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1. Introduction

1.1 q-rung orthopair Fuzzy sets 

   In 1965, Zadeh introduced a pivotal theory known as 
the fuzzy set [1]. Fuzzy sets encompass elements from 
the universal set, each of which is assigned a degree of 
membership within the range [0,1]. Numerous scholars 
have dedicated their efforts to this theory and have applied 
it in various fields. For instance, Sarfraz [2] harnessed 
the concept of fuzzy sets in the group decision-making 
process. Jin et al. [3] extended the scope of fuzzy sets and 
developed Aczel-Alsina aggregation operators for multi-
attribute decision making. Zimmermann [4] also put forth 
an innovative approach for decision making in fuzzy 
environments. Alcantund et al. [5] introduced the concept 
of separable fuzzy soft sets, which enables decision 
making involving both positive and negative attributes. 
Ali et al. [6,7] developed a novel framework by building 
upon existing fuzzy models and employing aggregation 
operators to amalgamate information for decision systems. 
Torra [8] introduced the influential concept of generalized 
fuzzy sets, which he referred to as "hesitant fuzzy sets", 
wherein membership grades encompass a collection of 
elements within the range [0,1].
   Yager [9] introduced an exceptionally robust concept 
based on Attanssove's intuitionistic sets, which he 
termed "q-rung orthopair fuzzy sets" (q-ROFSs). In 
this set, the characterization of membership and non-
membership grades is extended in a comprehensive way. 
Ali [10] provided a new perspective on Yager's q-ROFSs 
concept. Furthermore, Peng et al. [11] developed a set of 
information measures built upon q-rung orthopair fuzzy 
sets. Khan et al. [12] delved deeper into the concept of 
measures for q-ROFSs. Wang [13] introduced generalized 
similarity measures utilizing cosine functions for q-ROFSs. 
Li et al. [14] further explored this idea, focusing on 
preference relations and their practical applications. Garg 
et al. [15] made significant contributions by extending 
the q-ROFS concept, developing powerful aggregation 
operators and demonstrating their utility in decision-
making processes. Shaheen et al. [16] addressed a pivotal 
question in the literature: the importance of q-ROFSs 
and provided convincing arguments to support their 
significance. Oraya et al. [17] showed how this concept 
can be applied to assess the impact of delays on residential 
construction projects. Wang et al. [18] further expanded 
upon Yager's concept by introducing p,q-rung orthopair 
fuzzy sets and optimized this model. Farid et al. [19] 
established Aczel-Alsina aggregation operators for multi-
criteria decision-making scenarios. Feng [20] explored 
a probabilistic approach for q-rung sets that helps in the 
selection of the most appropriate option. Razzaque et 
al. [21] defined mathematical rings within the q-rung 
fuzzy environment. Sarkar et al. [22] made a significant 
contribution by developing a combined framework 
encompassing q-rung orthopair fuzzy sets and weighted 

dual hesitant fuzzy sets and applying it to multi-attribute 
decision-making scenarios. Recently, Jabeen et al. [23] 
integrated various aggregation operators, including the 
Bonferroni aggregator and the Aczel-Alsina aggregator, 
into the q-rung orthopair fuzzy model, exemplifying its 
practical application.

1.2 Set pair analysis

   Zhao et al. [24] introduced the concept of Set Pair 
Analysis (SPA) as a powerful tool to address data 
uncertainty. Recognizing the significance of this approach, 
Decai et al. [25] harnessed the number of connections 
within Set Pair Analysis to tackle uncertainties by 
techniques of network planning. Jiang et al. [26] employed 
this concept in a comprehensive evaluation for urban 
planning projects. Su et al. [27] further expanded the 
theory of Set Pair Analysis and applied it to assess the 
health of urban ecosystems. Ali et al. [28] innovatively 
combined intuitionistic hesitant fuzzy sets with the 
connection number from Set Pair Analysis and used 
this hybrid approach for ranking the best alternatives in 
multi-criteria decision-making scenarios. Zou et al. [29] 
utilized the variable fuzzy sets model of Set Pair Analysis 
and fuzzy AHP to calculate flood risk assessments. 
Chen et al. [30] focused on models for evaluating water 
ecological security based on multivariate connection 
numbers and Markov chains. Xiang et al. [31] conducted 
a comprehensive literature survey spanning from 1989 
to 2020 to investigate the development, applications and 
challenges of Set Pair Analysis in environmental sciences. 
Zhao et al. [32] explored a novel application of Set Pair 
Analysis, especially in the identification of mine water 
sources using the AHP-entropy method. Shi et al. [33] 
applied this concept to pattern recognition. Pan et al. [34] 
developed a methodology to evaluate coordination in 
water resources management and to effectively address 
conflicts. Ma et al. [35] proposed a model grounded 
in Set Pair Analysis for comprehensive evaluation of 
information security in electric power. Yang et al. [36] 
enhanced the Set Pair Analysis model for urban water 
security assessment. Chen et al. [37] introduced a model 
for selecting the optimal evaluation schemes based on 
the framework of Set Pair Analysis. Finally, Zhou et al. 
[38] extended the use of Set Pair Analysis in the coupling 
model for health evaluations of the Huangchuan River.

1.3 Similarity measures

   Similarity measures serve the purpose of quantifying 
the extent of similarity or likeness between two sets, 
facilitating an evaluation of how closely or comparably 
these sets align with respect to the attributes of their 
constituent elements. The choice of a particular similarity 
measure hinges upon the specific context and the inherent 
characteristics of the sets to be compared. Diverse 
similarity measures can be found in the literature, each 
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with its unique applications and constraints. Kausar 
et al. [39] delved into cosine similarity measures and 
applied them to enhance the sustainability of solid waste 
management within the framework of cubic m-polar 
fuzz sets. Ozhu et al. [40] extended the notion of the dice 
similarity measure to single-valued neutrosophic type-
2 hesitant fuzzy information and employed it in multi-
attribute decision-making scenarios. Garg [41] also 
delved into dice similarity measures and generalized 
them with dummy mean operators for application in 
TOPSIS models. Mehmood et al. [42-43] developed 
cosine similarity measures and aggregation operators for 
IHFSs and trigonometric similarity measures tailored 
to bipolar complex fuzzy soft sets and harnessed their 
approach in pattern recognition and medical diagnosis. 
Ma et al. [44] adopted similarity measures for extracting 
potential routes in urban customized bus systems, relying 
on vehicle trajectory clustering. Jia et al. [45] explored 
the relationship between Pythagorean fuzzy sets and 
similarity measures in their research work. Jin et al. 
[46] extended the concept of picture fuzzy distance and 
similarity measures within the framework of complete 
lattices and presented their practical applications. Kirisci 
et al. [47] introduced innovative cosine similarity 
measures and distance metrics for the extension of fuzzy 
sets and  explored preference techniques. Saqlain et al. 
[48] introduced a set of similarity and distance measures 
for intuitionistic fuzzy hypersoft sets and presented 
practical applications. Ali et al. [49] developed the 
concept of vector similarity measures for dual hesitant 
fuzzy linguistic term sets and explored their applications. 
Recently, Rahim et al. [50] enhanced the TOPSIS method 
with an improved cosine similarity measure tailored to 
Fermatean fuzzy sets. Ganie et al. [51] ventured into 
the realm of q-rung orthopair fuzzy sets and explored 
novel similarity measures and entropy metrics as well as 
their practical applications. Zhang et al. [52-53] applied 
the concept of exponential similarity measures within 
the domain of cubic sets with confidence neutrosophic 
number, particularly in fuzzy multi-valued scenarios, to 
develop a group decision-making model.

1.4 Motivation 

   Based on an extensive literature review and recognizing 
the significance of fuzzy sets, SPA, and similarity 
measures in various domains, we have drawn inspiration 
to establish a relationship and amalgamate these 
frameworks to address issues related to uncertainty more 
comprehensively. It is evident that the amalgamation of 
these frameworks has the potential to address challenges 
in a broader range of scenarios where individual structures 
may fall short. The contributions of this research are 
elaborated as follows: 
• In this research, we introduced the concept of hesitant 

fuzzy sets of q-rung orthopair by merging q-rung 
orthopair fuzzy sets with hesitant fuzzy sets. Hesitant 

fuzzy sets of q-rung orthopair represent a more 
general and effective tool for handling ambiguity and 
uncertainty. 

• We further enhanced the framework by integrating the 
concept of connection number from Set Pair Analysis 
into the q-rung orthopair hesitant fuzzy environment. 
This approach led to the development of a new theory 
known as q-rung orthopair hesitant fuzzy connection 
number qHCN.

• The paper also extended the concept of Jaccard 
similarity measures and dice similarity measures. We 
introduced weighted Jaccard similarity measures and 
weighted dice similarity measures while discussing 
their key properties.

• These innovative concepts and measures are applied 
to solve real-life problems, primarily focusing on 
assessing the degree of similarity. A detailed flowchart 
of the entire algorithm is presented, and practical 
applications demonstrate the effectiveness of the 
models we have developed.

   The remainder of the paper is structured as follows: 
Section 2 provides the foundational definitions and ideas 
that underpin our proposed approach. In Section 3, we 
delved into the development of the concept of q-rung 
orthopair hesitant fuzzy connection numbers and outline 
fundamental operations related to the model. Section 4 
delves into the similarity measures for the proposed model 
and elucidate their properties. Section 5 and Section 6 
encompasses the application of the developed algorithm 
to counsel students based on the evaluation of their study 
subjects. Finally, Section 7 concludes the paper with the 
authors' findings and recommendations.

2. Preliminaries

   In this section, a brief overview of the existing fuzzy 
models such as IHFSs, q-ROFSs, and Set Pair Analysis 
theory with some basic operations are discussed.
   Definition 1: [42] An IHFS H on x is denoted by two 
mappings π and ω. It is indicated by following expression:

H = {(k, π (k), ω (k)) | k ϵ x}
π (k) and ω (k) are sets of certain values in [0, 1], 
representing the grades for membership and non-
membership of the element k ϵ x with the condition such 
that 0 ≤ max (π (k)) + max (ω (k)) ≤ 1.

   Definition 2: [42] Score and accuracy function for IHFS 
H = (πH , ωH ) are defined as:



Decision Making and Analysis 61 | Volume 2 Issue 1, 2024

   Definition 3: [42] For two IHFSs H1 and H2, H1 > H2 

where " > " refers preferred to if any of the given condition 
fulfilled,

 S (H1) > S (H2) ;
S (H1) =  S (H2) and T (H1) > T (H2);

   Definition 4: [9] For a universal set x, A q-rung 
orthopair fuzzy set (q-ROFS) H over x is formulated as 
below.

H = (k, πH (k), ωH (k) : k ϵ x )
   where π : x → [0, 1] and ω: x → [0, 1] are respectively 
the functions granted to assign the degrees of membership 
and non-membership such that

0 ≤ (πH (k))B + (ωH (k))B ≤  1, B ≥ 1

   Definition 5: The score function to rank the q-ROFN H 
= （ π，ω）is defined as

V (H) = (πB - ωB)
   Also, an accuracy function is defined as

L (H) = (πB + ωB)
   It is evident that -1 ≤ V (H) ≤ 1 and 0 ≤ L (H) ≤ 1.

   Definition 6: [24] A connection number between two 
sets P and Q is defined and represented as,

   Where U is the "total number of features" where L and 
M  respectively denotes the "identity" and "contrary" 
features. M = U-L-N is the "discrepancy" feature of sets   
P and Q. It is also signified in the following equations E 
= L/U , F = M/U and G = N/U , which denote the identity, 
discrepancy and contrary degree, respectively. Clearly, 
0 ≤ E, F, G ≤ 1 and E + F +G =1 . Also, i ϵ [-1,1] is 
coefficient of "discrepancy degree" and j is the coefficient 
of "contrary degree" and j = -1.

   Definition 7: [28] The intuitionistic hesitant fuzzy CN 
set (IHFCNS) corresponding to IHFE H = {(k, π (k), ω (k)) 
| k ϵ x} is described as

ZH = {(k, EH (k) + FH (k) i) + GH (k) j | k ϵ x}

   Where al ϵ πH (k) and bl ϵ ωH (k) signified the "identity", 
"discrepancy" and "contrary" degrees, respectively.

3. A novel proposed model q-rung 
orthopair hesitant fuzzy connection 

number 

   In this section, we proposed a novel generalized 
structure by adding three different frameworks, q-rung 
orthopair fuzzy sets, hesitant fuzzy sets and the concept of 
connection number of set pair analysis. This attractive and 
powerful model is known as connection number of q-rung 
orthopair hesitant fuzzy. Moreover, some basic operations 
were also discussed.

   Definition 8: An q-RHFS H on x is denoted by two 
mappings π and ω. It is indicated by following equation: 

H = {(k, πH (k), ωH (k))| k ϵ x }
πH (k) and ωH (k) are sets of certain values in [0, 1],  
representing the membership grades and non-membership 
grades of the element k ϵ x with the condition such that

   Definition 9: The q-rung orthopair hesitant fuzzy CN 
set (qHCNS) corresponding to q-RHFN H = {(k, πH (k), ωH 
(k))| k ϵ x } is described as

ZH = {(k, EH (k) + FH (k) i) + GH (k) j : k ϵ x}
Where,

   Where al ϵ πH (k), bl ϵ ωH (k) and B ≥ 1 signified 
the "identity", "discrepancy" and "contrary" degrees, 
respectively.

   Example 1: Let H1 = {(0.8, 0.3), (0.4, 0.6)} and H2 = { 
(0.5, 0.3), (0.4, 0.1)} be two q-ROHFNs and for B = 6, we 
have two qHCNs such that,

ZH1 = {0.0218 + 0.9740i + 0.0041j}
ZH2 = {0.0013 + 0.9983i + 0.0003j}

   Definition 10: For two qHCNs Z1 (k) = E1 (k) + F1 (k)i + 
G1 (k)j and Z2 (k) = E2 (k) + F2 (k)i  + G2 (k)j, we have
Z1 (k) = Z2 (k) ⇔ E1 (k) = E2 (k), F1 (k) = F2 (k), G1 (k) = G2 (k)
Z1 (k) ≤ Z2 (k) if E1 (k) ≤ E2 (k), G1 (k) ≥ G2 (k).
Z1 (k)C = G1 (k) + F1 (k)i + E1 (k) j is the complement of the  
qHCN Z1 (k) = E1 (k) + F1 (k)i + G1 (k)j

   Definition 11: If Z1 = E1+ F1i +G1j and Z2 = E2 + F2i 
+G2j are two qHCNs, then 

and are also qHCNs.
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4. Power aggregation operators for 
q-rung orthopair hesitant fuzzy 
connection number 

   In this section, we defined the aggregation operators 
to calculate qHCNs and developed a series of power 
aggregation operators for qHCNs such as power average  
qHCNs aggregation operators (qHCPA), power weighted 
average qHCN aggregation operators (qHCPWA), power 
ordered weighted average qHCN aggregation operators 
(qHCPOW), power geometric qHCN aggregation operators 
(qHCPG), power weighted geometric qHCN aggregation 
operators (qHCPWG), and power ordered weighted 
geometric qHCN aggregation operators (qHCPOWG). 
Furthermore, the characteristics and properties of these 
operators were also discussed.

4.1 Power average aggregation operators for 
q-rung orthopair hesitant fuzzy connection 
numbers 

   Definition 12: Suppose that Zi (k) (i ϵ N) is be the 
collection of q-RHCNs then power average operator will 
be a mapping qHCPA: Zi

n → Z and it is defined as

   wherever, T (Zi) is the Sup of ith the biggest qHCE (Zi) by 
all the other qHCEs, that is,

here Sup (Zi, Zj) is the Sup for Zi  from Zj, and it is calculated 
by, 

Sup (Zi, Zj) = 1- d (Zi, Zj)

The Sup fulfills the given characteristics:
Sup (Zi, Zj) ϵ [0,1]

Sup (Zi, Zj) = Sup (Zj, Zi)
Sup (Zi, Zj) ≥ Sup (Zs, Zt), if d (Zi- Zj) ≥ d (Zs- Zt) 

where d is distance.
The support (Sup) amount is a similarity indicator. 

   Definition 13: Let Zi be a set of qHCEs and w = (w1, 

w2,..., wn)
T is weight vector of Zi, wi > 0 and  wi = 1. 

The power weight average operator qHCPWA: Zn → Z is 

defined as

   The following properties can be easily justified for the
qHCPWA operators.

   Definition 14: Let Zi be a group of qHCEs, the power 
order weight average operator is a mapping qHCPOWA:  Zn 

→ Z and is defined as

where σ(1), σ(2),…σ(n), indicates permutation of (1, 2, ... 
n), in which Zσ(i-1) ≥ Zσ(i), wi (i ϵ N) is group of weights so 
that

and T (Zσ(j)) implies the Sup of jth largest qHCE T (Zσ(j)) by 
all the other (qHCEs), that is,

where  Sup (Zσ(j), Zσ(i)) shows the Sup of jth is the 

biggest qHCE Zσ(j), for the ith largest IHCE Zσ(i).
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   Some properties of qHCPOWA operator are as follows.

Where Z'
j is a permutation of Zj.

   Definition 15: Suppose Zi is a group of qHCEs, the power 
hybrid average operator qHCPHA: Zn → Z is defined as

Where Zσ(i) is the ith largest objects in qHCE arguments

and it is the weighting vector of qHCE arguments Zi (i = 

1, 2, ..., n), wi ϵ [0,1] and  wi = 1 and wi is a group 
such that

and  is the Sup of jth biggest qHCEs  by all 
the other (qHCEs), that is,

Where  Sup (  Zσ(i) ) shows the Sup of jth biggest   

qHCE for the ith biggest qHCE . Specifically,  
qHCPHA is reduced to qHCPWA operator if

and  qHCPHA is reduced to IHCPOWA operator if 

4.2 Power geometric aggregation operators 
f o r  q - r u n g  o r t h o p a i r  h e s i t a n t  f u z z y 
connection numbers 

   Definition 16: Suppose Zi is family of qHCEs, power 
geometric operator qHCPG: Zn→Z is defined as

where
  

   Definition 17: Let Zi be a group of qHCEs then power 
weight geometric operator qHCPWG: Zn →Z is defined as

The following characteristics can be easily proved for 
qHCPWG operator.

   
   Definition 18: Let Zi is a group of qHCEs, the power 
order weight geometric operator of dimension 'n ' , 
qHCPOWG: Zn →Z is defined as 
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where σ(1), σ(2), …σ(n) indicates permutation of (1,2, …, 
), where Zσ (i-1) ≥ Zσ(i), wi (i = 1, 2,...n) is a group of weights 
so that,

and T (Zσ(i)) implies the Sup of ith biggest qHCE Zσ(i) by all 
the other qHCEs, that is,

where  shows the Sup of ith is the 

biggest qHCE Zσ(i), for the jth largest qHCE Zσ(j).

Some properties of qHCPOWG operator are as follows,

   Definition 19: Suppose Zi is a group of qHCEs, the power 
hybrid geometric operator of objects 'n' qHCPHG: Zn → Z 
is defined as

where Zσ(i) is the ith largest object in qHCEs arguments

and it is the weighting vector of IHCE influences Zi as well 
as wi is a group where,

and  is the Sup of jth biggest qHCEs  by all 

the other (qHCEs), that is,

where shows the Sup of jth largest 

qHCE , for the ith biggest qHCE . Specifically,  

qHCPHG is reduced to qHCPWG operator if 

 and qHCPHG is reduced to  operator if 

.

   Theorem 1: The qHCPA operator aggregates the "n"  and 
again generates qHCE.
   Proof: The proof is straightforward.
   Remarks: Similarly, qHCPWA, qHCPOWA, qHCPHA, 
qHCPG, qHCPWG, qHCPOWG and qHCPHG also 
generates qHCE.
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5. Some novel similarity measures 
for q-rung orthopair hesitant fuzzy 
connection numbers (qHCNs)

   This section described the generalized form of similarity 
measures (SM) for qHCNs. Some characteristics are aslo 
explained with Jaccard SMs and Dice SMs. Similarity 
measures are vital tool for the similarity degree among 
sets.
   Definition 20: [42] A real-valued function s: x×x → 
[0,1] is called the similarity degree, if it follows the given 
properties for R, S, T ϵ x,

   We straightforwardly developed Jaccard similarity 
measure and Dice similarity measure. In this part, we 
described SMs and weighted SMs (WSM) between 
the q-RHCNs based on the set theoretic approach for a 
collection of two q-RHCNs Z1 and Z2. 

   Definition 21:  For two qHCNs Z1 and Z2, their Jaccard 
SMs are defined as:

The JSMs for qHCN satisfy the following properties of 
SM:

0 ≤ Jac (Z1, Z2) ≤ 1
Jac (Z1, Z2) = Jac (Z2, Z1)
Jac (Z1, Z2) =1 ⇔ Z1 = Z2

   
   Definition 22: For two qHCNs Z1 and Z2, their weighted 
Jaccard JSM (WJSM) are defined as

The WJSM for qHCN satisfies the following properties of 
SM:

0 ≤ Jacw(Z1, Z2) ≤ 1
Jacw(Z1, Z2) = Jacw(Z2, Z1)
Jacw(Z1, Z2) = 1⇔ Z1 = Z2

   When we supposed the weight vector is

at that point the WJSM would shift into JSM. Otherwise 

speaking when , k = 1, 2, 3, ...n then WJSM (Z1, 
Z2) =JSM (Z1, Z2)

   Definition 23: For two qHCNs Z1 and Z2, their Dice SMs 
(DSM) are defined as:

The DSM for qHCN satisfies the following properties of 
SM:

0 ≤ Dic (Z1, Z2) ≤ 1
Dic (Z1, Z2) = Dic (Z2, Z1)
Dic (Z1, Z2) =1 ⇔ Z1 = Z2

   Definition 24: For two qHCNs Z1 and Z2, their weighted 
DSM (WDSM) are defined as:

The WDSM for qHCNs satisfies the following properties 
of SM:

0 ≤ Dicw (Z1, Z2) ≤ 1
Dicw (Z1, Z2) = Dicw (Z2, Z1)
Dicw (Z1, Z2) =1 ⇔ Z1 = Z2

When we assumed the weight vector is

At that point the WDSM would change into DSM. 

Otherwise speaking when , k = 1, 2, 3, ...n then 
WDSM (Z1, Z2) =DSM (Z1, Z2).

6. An algorithm for decision-making 
techniques based on the structure 
of q-rung orthopair hesitant fuzzy 
connection numbers (qHCNs)

   In this section, we employed a well-established approach 
that relies on similarity measures and qHCNs to make 
decisions. The information system has been developed 
with the guidance from experts. Similarity degree plays 
a crucial role in ranking both known and unknown 
alternatives.
Let us consider a unique set of alternatives denoted as A 
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= A1, A2,..., Am, which necessitates investigation with the 
support of a set of known alternatives represented by P. 
Additionally, we had a collection of attributes, denoted 
as G = {G1, G2, ..., Gn}. To facilitate our analysis, we 
introduced a weight vector for these attributes, denoted 
as  ω = (ωt) for t ranging from 1 to n, where ωt is non-
negative, and the sum of all ωt values equals 1. Therefore, 
we would apply the Jaccard weighted SM to find the 
similarity degrees. 
   The algorithm is briefly described step by step in Figure 
1.

   Step 1: Evaluate the known and unknown information 
of alternatives/attributes in the form of qHCNs.
   Step 2: Develop the given data in the form of qHCNs 
according to the proposed approach in Definition 9.
   Step 3: Calculate the similarity degrees between 
the known information and unknown information of 
alternatives.
   Step 4: Rank all alternatives based on the aggregated 
similarity degrees and select the best one.

7. Applications in decision-making 

processes

   The purpose of this section is to utilize the above 
developed similarity measures to resolve a real-life 
difficulty with q-RHF data. 

Example 2:
   Suppose that a counseling center has five various 
disciplines, namely History (G1), Mathematics (G2), 
Biology (G3), Political studies (G4), and Economics (G5) 
related to career determination in the field of Politics 
(A1), Pharmacy (A2), Teaching (A3) and Anatomy (A4). 
Suppose that an unknown student P goes to the counseling 
center for getting assistance to select his/her appropriate 
profession. The purpose of the problem is to establish the 
most projected profession for the student P in the A1, A2 , 
A3 and A4. To achieve this aim, the following stages of the 
suggested approach are developed, which are summarized 
as follows.
   Step 1: A specialist provides the preference to each 
discipline connected to the profession, the q-RHFS were 
summarized in the following Table 1.

Figure 1. Flow chart of proposed algorithm

Table 1. q-RHFNs for all alternatives

Alter
-natives G1 G2 G3 G4 G5

A1 {0.1, 0.25},{0.16, 0.3} {0.2, 0.1},{0.1, 0.4} {0.3, 0.1},{0.5, 0.1} {0.2, 0.14},{0.1, 0.12} {0.25, 0.1},{0.5, 0.1}
A2 {0.1, 0.12},{0.0, 0.2} {0.12, 0.2},{0.3, 0.4} {0.4, 0.1},{0.1, 0.13} {0.1, 0.23},{0.1, 0.3} {0.51, 0.4},{0.1, 0.2}
A3 {0.3, 0.1},{0.2, 0.1} {0.31 0.2},{0.1, 0.4} {0.5, 0.1},{0.2, 0.3} {0.01, 0.6},{0.12, 0.1} {0.6, 0.2},{0.15, 0.2}
A4 {0.4, 0.1},{0.3, 0.5} {0.4, 0.5},{0.2, 0.1} {0.1, 0.0},{0.1, 0.2} {0.3, 0.1},{0.11, 0.2} {0.31, 0.5},{0.12, 0.2}
P {0.7, 0.3},{0.2, 0.1} {0.7, 0.1},{0.1, 0.2} {0.6, 0.4},{0.3, 0.1} {0.4, 0.6},{0.15, 0.1} {0.5, 0.4},{0.3, 0.2}
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   Step 2: qHCNs related to the preferences of the given 
data and student are prepared by applying Definition 9, 
and their results were summarized as Table 2.
   Step 3: By allocating the weight vector w =  (0.15, 
0.10. 0.20, 0.25, 0.30)T corresponding to G1, G2, G3, 

G4 and G5 then by using the recommended weighted 
similarity measure in Definition 14 and respectively, their 
corresponding measurement values are given S (A1P) = 
0.035158, S (A2P) = 0.387027, S (A3P) = 0.190423, S (A4P) 
= 0.183446.
   Step 4: From these calculated findings, we calculated 
the rank order of the alternatives as 

A2 > A3 > A4 > A1,

Where ">" refers to “preferred to”. A2 is the best attribute 
for the students according to the proposed operator.
   Example 3:
   In this section, we illustrated the practical application of 
our established method in medical diagnosis through an 
example related to infectious diseases.
   Considered a scenario where we had a set of patients, 
denoted as A = {A1, A2, A3}, each of them required a 
medical diagnosis. We prepared a list of symptoms 
associated with potential diseases, represented in the form 
of q-RHF information. These symptoms are denoted as:
s = { Muscle pain (M), Temperature (T), Headache (H), 

Fever (F)}

   Then, assumed we had a diagnosed patient, referred to as 
P, who presented with a specific set of symptoms. These 
symptoms served as valuable input data for determining 
the level of disease severity. By employing our method, 
we aimed to calculate the degree of similarity between 
the symptoms exhibited by patient P and those associated 
with various diseases, ultimately to assist in the diagnosis 
process. 
   Step 1: The q-RHF information of all patients are given 
in the Table 3.
   Step 2: By definition 9 of qHCN, we received the 
alternatives values for B = 2 in Table 4.
   Step 3: By allocating the weight vector w =  (0.5, 0.2. 
0.2, 0.1)T corresponding to M, T, H and F then by using 
the recommended weighted Jaccard similarity measure 
in definition 14 and respectively, their corresponding 
measurement values are given.

S (A1P) = 0.0107, S (A2P) = 0.0084, S (A3P) = 0.0073
   Step 4: From these calculated findings, we calculated 
the rank order of the alternatives as 

A1 > A2 > A3

From the above ranking, we could easily diagnose the 
status of patients by their symptoms. It is confirmed that  
A1 was more similar to the P who was diagnosed patient.

Table 2. Obtained qHCNs

Alter
-natives G1 G2 G3 G4 G5

A1
0.129 + 0.686i
+0.184j

0.120 + 0.655i
+0.225j

0.120 + 0.660i
+0.220j

0.151 + 0.756i
+0.091j

0.107 + 0.660i
+0.232j

A2
0.098 + 0.814i
+0.088j

0.102 + 0.618i
+0.280j

0.2235 + 0.688i
+0.0885j

0.125 + 0.714i
+0.160j

0.389 + 0.526i
+0.084j

A3
0.165 + 0.720i
+0.115j

0.199 + 0.6005i
+0.2j

0.235 + 0.580i
+0.185j

0.274 + 0.646i
+0.079j

0.335 + 0.555i
+0.11j

A4
0.165 + 0.520i
+0.315j

0.385 + 0.540i
+0.075j

0.045 + 0.810i
+0.145j

0.213 + 0.668i
+0.118j

0.336 + 0.572i
+0.091j

P 0.415 + 0.520i
+0.065j

0.355 + 0.510i
+0.135j

0.390+ 0.520i
+0.090j

0.440 + 0.495i
+0.065j

0.335 + 0.530i
+0.135j

Table 3. q-RHF information of all patients

Alter
-natives M T H F

A1 {0.4, 0.3},{0.3, 0.6} {0.2, 0.1},{0.7, 0.4} {0.8, 0.1},{0.5, 0.4} {0.2, 0.4},{0.1, 0.2}
A2 {0.3, 0.5},{0.4, 0.2} {0.8, 0.2},{0.3, 0.4} {0.4, 0.1},{0.1, 0.7} {0.1, 0.3},{0.1, 0.9}
A3 {0.3, 0.4},{0.2, 0.4} {0.7 0.2},{0.1, 0.4} {0.5, 0.1},{0.8, 0.3} {0.6, 0.6},{0.2, 0.1}
P {0.7, 0.3},{0.2, 0.8} {0.7, 0.1},{0.8, 0.2} {0.6, 0.4},{0.8, 0.1} {0.9, 0.6},{0.1, 0.1}
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Table 4.  qHCNs

Alter
-natives M T H F

A1
0.050 + 0.848i
+0.100j

0.007 + 0.835i
+0.157j

0.122 + 0.815i
+0.062j

0.048 + 0.940i
+0.010j

A2
0.078 + 0.877i
+0.043j

0.154 + 0.799i
+0.046j

0.040 + 0.835i
+0.123j

0.006 + 0.806i
+0.186j

A3
0.055 + 0.902i
+0.042j

0.129 + 0.830i
+0.039j

0.024 + 0.083i
+0.142j

0.175 + 0.816i
+0.008j

P 0.125 + 0.723i
+0.150j

0.046 + 0.862i
+0.091j

0.072+ 0.823i
+0.104j

0.289 + 0.708i
+0.002j

Table 5. Comparison analysis

Methods Aggregation operators Ranking

Garg et al.[41] Distance Measures for IFCN ×

Tahir et al.[42]
IHPWA A1 > A2 > A3

IHPWG A1 > A2 > A3

Wajid Ali et al.[28]
IHCPWA A1 > A2 > A3

IHCPWG A1 > A2 > A3

Proposed approach
q-HCNPWA A1 > A2 > A3

q-HCNPWG A1 > A2 > A3

7.1 Comparative analysis

   In this section, we made a comparison between the 
existing studies and proposed model for the advancement 
and consistency of our structure. In addition, we conducted 
an in-depth comparison between the existing studies and 
our proposed model to highlight its advancements and 
consistency in structure. Subsequently, we discussed the 
advantages and limitations of our proposed model in detail.
   We evaluated the performance of the proposed method by 
comparing it with current operators, such as power average 
aggregation and power geometric aggregation, specifically 
within the context of intuitionistic hesitant fuzzy data, as 
proposed by Tahir et al. [42], Garg et al. [41], and Wajid 
et al. [28]. For this comparative analysis, we utilized the 
data from example 2, and the corresponding results were 
presented in Table 5. This evaluation provided valuable 
insights into the effectiveness and efficiency of our 
approach relative to the existing methodologies.
   In this analysis, we observed that the methods outlined 
by Tahir et al. [42] and Wajid et al. [28] were well-suited 
for an intuitionistic hesitant fuzzy environment. However, 
our proposed model stood out as it was more robust and 
versatile. Unlike the previous approaches, our model was 
capable of handling not only intuitionistic hesitant fuzzy 
environments but also pythagorean hesitant, fermatean 
hesitant and q-rung hesitant fuzzy environments.
   Furthermore, by setting the parameter B = 1 our proposed 
method successfully reproduced all the results achieved 
by the approaches defined in [28, 42]. This consistency 

demonstrated the reliability and broader applicability of 
our developed model and made it a superior alternative for 
dealing with various types of hesitant fuzzy environments.

7.2 Advantages and limitation of the proposed 
approach

   Some benefits and limitations of the proposed approach 
are listed as below:
• The proposed model serves as a generalized framework 

that extends both hesitant fuzzy sets and q-Rung 
orthopair fuzzy sets. By incorporating the connection 
number from set pair analysis, this model significantly 
enhances its ability to handle data uncertainty more 
effectively than existing approaches.

• The inclusion of the parameter B in the q-Rung 
hesitant connection number (q-HCN) model enables 
it to encompass various fuzzy environments, such 
as intuitionistic hesitant connection numbers, 
pythagorean hesitant connection numbers, fermatean 
hesitant connection numbers and square root fuzzy 
data.

• As demonstrated in Table 5, when the parameter B 
= 1, the results generated by the proposed model 
align closely with those of existing models, thereby 
confirming the correctness and consistency of the 
proposed approach.

• To facilitate data processing, the model included a 
series of aggregation operators, and several similarity 
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measures had been applied to address real-world 
problems, which showed the practical applicability of 
the model in diverse scenarios.

• However, the proposed model is limited to handling 
q-Rung fuzzy data. It did not extend to p,q-Rung 
orthopair fuzzy sets, where it failed to provide accurate 
results.

• Similarly, the model is not equipped to handle bipolar 
fuzzy information, thus made it unsuitable for p,q-
Bipolar fuzzy data neither.

8. Conclusion

   In this research, we introduced a novel concept: q-rung 
orthopair hesitant fuzzy sets, which was achieved by 
amalgamating q-rung orthopair fuzzy sets (q-ROFSs) with 
hesitant fuzzy sets (HFSs). q-rung orthopair hesitant fuzzy 
sets, denoted as q-RHFSs, represented a more versatile and 
potent tool for effectively managing situations characterized 
by ambiguity and uncertainty. We enriched this framework 
by integrating the notion of the connection number from 
set pair analysis into the q-rung orthopair hesitant fuzzy 
environment, thereby giving rise to an entirely new 
theoretical construct termed q-rung orthopair hesitant fuzzy 
connection number (qHCN). Furthermore, this research 
extended the scope of similarity measures, specifically 
Jaccard and Dice similarity measures, by introducing 
weighted versions of these measures. The salient properties 
of these novel measures had been thoroughly examined. 
We also presented a novel algorithm designed to calculate 
the attributes of alternatives by utilizing the weighted 
similarity measures to discern the characteristics of both 
known and unknown alternatives. An illustrative medical 
diagnosis problem had been successfully addressed by 
using this innovative approach, which highlighted its 
potential applications in the domains of pattern recognition, 
artificial intelligence and decision makings. We conducted 
an in-depth comparative study which incorporated the latest 
research findings and included a detailed analysis of both 
the benefits and limitations of the proposed model. This 
comprehensive evaluation provides a clearer understanding 
of how our model stands in relation to current advancements 
and identifies areas where it excels as well as where it may 
have constraints. Our future endeavors will encompass 
the application of this approach across various research 
domains, with a focus on addressing practical challenges. 
We intend to explore further extensions of fuzzy models 
[54-57], including bipolar fuzzy sets, complex fuzzy sets 
and cubic fuzzy models. Additionally, we will delve into 
neural network problems and endeavor to devise models 
rooted in optimization theory as part of our ongoing 
research agenda [58-59].
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