Correspondence: 2628301484@qq.com
Show More
[1]Bai W, Zheng G, Mu Y, Ma H, Han Z, Xue Y. Cooperative spectrum sensing method based on channel attention and parallel CNN-LSTM. Digital Signal Processing. 2025 Mar 1;158:104963. doi: 10.1016/j.dsp.2024.104963.
[2]Boscardin MD, Cording EJ. Building response to excavation-induced settlement. Journal of Geotechnical engineering. 1989 Jan;115(1):1-21.
[3]Chen L, Hashiba K, Liu Z, Lin F, Mao W. Spatial-temporal fusion network for maximum ground surface settlement prediction during tunnel excavation. Automation in Construction. 2023 Mar 1;147:104732. doi: 10.1016/j.autcon.2022.104732.
[4]Chen RP, Zhang P, Kang X, Zhong ZQ, Liu Y, Wu HN. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods. Soils and Foundations. 2019 Apr 1;59(2):284-95. doi: 10.1016/j.sandf.2018.11.005.
[5]Chen S, Cao J, Wan Y, Huang W, Abdel-Aty M. A novel CPO-CNN-LSTM based deep learning approach for multi-time scale deflection basin area prediction in asphalt pavement. Construction and Building Materials. 2025 Jan 10;458:139540. doi: 10.1016/j.conbuildmat.2024.139540.
[6]Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785-794). doi: 10.1145/2939672.2939785.
[7]Cheng MY, Hoang ND, Wu YW. Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study. Automation in Construction. 2013 Nov 1;35:306-13. doi: 10.1016/j.autcon.2013.05.018.
[8]Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995 Sep;20:273-97. doi: 10.1007/BF00994018.
[9]Dong W, Huang Y, Lehane B, Ma G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction. 2020 Jun 1;114:103155. doi: 10.1016/j.autcon.2020.103155.
[10]Dong X, Lian Y, Liu Y. Small and multi-peak nonlinear time series forecasting using a hybrid back propagation neural network. Information Sciences. 2018 Jan 1;424:39-54. doi: 10.1016/j.ins.2017.09.067.
[11]Elmaz F, Eyckerman R, Casteels W, Latré S, Hellinckx P. CNN-LSTM architecture for predictive indoor temperature modeling. Building and Environment. 2021 Dec 1;206:108327. doi: 10.1016/j.buildenv.2021.108327.
[12]Fu HY, Zhao YY, Ding HJ, Rao YK, Yang T, Zhou MZ. A novel intelligent displacement prediction model of karst tunnels. Scientific Reports. 2022 Oct 10;12(1):16983. doi: 10.1038/s41598-022-21333-x.
[13]Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) 2004 Jul 25 (Vol. 2, pp. 985-990). Ieee. doi: 10.1109/IJCNN.2004.1380068.
[14]Guo Y, Jia X, Li X, Wang Y, Kumar R, Sharma R, Swaminathan M. Extrapolation With Range Determination of 2-D Spectral Transposed Convolutional Neural Network for Advanced Packaging Problems. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2023 Sep 22;13(10):1533-44. doi: 10.1109/TCPMT.2023.3317851.
[15]Hasanipanah M, Noorian-Bidgoli M, Jahed Armaghani D, Khamesi H. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers. 2016 Oct;32:705-15. doi: 10.1007/s00366-016-0447-0.
[16]Hoła A, Czarnecki S. Random forest algorithm and support vector machine for nondestructive assessment of mass moisture content of brick walls in historic buildings. Automation in Construction. 2023 May 1;149:104793. doi: 10.1016/j.autcon.2023.104793.
[17]Huang H, Wang Z, Liao Y, Gao W, Lai C, Wu X, Zeng Z. Improving the explainability of CNN-LSTM-based flood prediction with integrating SHAP technique. Ecological Informatics. 2024 Dec 1;84:102904. doi: 10.1016/j.ecoinf.2024.102904.
[18]Huang M, Zhou X, Yu J, Leung CF, Tan JQ. Estimating the effects of tunnelling on existing jointed pipelines based on Winkler model. Tunnelling and Underground Space Technology. 2019 Apr 1;86:89-99. doi: 10.3390/app12073342.
[19]Jia P, Zhao W, Khoshghalb A, Ni P, Jiang B, Chen Y, Li S. A new model to predict ground surface settlement induced by jacked pipes with flanges. Tunnelling and Underground Space Technology. 2020 Apr 1;98:103330. doi: 10.1016/j.tust.2020.103330.
[20]Kang Q, Chen EJ, Li ZC, Luo HB, Liu Y. Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling. Underground Space. 2023 Dec 1;13:335-50. doi: 10.1016/j.undsp.2023.05.006.
[21]Kim D, Kwon K, Pham K, Oh JY, Choi H. Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization. Automation in construction. 2022 Aug 1;140:104331. doi: 10.1016/j.autcon.2022.104331.
[22]Kong F, Lu D, Ma Y, Tian T, Yu H, Du X. Novel hybrid method to predict the ground-displacement field caused by shallow tunnel excavation. Science China Technological Sciences. 2023 Jan;66(1):101-14. doi: 10.1007/s11431-022-2079-8.
[23]Koo B, La S, Cho NW, Yu Y. Using support vector machines to classify building elements for checking the semantic integrity of building information models. Automation in Construction. 2019 Feb 1;98:183-94. doi: 10.1016/j.autcon.2018.11.015.
[24]Kumar S, Kumar D, Donta PK, Amgoth T. Land subsidence prediction using recurrent neural networks. Stoch Environ Res Risk Assess [Internet]. 2022 Feb [cited 2024 Sep 7];36(2):373–88. doi: 10.1007/s00477-021-02138-2.
[25]Liu H, Chen H, Du J, Xie C, Zhou Q, Wang R, Jiao L. Auto-adjustment label assignment-based convolutional neural network for oriented wheat diseases detection. Computers and Electronics in Agriculture. 2024 Jul 1;222:109029. doi: 10.1016/j.compag.2024.109029.
[26]Liu Y, Liu L, Yang L, Hao L, Bao Y. Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost). Automation in Construction. 2021 Jun 1;126:103678. doi: 10.1016/j.autcon.2021.103678.
[27]Liu Y, Shu B, Chen Y, Zhang H. Spatial vulnerability assessment of rural settlements in hilly areas using BP neural network algorithm. Ecological Indicators. 2023 Dec 15;157:111278. doi: 10.1016/j.ecolind.2023.111278.
[28]Loganathan N, Poulos HG. Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and geoenvironmental engineering. 1998 Sep;124(9):846-56. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846).
[29]Lu D, Kong F, Du X, Shen C, Gong Q, Li P. A unified displacement function to analytically predict ground deformation of shallow tunnel. Tunnelling and Underground Space Technology. 2019 Jun 1;88:129-43. doi: 10.1016/j.tust.2019.03.005.
[30]Mahmoodzadeh A, Mohammadi M, Daraei A, Ali HF, Al-Salihi NK, Omer RM. Forecasting maximum surface settlement caused by urban tunneling. Automation in Construction. 2020 Dec 1;120:103375. doi: 10.1016/j.autcon.2020.103375.
[31]Mariniello G, Pastore T, Asprone D, Cosenza E. Layout-aware extreme learning machine to detect tendon malfunctions in prestressed concrete bridges using stress data. Automation in Construction. 2021 Dec 1;132:103976. doi: 10.1016/j.autcon.2021.103976.
[32]Olsen PC. Evaluation of triangular plate elements in rigid-plastic finite element analysis of reinforced concrete. Computer methods in applied mechanics and engineering. 1999 Aug 1;179(1-2):1-7. doi: 10.1016/S0045-7825(99)00038-9.
[33]O'Sullivan C. Particulate discrete element modelling: a geomechanics perspective. CRC Press; 2011 Apr 6.
[34]Peng J, Shen D, Nie T, Kou Y. RLclean: An unsupervised integrated data cleaning framework based on deep reinforcement learning. Information Sciences. 2024 Nov 1;682:121281. doi: 10.1016/j.ins.2024.121281.
[35]Qian C, Tang W, Wang Y. RGAnomaly: Data reconstruction-based generative adversarial networks for multivariate time series anomaly detection in the Internet of Things. Future Generation Computer Systems. 2025 Feb 10:107751. doi: 10.1016/j.future.2025.107751.
[36]Ranjbar I, Toufigh V. Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete. Cement and Concrete Research. 2022 Dec 1;162:107003. doi: 10.1016/j.cemconres.2022.107003.
[37]Ren M, Cheng G, Zhu W, Nie W, Guan K, Yang T. A prediction model for surface deformation caused by underground mining based on spatio-temporal associations. Geomatics, natural hazards and risk. 2022 Dec 31;13(1):94-122. doi: 10.1080/19475705.2021.2015460.
[38]Ren Q, Li M, Kong T, Ma J. Multi-sensor real-time monitoring of dam behavior using self-adaptive online sequential learning. Automation in Construction. 2022 Aug 1;140:104365. doi: 10.1016/j.autcon.2022.104365.
[39]Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986 Oct 9;323(6088):533-6. doi: 10.1038/323533a0.
[40]Shen SL, Cui QL, Ho CE, Xu YS. Ground response to multiple parallel microtunneling operations in cemented silty clay and sand. Journal of Geotechnical and Geoenvironmental Engineering. 2016 May 1;142(5):04016001. doi: 10.1061/(ASCE)GT.1943-5606.0001441.
[41]Swaminathan M, Bhatti OW, Guo Y, Huang E, Akinwande O. Bayesian learning for uncertainty quantification, optimization, and inverse design. IEEE Transactions on Microwave Theory and Techniques. 2022 Oct 6;70(11):4620-34. doi: 10.1109/TMTT.2022.3206455.
[42]Tang XW, Gan PL, Liu W, Zhao Y. Surface settlements induced by tunneling in permeable strata: a case history of Shenzhen Metro. Journal of Zhejiang University-Science A. 2017 Oct 1;18(10):757-75. doi: 10.1631/jzus.A1600522.
[43]Wang F, Du X, Li P. Predictions of ground surface settlement for shield tunnels in sandy cobble stratum based on stochastic medium theory and empirical formulas. Underground Space. 2023 Aug 1;11:189-203. doi: 10.1016/j.undsp.2023.01.003.
[44]Wang X, Pan Y, Chen J. Digital twin with data-mechanism-fused model for smart excavation management. Automation in Construction. 2024 Dec 1;168:105749. doi: 10.1016/j.autcon.2024.105749.
[45]Wei G, Zhang XH, Xu YF, Wang Z. Prediction of ground settlement due to excavation of a quasi-rectangular shield tunnel based on stochastic medium theory. Geotechnical and Geological Engineering. 2019 Oct;37:3605-18. doi: 10.1038/s41598-024-74164-3.
[46]Wu X, Feng Z, Liu J, Chen H, Liu Y. Predicting existing tunnel deformation from adjacent foundation pit construction using hybrid machine learning. Automation in Construction. 2024 Sep 1;165:105516. doi: 10.1016/j.autcon.2024.105516.
[47]Xia Y, Cheng X, Hu X. Soil organic matter content prediction in tobacco fields based on hyperspectral remote sensing and generative adversarial network data augmentation. Computers and Electronics in Agriculture. 2025 Jun 1;233:110164. doi: 10.1016/j.compag.2025.11016.
[48]Xiong SH, Wang ZP, Li G, Skibniewski MJ, Chen ZS. Prediction of airport runway settlement using an integrated SBAS-InSAR and BP-EnKF approach. Information Sciences. 2024 Apr 1;665:120376. doi: 10.1016/j.ins.2024.120376.
[49]Xu Q, Lei S, Zhu Y, Zhao W, Wang C, Wang D. Theoretical prediction model for surface settlement caused by the excavation of new tunnels undercrossing existing tunnels based on modified stochastic medium theory. KSCE Journal of Civil Engineering. 2022 Sep;26(9):4136-45. doi: 10.1007/s12205-022-1911-6.
[50]Zhang J, Xu M, Cui M, Xin Y, Wang H, Su P. Prediction of ground subsidence caused by shield tunnel construction under hidden karst cave. Geotechnical and Geological Engineering. 2022 Jul;40(7):3839-50. doi: 10.1007/s10706-022-02136-3.
[51]Zhang N, Zhou A, Pan Y, Shen SL. Measurement and prediction of tunnelling-induced ground settlement in karst region by using expanding deep learning method. Measurement. 2021 Oct 1;183:109700. doi: 10.1016/j.measurement.2021.109700.
[52]Zhang P, Wu HN, Chen RP, Dai T, Meng FY, Wang HB. A critical evaluation of machine learning and deep learning in shield-ground interaction prediction. Tunnelling and Underground Space Technology. 2020 Dec 1;106:103593. doi: 10.1016/j.tust.2020.103593.
[53]Zhang WG, Li HR, Wu CZ, Li YQ, Liu ZQ, Liu HL. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling. Underground Space. 2021 Aug 1;6(4):353-63. doi: 10.1016/j.undsp.2019.12.003
[54]Zhang Y, Fang Z, Fan J. Generalization analysis of deep CNNs under maximum correntropy criterion. Neural Networks. 2024 Jun 1;174:106226. doi: 10.1016/j.neunet.2024.106226.
[55]Zhang Z, Zhang M. Mechanical effects of tunneling on adjacent pipelines based on Galerkin solution and layered transfer matrix solution. Soils and Foundations. 2013 Aug 1;53(4):557-68. doi: 10.1016/j.sandf.2013.06.007.
[56]Zhang Z, Zhang M, Jiang Y, Bai Q, Zhao Q. Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism. Soils and Foundations. 2017 Apr 1;57(2):211-26. doi: 10.1016/j.sandf.2017.03.004.
[57]Zheng Y, Yan J, Su R, Ma S, Li Y, Wang X, Zheng J, Zhu Y, Yu Y. Investigation of the settlement mechanism and control measures of a super-large section tunnel in a giant karst cave using ultra-thick backfill method. Tunnelling and Underground Space Technology. 2023 Jul 1;137:104956. doi: 10.1016/j.tust.2022.104956.
[58]Zhou J, Shi X, Du K, Qiu X, Li X, Mitri HS. Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics. 2017 Jun 1;17(6):04016129. doi: 10.1061/(ASCE)GM.1943-5622.0000817.
[59]Zhou Z, Ding H, Miao L, Gong C. Predictive model for the surface settlement caused by the excavation of twin tunnels. Tunnelling and Underground Space Technology. 2021 Aug 1;114:104014. doi: 10.1016/j.tust.2021.104014
[60]Zhang SG, Zhang XD, Li YJ. Prediction of ground surface settlement around foundation pits using artificial neural networks. Journal of Liaoning Technical University (Natural Science Edition). 2001;(6):767–769. Available from: https://kns.cnki.net/kcms2/article/abstract?v=VcTOyLYtvEx7KQBwCECrXCf46qv1kGBL4W9c7gnW7MuY4IXa-5BNIgUZe84NtInqpsZg70XdiLKC3wP8jQrDkahGOQgKmKupbYkpT3dJUaUKP_bxouFXenoP2FpGXQ4KFOpf_rFBvACRJPE83_zJl7Azfk_kvClC9sogtnXqO7rbfPtgQPmsuo7h_6vuQzrS&uniplatform=NZKPT&language=CHS.
[61]Li WX, Zhai SH, Qiao JL. Analysis of ground surface subsidence caused by tunnel excavation and its effects. Chinese Journal of Rock Mechanics and Engineering [Internet]. 2004;(S2):4752–4756. Available from: https://kns.cnki.net/kcms2/article/abstract?v=VcTOyLYtvEwz84YR8dZn92dNrvWdPyVewqlcbm2_772xAoQCVL3L4Kf8E96jKsB1G8Gnr9zyGwI49_79oBeDEA5UIDFOi6Pie_s5IBgRgdfgQaYAF8gxYBI75zHKD84brNDMpmnKz7SvYwr1C_2AU89oVsCnRr0e0fyyZn9jLkrNsfslJpk06aq_TcdpFoTZ&uniplatform=NZKPT&language=CHS.
Copyright © 2025 Zekun Zhu, Chang Liu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.

Luminescience press is based in Hong Kong with offices in Wuhan, China.
E-mail: publisher@luminescience.cn