Elias Randjbaran 1 * , Darya Khaksari 2 , Hamid Mehrabi 3 , Rizal Zahari 4 , Dayang L. Majid 5 , Mohamed T. H. Sultan 6 , Norkhairunnisa Mazlan 7 , Mehdi Granhemat 8
Correspondence: elias@gmx.co.uk
Show More
[1]López-Higuera JM, editor. Handbook of optical fibre sensing technology. Chichester: Wiley; 2002.
[2]Kersey AD. A review of recent developments in fiber optic sensor technology. Optical Fiber Technology. 1996;2(3):291-317. doi:10.1006/ofte.1996.0036.
[3]Erwin RJ, Denoyer KK. 1000 days on orbit: lessons learned from the ACTEX-I flight experiment. In: Jacobs JH, editor. Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies. SPIE; 2000:116-121. (Proceedings of SPIE; Vol. 3991). doi:10.1117/12.388152.
[4]Goben M, Goldfeld Y. Enhanced self-sensory measurements for smart carbon-based textile reinforced cement structures. Measurement. 2023;210:112546. doi:10.1016/j.measurement.2023.112546.
[5]Wang Y, Huang Q, Zhu W, Yang M. Chemical etching of D-shaped optical fiber for evanescent field sensing. Journal of Lightwave Technology. 2015;33(18):3923-3928. doi:10.1109/JLT.2015.2464095.
[6]Zhang W, Webb DJ, Peng GD. Polymer optical fiber fabrication using 3D printing. In: 2017 16th International Conference on Optical Communications and Networks (ICOCN). Piscataway (NJ): IEEE; 2017:1-3. doi:10.1109/ICOCN.2017.8121234.
[7]Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology. 2005;65(15-16):2575-2587. doi:10.1016/j.compscitech.2005.07.014.
[8]Kang DH, Kim CW, Park SW, Kim CG. Protection and embedding of optical fiber sensors in composite laminates for smart structures. Composite Structures. 2016;140:714-722. doi:10.1016/j.compstruct.2016.01.015.
[9]Randjbaran E, Majid DL, Zahari R, Sultan MTH, Mazlan N. Real-time strain monitoring in composites using flat optical fibre sensors - review paper. Journal of Applied Mechanics Review and Reports. 2025;1(1):1-6. Available from: https://www.wecmelive.com/peer-review/real-time-strain-monitoring-in-composites-using-flat-optical-fibre-sensors-review-paper-650.html
[10]Bao X, Webb DJ, Jackson DA. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. Journal of Lightwave Technology. 1995;13(7):1340-1348. doi:10.1109/50.400684.
[11]Smith R, Singh N, Paget C, Foote P. In-flight strain monitoring of a composite wingbox using embedded fiber Bragg gratings: a case study on the Airbus A350. Composite Structures. 2021;265:113742. doi:10.1016/j.compstruct.2021.113742.
[12]Hénault JM, Moreau G, Blairon S, et al. Truly distributed optical fiber sensors for structural health monitoring: from the telecommunication optical fiber drawling tower to water leakage detection in dikes and concrete structure strain monitoring. Advances in Civil Engineering. 2010;2010:930796. doi:10.1155/2010/930796.
[13]James SW, Tatam RP. Optical fibre long-period grating sensors: characteristics and application. Measurement Science and Technology. 2003;14(5):R49-R61. doi:10.1088/0957-0233/14/5/201.
[14]Kinet D, Mégret P, Goossen KW, Qiu L, Heider D, Caucheteur C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors (Basel). 2014;14(4):7394-7419. doi:10.3390/s140407394.
[15]Farrar CR, Worden K. Structural health monitoring: a machine learning perspective. Chichester: Wiley; 2012. doi:10.1002/9781118443118.
[16]Thakur VK, Vennerberg D, Madbouly SA, Kessler MR. Green composites from natural fibers: mechanical and chemical aging properties. International Journal of Polymer Analysis and Characterization. 2014;19(3):256-271. doi:10.1080/1023666X.2014.880017.
[17]Mouritz AP, Gellert E, Burchill P, Challis K. Review of advanced composite structures for naval ships and submarines. Composite Structures. 2001;53(1):21-42. doi:10.1016/S0263-8223(00)00175-6.
[18]Cawley P. Structural health monitoring: closing the gap between research and industrial deployment. Structural Health Monitoring. 2018;17(5):1225-1244. doi:10.1177/1475921717750047.
[19]López-Higuera JM, Cobo LR, Incera AQ, Cobo A. Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology. 2011;29(4):587-608. doi:10.1109/JLT.2011.2106479.
[20]Li D, Shi H, Cai B, et al. A review of technical advances and applications of intelligent inspection robots in structural health monitoring. SmartBot. 2025;1(3):e70000. doi:10.1002/smb2.70000.
[21]Alazmi YH, Al-Zu'bi M, Al-Kheetan MJ, Rabi M. A review of robotic applications in the management of structural health monitoring in the Saudi Arabian construction sector. Buildings. 2025;15(16):2965. doi:10.3390/buildings15162965.
[22]Fayyad TM, Taylor S, Feng K, Hui FK. A scientometric analysis of drone-based structural health monitoring and new technologies. Advances in Structural Engineering. 2024;28(1):122-144. doi:10.1177/13694332241255734.
[23]Pracucci A, Vandi L, Belletti F, et al. Integration of piezoelectric energy harvesting systems into building envelopes for structural health monitoring with fiber optic sensing technology. Energies (Basel). 2024;17(7):1789. doi:10.3390/en17071789.
[24]Duan L, Liu J. Smart composite materials and IoT: revolutionizing real-time railway health monitoring. MRS Communications. 2025;15(1):64-80. doi:10.1557/s43579-024-00667-9.
[25]Janeliukstis R, Mironovs D. Smart composite structures with embedded sensors for load and damage monitoring–a review. Mechanics of Composite Materials. 2021;57(2):131-152. doi:10.1007/s11029-021-09945-2.
[26]Silva KS, Silva FA, Mahfoud T, et al. On the use of embedded fiber optic sensors for measuring early-age strains in concrete. Sensors (Basel). 2021;21(12):4171. doi:10.3390/s21124171.
[27]Biondi AM, Zhou J, Guo X, et al. Pipeline structural health monitoring using distributed fiber optic sensing textile. Optical Fiber Technology. 2022;70:102876. doi:10.1016/j.yofte.2022.102876.
[28]Anjana K, Herath M, Epaarachchi J. Design of a distributed optical fibre sensor system for geohazards early warning: realtime multiparameter monitoring. In: Proceedings of the International Engineering Research Symposium. Singapore: Springer Nature Singapore; 2024:105-115. doi:10.1007/978-981-97-5509-1_12.
[29]Mishra S, Sharan P, Saara K. Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways. Engineering Failure Analysis. 2022;138:106376. doi:10.1016/j.engfailanal.2022.106376.
[30]Morgese M, Domaneschi M, Ansari F, Cimellaro GP, Inaudi D. Improving distributed fiber-optic sensor measures by digital image correlation: two-stage structural health monitoring. ACI Structural Journal. 2021;118(6):253-264. doi:10.14359/51733031.
[31]Chen B, Zhu Z, Su Z, Yao W, Zheng S, Wang P. Optical fiber sensors in infrastructure monitoring: a comprehensive review. Intelligent Transportation Infrastructure. 2023;2:liad018. doi:10.1093/iti/liad018.
[32]Wang X, He J, Lian J, Sun B, Zhang J, Wang B. Real-time strain monitoring of wind turbine blades using flat FBG arrays. Renewable Energy. 2020;156:1235-1244. doi:10.1016/j.renene.2020.04.098.
[33]Cheng G, Wang Z, Li G, Shi B, Wu J, Cao D, Nie Y. Advanced research and engineering application of tunnel structural health monitoring leveraging spatiotemporally continuous fiber optic sensing information. Photonics. 2025;12(9):855. doi:10.3390/photonics12090855.
[34]Sasy Chan YW, Wang HP, Xiang P. Optical fiber sensors for monitoring railway infrastructures: a review towards smart concept. Symmetry (Basel). 2021;13(12):2251. doi:10.3390/sym13122251
[35]Golovastikov NV, Kazanskiy NL, Khonina SN. Optical fiber-based structural health monitoring: advancements, applications, and integration with artificial intelligence for civil and urban infrastructure. Photonics. 2025;12(6):615. doi:10.3390/photonics12060615.
[36]Bado MF, Casas JR. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors (Basel). 2021;21(5):1818. doi:10.3390/s21051818.
[37]Leal-Junior AG, Frizera A, Pontes MJ, Marques C, Ribeiro MR. Polymer optical fiber sensors in healthcare applications: a comprehensive review. Sensors (Basel). 2019;19(14):3156. doi:10.3390/s19143156.
[38]Yao R, Ge Z, Wang D, Shang N, Shi J. Self-sensing joints for in-situ structural health monitoring of composite pipes: a piezoresistive behavior-based method. Engineering Structures. 2024;308:118049. doi:10.1016/j.engstruct.2024.118049.
[39]Ren Y, Bareille O, Lin Z, Huang XR. Review of damage detection techniques in vibration-based structural health monitoring. International Journal of Dynamics and Control. 2025;13(1):99-115. doi:10.1007/s40435-024-01578-2.
Copyright © 2025 Elias Randjbaran, Darya Khaksari, Hamid Mehrabi, Rizal Zahari, Dayang L. Majid, Mohamed T. H. Sultan, Norkhairunnisa Mazlan, Mehdi Granhemat

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn