hansel et al. 2024). We assumed that the 
margin does not increase with the age of the product.
   We proposed to study three scenarios that differ in terms 
of product margins according to the age of the perishable 
items used and their depreciation rate. The corresponding 
data set is presented in Table 3.
   We considered that the product depreciation coefficient 
is proportional to the age of the product, i.e. there is a 
linear depreciation of the product as a function of age. 
   In scenario 1, the margin is independent of age. This 
is the case for many food products, which are sold at the 
same price regardless of their expiration date. However, 
some fresh fruit and vegetable products are sold at a price 
that is linked to their degree of freshness. This has been 
taken into account in scenarios 2 and 3, in which the 
margins on products sold decrease linearly with the age of 
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the components used.
   We also assumed that the products purchased from 
external suppliers are as fresh as the youngest products 
used by the manufacturer (i.e. rEP = r0). The commitment 
with an external supplier is then captured by mEP. Three 
assumptions are proposed in the three scenarios. For 
example, mEP =0 illustrates a short-term cooperation 
between the manufacturer and its supplier. In this case, 
the manufacturer obtains a higher purchase price and then 
issues no margin. For all scenarios, when products are 
scrapped, the margin is negative (waste margin = -1).

   The objectives of the simulation are to investigate the 
influence of each inventory policy on profit (the economic 
objective), the freshness of the products sold (the health 
objective) and waste (the sustainability objective). In a 
first step, we compared the simulation results (Table 4) 
for two demand distributions (normal N (2000, 500) and 
uniform U (1000, 3000)) and a sales forecasting method 
based on simple exponential smoothing and a smoothing 
coefficient α = 0.3.

Table 3. Simulation parameters for the three scenarios

  D0 D1 D2 D3 D4 D5 EP W
Depreciation rate 1 2 3 4 5 6 1

Margins
Scenario 1 1 1 1 1 1 1 0.5 -1
Scenario 2 1 0.9 0.8 0.7 0.6 0.5 1 -1
Scenario 3 1 0.9 0.8 0.7 0.6 0.5 0 -1

Table 4. Simulation results with normal and uniform distributions

 N(2000, 500) U(1000, 3000)
 FIFO LIFO RDM FIFO LIFO RDM

Wastes 0 12,195 4,769 0 11,860 4,040
EP 0 7,881 1,044 2,812 12,638 5,482

Average age 2.04 1.14 1.60 2.27 1.19 1.68
Profit scen. 1  242,790    218,525    216,076    239,746    208,848    205,466   
Profit scen. 2  218,525    230,304    226,123    208,848    218,904    219,766   
Profit scen. 3  216,076    219,484    221,666    205,466    211,096    216,046   

   Whatever the picking policy, the average product age 
is lower in the case of normally distributed stochastic 
demand, which can be explained by the wider dispersion 
of sales generated by uniform distribution. When forecasts 
overestimate actual sales, this leads to overstocking with 
the risk of subsequent depreciation if sales do not increase. 
On the other hand, LIFO picking always guarantees a lower 
average age of products sold than FIFO picking.
   When products are sold at the same margin regardless 
of age, the total profit is always better for the FIFO policy, 
which generates less waste and external purchases (EP). 
When margins decrease linearly with the product age, 
the FIFO policy is the least competitive. When demand 
is normally distributed, LIFO is the most efficient picking 
policy, whereas in the case of uniform demand, the RDM 
policy performs better. This difference is due to the higher 
volume of EP sold at zero margin in scenario 3.
   The main conclusion drawn from the simulations based 
on these three scenarios is that under normal and uniform 
demand distributions, the LIFO policy is always better 
than the FIFO and RDM policies in terms of average age. 
LIFO therefore offers safer products to consumers. The 

LIFO and RDM policies are always more efficient than the 
FIFO policy in terms of total profit when margins decrease 
linearly with product age.

5. Model sensitivity to demand 
smoothing coefficient and stochastic 
demand parameters

   In this section we focus on previous scenario 1 (see Table 
3), the most representative one, in which product prices do 
not change with age and the manufacturer will have higher 
costs for products purchased on external spot markets than 
in the case of its own production. We proposed to study 
the sensitivity of the model to the demand-smoothing 
coefficient and to the mean and standard deviation of 
demand assumed to be normally distributed.

5.1 Influence of the demand smoothing 
coefficient
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   We considered a normal demand distribution N (2000, 
500) and different smoothing coefficients ranging from α 
= 0.01 (high smoothing of sales histories) to α = 0.99 (low 
sales smoothing). Once α exceeds a certain threshold, waste 
production remains stable. We observed that the volume of 
losses decreases when the sales smoothing coefficient is 
increased, regardless of the picking policy (Figure 5). On 

the other hand, it is advisable to avoid too much smoothing 
of past sales when making forecasts and calculating the 
quantities to be supplied. However, if the alpha values are 
too low, there will be a higher level of waste.

Figure 5. Evolution of the number of losses as a function of the demand smoothing coefficient α

Figure 6. Evolution of average age as a function of demand smoothing coefficient α

Figure 7. Evolution of total profit as a function of the demand smoothing coefficient α

   Figure 6 shows that a low value of α increases the average 
age with FIFO inventory policy. Nevertheless, the average 
ages with LIFO and RDM policies are less sensitive to α 
due to the use of fresher products.
   By adopting the LIFO and RDM policies, the total profit 
remains stable as the smoothing coefficient varies (see 
Figure 7). As for the profit obtained by following a FIFO 
policy, it falls sharply when α is very low. This is because 
when α is low, the manufacturer reacts quickly to a drop in 
demand by ordering fewer perishable items than necessary 
and, in this case, calling on an external supplier more often.
   In conclusion, whatever the demand smoothing coefficient 
(high, low or optimal) is, the LIFO policy remains 

preferable in terms of achieving the objectives of health 
risk minimization. With a very high smoothing coefficient, 
the RDM policy leads to the highest profit, while the FIFO 
policy achieves its highest profit when α is greater than 
0.15. 

5.2 Influence of average demand

   Keilson and Seidman [11] proposed to study the influence 
of the demand mean on the average age of items when 
using FIFO or LIFO policies. We simulated different 
demand averages with a standard deviation σ equal to a 
quarter of the demand average: N (1000, 250); N (2000, 
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500); N (4000, 1000) and a smoothing coefficient α of 0.3. 
The results of the simulation based on scenario 1 are shown 
in Table 5.
   Figure 8 shows that waste generation increases as average 
demand rises with LIFO and RDM picking policies, 
in contrast to FIFO, which generates very little waste 
regardless of the average demand. This shows that LIFO 
is highly sensitive to average demand with a stable average 
age.
   Figure 9 shows that the average age of items picked 
under the LIFO policy is always lower than under FIFO 
and RDM. In addition, LIFO and RDM picking policies are 
more stable in terms of product freshness than FIFO.
   As for total profit, it showed that the simulations increased 
proportionally to the average of demand. The main result of 
these simulations is that an increase in average demand, 
with a proportionally increasing standard deviation 
considerably increases waste in the case of a LIFO picking 
policy.

5.3 Influence of standard deviation of demand

   We assumed a two-day delivery time for perishable 
products, an average demand of 2,000 units with three 
standard deviations σ = 100; 500; 750 and with an 
exponential smoothing coefficient α = 0.3. The results are 
shown in Table 6.
   We first observed that the average age increased in all 
cases with a large standard deviation. Consequently, a 
higher value of σ generates a larger quantity to be supplied 
than necessary and therefore a larger buffer stock. Next, we 
noticed that the average age under the FIFO policy varied 
most strongly with σ. It is also more robust to the amplitude 
of these fluctuations in demand. On the other hand, the 
LIFO policy always leads to a lower average age regardless 
of the value of σ, and is therefore the best policy from a 
health point of view, but waste increases proportionally to 
σ. However, the benefit decreases mainly under this policy 
when σ increases.

Table 5. Influence of average demand on the performance of each policy (waste/average age/ profit)

Lead 
time

= 2 days

N (1000, 250) N (2000, 500) N (4000,1000)

FIFO LIFO RDM FIFO LIFO RDM FIFO LIFO RDM

Wastes 0 4,968 1,513 0 10,199 3,250 7 20,277 6,405
Average 

age 1.9 1.15 1.59 2.05 1.14 1.60 2.01 1.14 1.59

Total 
profit 121,749 114,735 119,772 242,929 228,578 238,699 484,763 456,144 476,344

Figure 8. Evolution of waste volume as a function of average demand

Figure 9. Evolution of average age as a function of average demand
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6. Model applications in the food 
industry

   In this final section, we simulated our model by studying 
three realistic cases that can be observed in the food 
industry. In the first case, we investigated the impact of 
lead times for perishable products on the performance of a 
push-pull supply chain. 

6.1 Case 1. Influence of the procurement lead 
time

   Donselaar et al. [29] have shown that shortening the 
lead time for perishable items can reduce waste (see also 
[18]). In Table 7 below, we tested this proposition by 
applying the three picking policies and different lead times 
(2, 5 and 10 days, respectively). We also considered that, 
since order lead time is known, aging is only applied to 
available units and not to ordered units [30]. We studied 
only scenario 1 (see Table 3), in which all items have the 
same margin, whatever their ages are. The performance of 
each policy as a function of lead time is shown in Table 7.

   Figure 10 shows that the amount of waste is highest 
under the LIFO and RDM policies. This result contradicts 
previous analyses and highlights some ambiguous 
management practices in terms of sustainability. For 
example, a shorter supply lead time may improve the 
sanitary quality of food products (lower average age) but 
worsen the loss indicator. A compromise may therefore be 
reached between these two opposing indicators.
   As the lead time increases, the average age also increases 
progressively with a FIFO picking policy, while it 
decreases slightly with a LIFO policy and remains almost 
stable with an RDM policy. This result was observed for 
all scenarios. Figure 11 shows how the average age varies 
with the different lead times for each policy. Moreover, the 
average age is always lower with the LIFO method.
   The profit is always higher for scenario 1 (Table 3) when 
a FIFO policy is chosen (see Figure 12). The evolution 
of profit as a function of lead time is convex in the case 
of a FIFO policy, while it decreases for LIFO and RDM 
policies. An increase in lead time leads to a decrease in 
profit in the latter two cases.

Table 6. Influence of the standard deviation of demand on the performance of each policy (waste/average age/benefit

 
N (2000,100) N (2000,500) N (2000,750)

FIFO LIFO RDM FIFO LIFO RDM FIFO LIFO RDM
Wastes 0 2,026 509 3 9,943 3,145 169 15,154 6,421

Average age 1.21 1.03 1.16 2.01 1.14 1.59 2.53 1.21 1.74
Total Profit 243,747 240,886 243,107 242,673 228,627 238,549 241,723 220,528 233,274

Table 7. Influence of lead time on the performance of each policy (waste/average age/benefit)

α = 0.3
N (2000,500)

lead time = 2 days
N (2000,500)

lead time = 5 days
N (2000,500)

lead time = 10 days
FIFO LIFO RDM FIFO LIFO RDM FIFO LIFO RDM

Wastes 3 10,108 3,157 28 12,123 4,676 0 7,370 1,879
Average 

age 2.01 1.14 1.59 2.15 1.11 1.60 2.27 1.10 1.59

Total profit 242,860 228,575 238,741 244,323 226,304 237,146 241,534 225,832 234,804

Figure 10. Evolution of waste as a function of lead time
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6.2 Case 2. Influence of a preventive production 
reduction policy

   Some food manufacturers decide to produce less than 
their forecasting model suggests in order to avoid excessive 
stocks in case demand is lower than expected. In the event 
of insufficient stock to meet demand, the manufacturer 
supplements it with external purchases on a spot market. 
The simulations of this particular choice were based on a 
normally distributed demand N (2000, 500), a lead time of 
two-day delivery and the parameters of scenario 1 (Table 
3).
   Figure 13 shows that with a very low reduction rate, the 
average age of stock is high when adopting a FIFO or RDM 
picking policy. However, by reducing production more 
sharply, the average age can be considerably reduced under 
these policies. On the other hand, under the LIFO policy, 
the average age remains low. The increase in external 

purchases (EP) due to the reduction in production explains 
these trends.
   We could observe that the volume of waste under the 
LIFO and RDM policies decreases significantly with the 
drop in production. The impact is not significant for the 
FIFO policy (Figure 14). However, this reduction leads to 
a significant increase in external EP for all three policies. 
   Figure 15 shows that the total profit obtained by choosing 
the FIFO or RDM policy is higher than that of the LIFO 
policy when production reduction rates are low. On the other 
hand, profit decreases significantly when the reduction rate 
increases, whatever the policy adopted.
   In conclusion, by reducing production, the manufacturer 
reduces the volume of waste and the average age of 
products sold, but also reduces profits and remains more 
dependent on the spot market.

Figure 11. Evolution of average age as a function of lead time

Figure 12. Evolution of total profit as a function of lead time

Figure 13. Evolution of average age as a function of production reduction rate
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6.3 Case 3. Simulation of fresh meat product 
depreciation

   We considered time to be a critical factor for microbial 
growth in determining the shelf life of a product. The post-
mortem storage time of meat also affects the product's 
color stability and during aging, compounds influence 
flavor and odor. Some studies show the effect of aging 
period on consumer acceptability of meat based on visual 
inspection and tenderness [31].
   We chose to simulate the case of pseudomonas 
microorganism growth,  which corresponds to a 
deterioration of fresh meat over time. The shelf life of 
meat is limited by the growth of this specific pseudomonas. 
Gibson et al. [31] were the first to introduce the Gompertz 
exponential function to food microbiology. This function 
can describe the growth of any microorganism over 
time in a more general way. Another time-sensitive 
deterioration function with exponential decay was also 
proposed (Wang et al. [32] used it for the depreciation of 
electronic products).
   Referring to Bruckner's experiments [33], we chose to 
simulate the development of pseudomonas over time using 
the function N (t) = 2 e-0.0114 t (microbial count log10 cfu/
g at time t). Figure 16 shows this function and a linear 
depreciation, which was our first assumption (see Table 3). 
We assumed a shelf life of five days (as for fresh poultry 
meat) and a lead time of two days.
   We simulated two levels of quality for external 
purchases of EP meat: a microbial count level equal to 2 
(cf. medium-risk EP, case 1) and a level of 4.3 (cf. high-
risk EP, case 2).
   Table 8 compares the results between the exponential 

growth of micro-organisms EG over time (see Figure 16) 
and the linear growth LG (see Table 3, where the health 
risk is proportional to the age of the product).
   The results show that exponential product depreciation 
generates less waste than linear depreciation for both 
LIFO and RDM policies. This is a non-intuitive result that 
is difficult to explain. As for the average age of inventory, 
the linear growth LG of pseudomonas results in a lower 
average age than the exponential grow EG.
   In conclusion, LIFO is also the best policy for picking 
fresh meat products in the event of micro-organism 
proliferation, whatever the quality level of external 
purchases is. This result is somewhat at odds with standard 
practice. 

7. Analysis and discussion

Influence of picking policies on the average product 
age
   Our results show that the LIFO picking policy always 
achieves the lowest average age (i.e. the lowest health 
risk) compared with other policies, particularly FIFO. 
   In addition, a random picking policy (RDM) offers a 
better average age than the FIFO policy, which is most 
commonly used for managing stocks of perishable 
products. We also analyzed the sensitivity of the 
simulation model to various exogenous parameters and 
found that the average age under the FIFO policy always 
increases when the mean and standard deviation of 
demand or lead time increase. On the other hand, with 
LIFO and RDM, it remains at the same level or decreases 
when the supply quantity and demand fluctuate.

Figure 14. Evolution of waste as a function of average demand 

Figure 15. Evolution of total profit as a function of production reduction rate
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Influence of picking policies on profit
   In terms of profit, the FIFO policy offers the highest 
level of profit when products are sold at the same price 
regardless of age and when the EP margin is low (0.5). 
However, LIFO performs better, with a higher and more 
stable profit when the margin decreases linearly with the 
product age. In conclusion, LIFO is still the best policy 
to minimize sanitary risk and stabilize profit in all the 
perishable product management situations studied.

Influence of picking policies on the quantity of waste
   Although we found that the LIFO picking policy produces 
the most waste, it is well known that it is difficult to 
determine in advance the exact shelf life of a fresh food 
product in stock. Consequently, the amount of waste 
generated by a LIFO policy is actually lower and may 
encourage companies to choose it.

Other observations
   An increase in the exponential smoothing coefficient of 
past sales, which can be used to deduce a quantity to be 
supplied, leads to better performance whatever the policy 
adopt. Furthermore, a strategy of preventive production 
reduction has no impact on the volume of waste within 
the framework of a FIFO policy. A company following 
this strategy has an interest in using the FIFO policy with 
zero waste and high profits for a low rate of production 
reduction.

Research limitation and perspectives
   We only studied the particular case of picking a single 
perishable item from a buffer stock and based our results on 

a realistic data set. However, this simplification reflects the 
reality in the poultry industry, where standard chickens are 
raised for a fixed period of 40 days, then slaughtered and 
processed to order by the manufacturer for rapid delivery 
of freshly packed products to retail outlets. In terms of 
research prospects, we proposed to simulate and compare 
the three picking policies with the FEFO First Expired, 
First Out method, as La Scalia et al. [4] or Mendes et al. 
[34] did. We could also draw on the work of Bruckner et al. 
[35], who proposed a predictive shelf-life model that takes 
into account a temperature factor and a picking technique 
based on sensor indications (cf. RFID product tags [5] 
[6]). In particular, their experiments showed that the LSFO 
(Least Shelf life, First Out) concept provides better results 
than the FIFO, which we could also verify using our model. 
We also plan to include the costs of handling, storage and 
shortages in the margin calculation, as well as payment 
strategies and discount facilities depending on the age of 
the product, referring to the work of Ghosh et al. [36-38].

8. Conclusion

   In this paper, we compared three policies for picking 
products from the buffer stock of a push-pull supply chain 
based on stochastic demand and deterministic lead time. 
We chose to investigate the influence of these policies 
on three performance indicators representing the three 
pillars (triple bottom line) of sustainable development: the 
average stock age, which assesses health risk; the waste 
volume, which represents eco-responsible efficiency; and 
the total profit, which measures economic performance. A 

Figure 16. Evolution of the microbial count of pseudomonas in meat products

Table 8. Quantity of waste and average ages in the event of exponential or linear growth in the rate of product depreciation
  

Demand N (2000, 500) and α = 0.3
FIFO LIFO RDM

Wastes with exponential growth (EG) 3 10,233 3,249
Wastes with linear growth (LG) 0 12,195 4,769
Average age (case 1 with EG) 2.76 2.13 2.49
Average age (case 2 with EG) 2.78 2.23 2.53

Average age with LG 2.04 1.14 1.60
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non-intuitive result showed that under certain conditions, 
the LIFO policy led to better performance than the FIFO 
policy. This research also responds to the difficulties that 
some food manufacturers have in meeting the challenges 
posed by the concept of sustainability.
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