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Abstract: The accuracy of surface settlement predictions, which aim to limit theoretical, numerical and experimental
simulation errors, is influenced by several factors, including parameter values, assumption conditions and other
limitations. However, the recent introduction of machine learning (ML) and deep learning (DL) has provided new
ideas for surface settlement prediction. In this paper, the advances of ML and DL in surface settlement prediction are
systematically reviewed. The classification of surface settlement prediction methods is first conducted based on the
principles of commonly used ML and DL algorithms, including maximum surface settlement prediction and surface
settlement time series prediction. Existing studies are then analysed, and common methods for improving prediction
accuracy are presented. Finally, the performance of common ML and DL algorithms in predicting surface settlement
is compared using the Kunming dataset. The study then draws conclusions based on the results of the comparative
studies and literature research, highlighting the impact of dataset quality and feature selection on the generalisation
ability of prediction models and the real-time prediction ability of existing studies.
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1. Introduction

The release of unbalanced ground stresses during
the process of excavation frequently results in surface
settlement [14,45,57]. Surface settlements caused by
excavations for tunnels commonly result in the impairment
of surface structures. This may potentially undermine
the load-bearing capacity of beams and columns, while
also adversely affecting the structural stability of the
whole structure [2,40]. A plethora of theories have been
formulated by researchers, including continuum theory
and stochastic medium theory [43,45,49]. Based on these
theories, traditional prediction methods — including,
but not limited to, fitting formulas(e.g.,using the gap

parameter to define the equivalent ground loss parameter
[28], theoretical calculations(e.g.,Fourier series-based
displacement function for circular shallow tunnels [29],
numerical simulations(e.g.,Finite Element Method [32],
Discrete element modelling [33]), and model estimation
[18] — can be utilised for predicting surface settlement.
However, the conventional surface settlement prediction
methodologies outlined above are predominantly
founded upon simplified assumptions [56] or empirical
formulae [55], impeding the capacity to predict surface
settlement with precision. The mechanical properties of
soil are influenced by multiple factors, such as geological
conditions, groundwater, and construction methods, which
interact with each other in complex ways. To improve
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the prediction accuracy of surface settlement, machine
learning (ML) and deep learning (DL) algorithms have
been introduced. Compared to traditional prediction
methods, ML and DL have the capacity to discern intricate
non-linear correlations from surface settlement data,
thereby identifying more nuanced patterns and trends.
In recent studies, Back-Propagation (BP) [4], Radial
Basis Function (RBF) [3-4], Long Short-Term Memory
(LSTM) [21,30,37,52], Gated Recurrent Unit (GRU)
[51], eXtreme Gradient Boosting (XGBoost) [21,53],
Generalized Regression Neural Network (GRNN) [4],
Support Vector Machine (SVM) [21,30,38,52-53] and
Extreme Learning Machine (ELM) [12,22], are frequently
used for surface settlement prediction.

However, these ML and DL algorithms also have
certain limitations. For instance, factors such as the
computational resources available, and the quality of the
datasets can influence the accuracy of the predictions and
the generalisability of the models [60-61]. In order to
enhance the efficacy and performance of machine learning
(ML) and deep learning (DL) algorithms, the utilisation of
optimised parameters (e.g.,modified standard penetration
tests [4]) or advanced algorithms (e.g.,Particle Swarm
Optimization (PSO) [22,58]) has been demonstrated in
related studies. This has led to a substantial improvement in
the generalisation capability and precision of SS predictions
[4,12,14-15,18,21-22,29,33,41-42,55-56,58,59].

This paper provides a comprehensive overview of recent
advancements in the application of machine learning (ML)
and deep learning (DL) algorithms for predicting surface
settlement.Specifically, the review addresses the following
key questions: (i) What are the commonly used ML and DL
algorithms in surface settlement prediction, and what are
their underlying principles? (ii) How can surface settlement
problems be formulated as ML and DL tasks, and how
should they be categorized? (iii) What critical challenges
must be addressed in future research to advance the use of
ML- and DL-based surface settlement prediction methods?
The structure of this paper is organized as follows. Section
2 begins with a brief introduction to the core principles
of commonly used ML and DL algorithms. This section
also highlights the applications of these algorithms in
areas of civil engineering. In Section 3, we discuss how
DL and ML algorithms can be utilized to predict surface
settlement and categorize surface settlement problems into
the following types:Maximum Surface Settlement (MSS)
prediction and Surface Settlement Time Series (SSTS)
prediction. Subsequently, Section 4 compares and analyzes
the performance of commonly used ML and DL algorithms
in surface settlement prediction tasks using the Kunming
dataset. Based on the research findings and a review of
the literature, Section 5 provides a critical discussion of
the main issues addressed in the study and offers insights
into future directions for development. Finally, the paper
concludes with some concluding remarks.
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2. Overview of AI method in surface
settlement prediction

The application of machine learning and deep learning
algorithms in surface settlement prediction caused by
tunnel excavation has significantly improved prediction
accuracy and generalization ability. These algorithms are
clearly categorized into two main types: machine learning
algorithms and deep learning algorithms, based on their
algorithmic structure and learning approaches. Machine
learning algorithms, such as Random Forest (RF), Support
Vector Machine (SVM), and Extreme Learning Machine
(ELM), primarily rely on constructing mathematical
models to extract features from historical data and make
predictions. The advantage of these algorithms lies
in the high interpretability of their prediction models.
Deep learning algorithms, particularly Recurrent Neural
Networks (RNN) and their variants, such as Long Short-
Term Memory (LSTM) networks and Gated Recurrent
Units (GRU), excel in automatically learning complex
features and temporal dependencies in data by constructing
multi-layer neural network structures. These algorithms
perform exceptionally well when dealing with large-scale,
high-dimensional data, though their model interpretability
tends to be weaker. Both types of algorithms offer unique
advantages in surface settlement prediction, contributing to
the continuous improvement in the accuracy and efficiency
of prediction models.

We have summarized 5 commonly used ML algorithms
and 2 DL algorithms in the field of regression prediction,
elucidated their core principles, and provided examples of
their applications within the realm of civil engineering.

2.1 Machine learning methods

2.1.1 Support Vector Machine (SVM)

Support Vector Machines [8] (SVM) have been extensively
studied and applied in the field of machine learning and
have become a crucial tool for solving classification and
regression problems. In regression prediction tasks, SVM
aims to find a function model that accurately fits the data
samples, minimizing the deviation between predicted and
actual values. In recent studies, Min-Yuan Cheng et al.[7]
utilized the SVM algorithm to predict trends in building
prices. Similarly, Bonsang Koo et al. [23] applied the SVM
algorithm to examine the semantic integrity of the mapping
between Building Information Modeling (BIM) elements
and Industry Foundation Classes (IFC). Furthermore, Anna
Hota et al. [16] employed SVM for the non-destructive
identification of brick wall moisture.

The core principle of SVM lies in identifying an optimal
hyperplane in the feature space to perform regression
prediction tasks. This process involves maximizing the
margin between the support vectors and the hyperplane to
enhance the model's generalization capability. Additionally,
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by introducing kernel functions, SVM can handle nonlinear
problems, making it applicable to more complex data
scenarios. Finally, optimization algorithms are employed
to solve the quadratic programming problem, thereby
determining the precise position of the optimal hyperplane.
In order to find the optimal hyperplane, researchers often
assume a specific form for the hyperplane regression
function. Building on this foundation, subsequent steps
involving solution and optimization are performed to
finalize the model parameters:

) =w'g(x)+b

Here, w represents the weight matrix, b is the bias term,
and @(x) denotes the kernel mapping function, which maps
the input x to a higher-dimensional feature space. For
simplicity of representation, the high-dimensional feature
vectors are projected onto a two-dimensional plane, as
illustrated in Figure 1.
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Figure 1. SVM feature space

The optimization interval is governed by Eq below, where
represents the maximized margin between the two support
vectors, as shown in the interval between the two dashed
lines in the figure:

X'W

p(W, b) = min max{x’y:—l} m

X
{xy=1 m -

Thus, for regression prediction problems, the prediction
function can be expressed as:

S0 =Y (@, - K (xx) +b

Here, a, a," are the Lagrange multipliers of the support
vectors, where a, corresponds to negative errors and a,”
corresponds to positive errors, x represents the input feature
vector, x, denotes the feature vector of the i-th training
sample, K(x,,x) is the kernel function used to compute the
similarity between the new input x and the support vectors.

2.1.2 Random Forest (RF)

The Random Forest algorithm(Random Forests) (RF)
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has gained widespread application and recognition in
data mining and machine learning due to its remarkable
robustness against outliers and noise, as well as its
resilience to overfitting. Xiong Wang et al. [44] integrated
the RF algorithm to develop an innovative risk management
system for deep foundation pits. This system enhances the
accuracy of risk prediction and improves the intelligence
level of the system through real-time data interaction
and inversion. On the other hand, Xianguo Wu et al.
[46] proposed a novel framework that leverages the RF
algorithm to accurately predict the impact of foundation pit
construction on the deformation of existing tunnels.

The core principle of using the RF algorithm for regression
prediction lies in constructing multiple decision trees to
form the regression model. During the tree construction
process, an element of '"randomness" is cleverly
introduced. This randomization introduces diversity
among the decision trees, which effectively enhances the
model's generalization ability, as illustrated in Figure 2.
Specifically, when constructing each decision tree, the
RF algorithm employs the bootstrap method to randomly
sample subsets from the original dataset as training data.
Additionally, during the splitting process at each node, the
algorithm randomly selects features for splitting, further
enhancing the model's diversity and robustness.
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Figure 2. RF Decision tree construction

For regression prediction problems, assume that the
random forest consists of T decision trees, and each

decision tree outputs a predicted value 3 for the input

sample x. The final predicted value # of the random forest
is obtained by averaging the predicted values of all trees:

j>z' = Zf,;c(xz')

2.1.3 Extreme Learning Machine (ELM)

Extreme Learning Machine [13] (ELM) algorithm is
primarily used to enhance the training efficiency of neural
networks and optimize the learning process through a
randomized approach, addressing the computational
complexity issues in traditional neural network training.
ELM has been widely applied to binary classification
and multi-class classification problems. Due to its high
computational efficiency, it is particularly suitable for
handling large-scale datasets. Giulio Mariniello et al.[31]
developed an automated damage assessment method based
on ELM (LA-ELM), focusing on the prestressed tendon
failure problem in prestressed concrete bridges. Qiubing
Ren et al.[38] proposed an online learning model based
on SOS-ELM, which enables real-time monitoring of dam
displacement behavior.

The core idea of the ELM algorithm is to randomize the
parameters of the hidden layer nodes (i.e., input weights
and biases), and then calculate the output layer weights
using the least squares method. This approach reduces the
iterative process typically required in traditional neural
network training, as shown in Figure 3.
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First, the parameters of the hidden layer nodes are
randomly generated, and the output of each input sample in
the hidden layer is calculated using an activation function
(such as Sigmoid, ReLU, etc.):

B ) Ry(x)
PRILIONE SIS
) h(x)  h(xy)

Where hj(x[.) represents the output of the i-th sample after
passing through the activation function of the j-th hidden
node. The output layer weights f are then directly solved
using the least squares method:

B = (H'HY'H'T

Where T is the target value matrix of the training samples.
Based on the computed hidden layer weights and biases, as
well as the output layer weights, the predicted result can be
calculated:

y=H(X)}

2.1.4 eXtreme Gradient Boosting (XGBoost)

eXtreme Gradient Boosting [6] (XGBoost) is an efficient
implementation of the Gradient Boosting Decision
Tree (GBDT) algorithm. By improving the underlying
algorithm, XGBoost enhances both training speed and
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concrete, thereby reducing uncertainties in experimental
results.
The core idea of XGBoost is to optimize the model's

prediction capability by integrating multiple weak
classifiers, typically decision trees, as shown in Figure 4.

Figure 3. ELM operating mechanism
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Figure 4. XGBoost Model optimization

The prediction formula of XGBoost can be expressed as:

EDIACH

Here, i is the predicted value for sample 7, K is the total
number of weak learners (trees), f,(x,) is the predicted value
for sample x, from the K-th tree.

The goal of XGBoost is to learn the model parameters
by optimizing the objective function, which consists of the
loss function and the regularization term:

L(&)= Zlog(ypf’i) +Q( /)

Where y, is the true value of sample 7, and Q(f) is the
regularization term:

1.,
QN =1T+=2D_f;
2 3
Where T is the number of leaves in the tree, f, represents
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the weights of the tree leaves, A and y are the regularization
parameters.

2.1.5 Back-Propagation (BP)

The Back Propagation Neural Network [39] (BPNN)
is a classic artificial neural network model. Yang Liu et
al. [27] used a BP neural network to analyze the spatial
vulnerability of rural settlements in the hilly areas of
Sichuan, identifying the main influencing factors and their
distribution characteristics. Sheng-Hua Xiong et al. [48]
employed the BP neural network to process and predict
SAR data for runway settlement issues at airports.

The core idea of the BP algorithm is to propagate
information forward through the network and then use
the chain rule (chain differentiation) to backpropagate the
error from the output layer to the input layer. The weights
and biases of the network are then updated using gradient
descent. The BP network typically consists of three main
layers: the Input Layer, Hidden Layer, and Output Layer,
as shown in Figure 5:
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Input layer

Hidden layer

Output layer

Figure 5. BP framework

The mathematical relationship(Dong et al. 2018) of the
propagation process in these three layers can be expressed
as:

From the input layer to the hidden layer:

yj:ﬁ[ﬂj+

-1

Z ﬂjmym](ogﬂj>ﬂjm S]‘)

m=t—n

From the hidden layer to the output layer:
I
V=S| A+ D Ay, (02,2, <1)
J=1

Where y and Y, represent the inputs to the input layer and
the hidden layer, y, represents the predicted value at point ¢,
e, and /1(?/. represent the network weights between the output
layer and the hidden layer, I3 and 4 are the thresholds of the
hidden layer and the output layer, n and Idenote the number
of nodes in the input layer and hidden layer, respectively, f,
and f, represent the activation functions of the hidden layer
and the output layer.

2.2 Deep learning methods
2.2.1 Recurrent Neural Network (RNN)

In time series forecasting, numerous algorithms are
employed, including Deep Belief Networks (DBN), Support
Vector Machines (SVM) or Support Vector Regression
(SVR), Convolutional Neural Networks (CNN), Random
Forest (RF), Extreme Gradient Boosting (XGBoost), and
Recurrent Neural Networks (RNN). Compared to other
algorithms, the nodes between the hidden layers of RNN
are not disconnected, but rather connected. The input to the
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hidden layers includes not only the output from the input
layer, but also the output from the previous time step of the
hidden layer. Long Short-Term Memory [36] (LSTM) and
Gated Recurrent Unit [7,23] (GRU) are both variants of
Recurrent Neural Networks [16] (RNNs).

r

Figure 6. RNN unit

Figure 6 shows an RNN unit x, where A represents the
neural network module, denotes the input at the current time
step, and £, represents the hidden state at the current time
step. By combining the input sample weights, the previous
hidden state /_,, the output sample weights V,t he input data
bias vector b , and the output data bias vector c, the current
hidden state /, and the output y, can be determined based on
the input data x,, as follows:

h =f{Ux,+ Wh_ + b)

v, = Softmax(Vh, + ¢)
In this context, f represents the activation function for
the input, Softmaxrepresents the activation function for
the output. In RNN, U, W and b are shared, which is

different from LSTM and GRU. However, RNNs face
issues such as vanishing and exploding gradients, making
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it difficult to handle long-term dependencies. To address
these problems, LSTM networks were introduced. LSTM
introduces a gating mechanism, consisting of the input
gate, forget gate, and output gate, to control the flow of
information. These gates allow for selective updating and
forgetting of information, enabling better capture of long-
term dependencies. Additionally, LSTM introduces a cell
state to store and transfer information.

[
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Figure 7. LSTM Unit

In the forget gate and input gate, the sigmoid function is
used to transform x and /, into a vector of values between 0
and 1, where 0 indicates forgetting and 1 indicates storing:

f=o(Wf-[h x]+b)
Subsequently, the input gate determines whether to add
new information to the cell state:

i,=o(W;[h x]+b)

C: = tanh(Wc [h xt]+bc)

t-12?
Next, the previously discarded information is combined
with the newly retained information to update the cell state:

C =f+C_ +i+C

Finally, the output gate regulates the amount of information
extracted from the cell state and generates the new output
using the tanh activation function:

o =6 (W [h_ ,x]+b)

t-1°
h,=o0* tanh(C)

Here, b represents the bias vector, and W denotes the
weight matrix for each gate.

To enhance the LSTM structure and reduce the number
of parameters, the Gated Recurrent Unit (GRU) was
developed. The GRU simplifies the LSTM structure by
merging the forget gate and input gate into a single update
gate, effectively combining the cell state and hidden state.
This reduction in parameters enables the GRU to achieve
comparable accuracy with improved computational
efficiency, making it particularly well-suited for resource-
constrained environments.
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Figure 8. GRU Unit

The reset gate determines how new input information is
combined with previous memory:
r=o(W[h, X)) |
The update gate determines how much of the previous
memory is retained and combined with the new input:
 Z=o(W,[h_.x]) |
The hidden state can be obtained using the following
formula:

177"t

h: = tanh (W [rn*h Lx ])

h, =(1—zf)*ht_1+zt*/:z;

The LSTM and GRU networks, by incorporating forget
gates and update gates, effectively capture long-term
dependency information, demonstrating widespread
applications and excellent performance in fields such as
time series forecasting, pattern recognition, and signal
processing. The application of RNN-based algorithms
provides new solutions for predicting complex problems in
the field of civil engineering. Qing Kang etal. [20] combined
the attention mechanism with the LSTM model to predict
the posture and position of the tunnel boring machine,
improving prediction accuracy. The average R-squared
value increased from 0.625 to 0.736, while the average root
mean square error (RMSE) decreased from 3.31 to 2.24.
Iman Ranjbar et al. [36] developed two architectures based
on the LSTM network to assess the distributed damage of
concrete, including a classification model and a regression
model. They used time-series ultrasound response signals
as input, which outperformed manually extracted features.

2.2.2 Convolutional Neural Network (CNN)
CNN has become a competitive method in time series

prediction due to its efficiency, flexibility, and feature
learning capability. Compared to traditional time series
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algorithms, CNN can quickly train on large-scale data by
sharing convolution kernel parameters and performing
parallel computation. It also automatically learns complex
features from the data without relying on manually
designed features. CNN is particularly effective at
capturing periodicity and local trends, making it especially
proficient in handling time series data with short-term
fluctuations. Additionally, CNN has strong generalization
capabilities(Zhang et al. 2024) , allowing it to handle both
univariate and multivariate time series data. It can also be
combined with other models(Huang et al. 2024; Bai et al.
2025), to further improve performance. In contrast, while
RNN and LSTM can capture long-term dependencies, their
training efficiency is lower, and they are less effective at
extracting local features compared to CNN.

The LSTM and GRU networks, by incorporating forget
gates and update gates, effectively capture long-term
dependency information, demonstrating widespread

Input signal

1D Convolution

applications and excellent performance in fields such as
time series forecasting, pattern recognition, and signal
processing. The application of RNN-based algorithms
provides new solutions for predicting complex problems
in the field of civil engineering. Qing Kang et al.(Kang
et al. 2023) combined the attention mechanism with the
LSTM model to predict the posture and position of the
tunnel boring machine, improving prediction accuracy.
The average R-squared value increased from 0.625 to
0.736, while the average root mean square error (RMSE)
decreased from 3.31 to 2.24. Iman Ranjbar et al.(Ranjbar
and Toufigh 2022) developed two architectures based on
the LSTM network to assess the distributed damage of
concrete, including a classification model and a regression
model. They used time-series ultrasound response signals
as input, which outperformed manually extracted features.

1D Convolution

Qutput

Figure 9. CNN 1D Convolution

The key characteristic of time series is its sequentiality
and temporal correlation. CNN can extract the local
features between consecutive time steps using one-
dimensional convolution (1D Convolution). A typical
CNN algorithm consists of several layers, including input
layer, convolutional layer, activation layer, pooling layer,
fully connected layer, and output layer. The core structure
includes:

Input layer: Suppose the length of the input time series
is 7, and the data dimension at each time step is d. The
input data can be represented as a two-dimensional matrix,
where the rows correspond to time steps, and the columns
correspond to the features at each time step.

Convolutional layer: The convolutional layer is the core
component of CNN, primarily responsible for capturing
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local patterns and features in the sequence through sliding
window operations. In 1D convolution, the convolutional
layer uses a filter (or kernel) that slides over the input time
series, computing the weighted sum of the filter and the
local time window at each position. The convolutional
kernel is a fixed-length small window with size k& X d,
which slides within the time window of size & to extract the
local features of each time step. The kernel size d is chosen
to match the dimensionality of the input features. The
convolution operation is defined by the following formula:

K
Vi = Zwk "Xk
1

Here, x, is the input sequence, y, is the output sequence,
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w, are the parameters of the convolution kernel, and K is
the size of the convolution kernel.

Activation Layer: The activation layer is a key component
in neural networks, as it introduces non-linearity, allowing
the network to learn complex patterns and mappings from
the features output by the convolutional layer. In CNN, this
layer is typically placed after each neuron’s output and uses
a non-linear function to transform the network's output.
Common activation functions include ReLU, Sigmoid,
Tanh, and Leaky ReL U, among others. For example, using
the ReL U activation function:

- Z=ReLU(y)=max(0,y)
In this case, y, represents the value input into the activation
function. The activation function enables the network
to capture more complex patterns, enhances the model's
non-linear expression ability, and improves its predictive
performance.

Pooling layer: The pooling layer is a crucial component
of CNN, typically placed after the convolutional layer, and
serves to reduce the dimensionality and summarize the
features extracted by the convolutional layer. The main
purpose of the pooling layer is to decrease the spatial
dimensions (i.e., the width and height of the image or feature
map), thus reducing the computational load and number of
parameters, while retaining the essential features. In time
series processing, max pooling is commonly used:

z = max(x, X, , ..., X, )
or average pooling:

k-1
B
t t+i
k5

Where z, represents the pooling result corresponding to
the current time step t, and x, x ., ..., X ., , represents the
values from the input data sequence. These values come
from the original time series data, containing the input
values from t for k consecutive time steps.

CNN, when handling time series data, significantly
reduces the model's parameter count through parameter
sharing, improving computational efficiency and reducing
the risk of overfitting. By stacking multiple convolutional
layers or adjusting the convolution kernel size, CNN can
flexibly extract features at different scales, balancing both
local and global patterns, thus adapting to a wide range
of task requirements. The application of CNN algorithms
provides a new approach to solving complex prediction
problems in the field of civil engineering. Furkan Elmaz
et al. [11] proposed a Convolutional Neural Network-Long
Short-Term Memory (CNN-LSTM) architecture for indoor
temperature prediction. This architecture outperformed
both the Multi-Layer Perceptron (MLP) and standalone
LSTM models across all prediction ranges, demonstrating
superior robustness. Shuting Chen et al. [5] combined
the CNN algorithm to extract local patterns related to the
spatial characteristics of pavement deformation basins,
providing high-quality features for subsequent LSTM time
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series modeling. This approach enabled high-precision
prediction of the pavement deformation basin area (DBA).

3. Al methods in surface settlement
prediction

Traditional surface settlement prediction methods
mainly rely on empirical formulas, analytical methods,
and numerical simulations. However, these approaches
have limitations in prediction accuracy and applicability.
In contrast, machine learning (ML) and deep learning
(DL) methods are capable of processing large and complex
datasets, automatically learning the nonlinear relationships
between input features and surface settlement, without
relying heavily on physical assumptions. The advantages
of ML/DL methods lie in their high flexibility and
adaptability, enabling them to capture complex factors
that are difficult to model with traditional methods, thus
improving prediction accuracy. However, these methods
require high-quality data and have relatively poor model
interpretability.

3.1 Transformation of the surface settlement
prediction problem

Surface settlement prediction based on ML/DL
methods is inherently a regression prediction problem.
In surface settlement prediction, multivariate regression
and time series forecasting methods are commonly used.
Multivariate regression forecasting utilizes multiple
independent variables (features) to predict a dependent
variable (target value). In surface settlement prediction,
this may include various independent variables such as
geological conditions, tunnel parameters, construction
factors, etc. The advantage of this approach lies in its ability
to comprehensively consider various factors, thereby
improving the overall accuracy of the prediction. However,
the model complexity is relatively high, which may lead
to overfitting. On the other hand, time series forecasting
predicts based on data arranged in chronological order,
considering the trend of data changes over time. In surface
settlement prediction, monitoring data that changes
over time can be used to forecast future settlement. The
advantage of this approach lies in its ability to capture
dynamic changes over time. However, it requires high
temporal consistency and completeness of the data and
may be influenced by seasonal and cyclical factors. To
better utilize ML/DL methods, it is necessary to transform
and analyze the surface settlement prediction problem to
some extent.

3.1.1 Maximum Surface Settlement (MSS) prediction

When using multiple regression prediction, it is necessary
to first identify key factors that influence settlement as
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independent variables, such as tunnel depth, diameter,
geological conditions, construction methods, etc., with
surface settlement as the dependent variable. By collecting a
large amount of data samples containing these independent
and dependent variables, a multiple regression model is
constructed. Finally, machine learning algorithms (such
as random forests, gradient boosting trees, etc.) are used
to automatically learn the complex relationships between
the independent and dependent variables, thereby enabling
accurate prediction of the Maximum Surface Settlement
(MSS).

3.1.2 Surface Settlement Time Series (SSTS) prediction

When using time series forecasting, settlement monitoring
data should be arranged in chronological order to construct
a time series model. Considering the changing trends and
seasonality of settlement data over time, deep learning
algorithms (such as Long Short-Term Memory networks,
LSTM, and Gated Recurrent Units, GRU) are employed
to capture long-term dependencies and dynamic changes
within the time series. By training the model to learn
temporal patterns from historical settlement data, future
settlement trends (SSTS) can be predicted. This method
is particularly suitable for scenarios where settlement data
evolves continuously over time with periodicity, as well as
for long-term automated monitoring of surface settlement.

3.2 ML and DL based surface settlement
prediction

Through a search in the Web of Science (WOS) database,
256 articles related to surface settlement prediction
published from 2016 to 2025 were found. These articles
were processed using Citespace software to generate the
keyword clustering distribution map shown in Figure 10,
which illustrates the clustering of keywords from relevant
research papers. The different colors of the clusters and
labels represent different research topics or groups of
keywords. Figure 10 indicates that recent research has
mainly focused on construction parameters and machine
learning studies. Additionally, techniques from computer
science and statistics, such as machine learning and
Bayesian methods, are increasingly being applied in the
field of surface settlement prediction. The application of
numerical models and imaging technologies in surface
settlement prediction can help researchers more accurately
simulate and forecast surface settlement. However, a
single method is often insufficient to address the complex
problem of surface settlement. The integrated use of
multiple methods and technologies, such as combining
machine learning with numerical models, is a key focus of
future research. This suggests that with the advancement
of big data, computational power, and the interdisciplinary
integration of surface settlement prediction with the field of
computer science, machine learning techniques are playing
an increasingly important role in tackling complex surface
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settlement problems.

By analyzing 21 high-quality articles, as shown in Tables
1 and 2, recent research in the field of surface settlement
prediction has primarily focused on the application of new
algorithms, the adoption of new optimization methods,
and feature engineering. Through the introduction of new
algorithms, parameter tuning, and feature selection and
construction, the goal has been to improve the accuracy and
robustness of prediction models.

Table 1 shows that SVM, LSTM, and RF are the
most frequently used algorithms in surface settlement
prediction. Researchers have explored various algorithms,
ranging from traditional machine learning techniques
to deep learning methods. This suggests that no single
algorithm is universally optimal, as different algorithms
perform differently across various scenarios and datasets.
Additionally, only six related studies involve surface
settlement time series prediction (SSTS), indicating
that this approach is rarely adopted in current research.
However, some studies on maximum surface settlement
prediction still employ algorithms that are more suited for
time series prediction tasks related to surface settlement.
In Mahmoodzadeh's study [30], LSTM was used, and its
prediction accuracy was only surpassed by DNNS. In the
articles related to surface settlement time series prediction,
the R2 values for SSTS predictions were all greater than
0.95, which is higher than the average R2 value of 0.9 in
MSS predictions. This indicates that surface settlement
time series prediction (SSTS) holds significant potential.

In Table 2 , T stands for tunnel excavation parameters,
G denotes geometric parameters, and S signifies shield
parameters, Table 2 shows that some studies use a
single type of feature for prediction, while others, such
as STF-Network and 3D-ResUnite, combine multiple
features to enhance prediction accuracy. Some studies
focus particularly on feature engineering, for example,
using Karst boundary and cave features, indicating that
well-chosen features can significantly improve model
performance. Additionally, current research incorporates
various optimization strategies, including the introduction
of new algorithms, parameter tuning, and feature selection.
Combining these strategies often results in better prediction
outcomes.

4. A case for time series prediction of
surface settlement

4.1 Brief introduction of dataset

In this study, a 267-metre-long and 80-metre-wide section
of the tunnel through the airport was selected to predict
surface settlement. This section contains 159 monitoring
points that were measured with the MS60 3D scanning
robot. The measurement robot works with continuous
measurement, the target search mode is super search, the
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scanning frequency is 30 KHz, the standard deviation of
angle measurement is 1, the standard deviation of distance
measurement is 2 mm + 1.5 ppm, and the standard deviation
of the elevation measurement is 2.0 mm. The spacing of the
measurement points along the tunnel excavation direction
was maintained to coincide with the construction progress.
159 monitoring sites were observed and 287,297 samples
were obtained, with an average collection interval of 3.85
hours and 290 d of continuous monitoring.

By employing the MATLAB resampling function, the
signals from 1,792 (equals to 7%2%) resample points
were obtained. Then, a combination of the MATLAB
filloutlier function and medfilt function was used for data
outliers. The filloutlier function detects outliers using
the 'Generalized Extreme Studentized Deviate (GESD)'
method, a statistically robust approach for identifying
data points that significantly deviate from the rest of the
dataset, and replaces them with spline interpolation to
estimate values based on the overall trend of the data,
ensuring smoothness and continuity. Simultaneously, the
medfilt function applies median filtering, calculating the
median value within a sliding window of eight sample
lengths around each data point to effectively remove noise
and outliers while preserving the data's essential features.
The combination of these two methods—filloutlier for
outlier detection and replacement, and medfilt for noise

@'
.
.

reduction—ensures the data is consistent, reliable, and free
from distortions, providing a high-quality foundation for
accurate analysis and robust modeling. This preprocessing
step is crucial for enhancing data integrity and supporting
subsequent computational tasks.

The ML algorithms introduced in this paper are support
vector machine (SVM), random forest (RF), extreme
learning machine (ELM), and back propagation (BP). Deep
learning algorithms include convolutional neural networks
(CNN), long short-term memory networks (LSTM), and
gated recurrent units (GRU).

During training, the dataset was divided into small
batches. To optimize GPU performance and prevent
variations in data batch fluctuations from affecting the
loss, the resampled signals must contain integer multiples
of the minimum batch size, chosen as a power of 2 due
to hardware limitations. The minimum batch size is
a hyperparameter whose optimal value is determined
through experimentation. In this study, the author
determined the minimum batch size as 32. Additionally, a
dynamic validation set was used to maintain sample size
and validation features, preventing overfitting and ensuring
model reliability. Validation iterations depended on batch
and simplex sizes.
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Table 1. Algorithm statistics table

Researcher Algorithms Number of features Prediction type
Mahmoodzadeh LSTM, DNNS, KNN, GPR, SVR, DT, LR 6 MSS
Mohammadi. F MR, MLP, BP 6 MSS
V. R. Kohestani RF, ANN 9 MSS

Jingsheng Shi BPNN, MNN 11 MSS
Abouzar Darabi AANN, BPNN 19 MSS

Santos Jr. ANN 14 MSS
Da Hu BP, PSO, PSO-BP, AB\;)VPSO-BP, PWPSO- 12 MSS

A. Pourtaghi ANN, Wavenet, BP 9 MSS

Hasanipanah ANN, PSO, PSO-ANN 5 MSS

Qing Kang Attention-LSTM 9 SSTS

Ning Zhang LSTM, GRU and Conv1ld 18 SSTS

Dongku Kim SVR, RF, GBM, XGB and LGBM 32 MSS

Chen, L. STF-Network, 3D-ResUnit / MSS
Chen, R.-P BP, RBF, GRNN 10 MSS
Kumar, A LSTM 1 SSTS
Ren, M DTW, GRA, ARM, SVR 1 SSTS
Zhang, P LSTM, RF, PSO, GRG 13 Both

Zhang, W.G XGBoost, ANN, SVM, MARS 7 MSS

Hai-ying Fu BP, RF 4 MSS
Fu-Chao Kong PSO-ELM 7 SSTS

Chao Zhou RF 10 MSS

Table 2. Parameter types and optimisation tables

Researcher T G S Special parameter Optimization approach
Mahmoodzadeh Yes Yes Yes None Algorithm Comparison
Mohammadi. F Yes Yes None None New Algorithm
V. R. Kohestani Yes Yes None None New Algorithm

Jingsheng Shi Yes Yes None None New Algorithm
Abouzar Darabi Yes Yes None None Algorithm Comparison
Santos Jr. Yes Yes None None Feature Selection
Da Hu Yes Yes None None New Algorithm

A. Pourtaghi Yes Yes None None New optimizer

Hasanipanah Yes Yes None None New optimizer

Qing Kang Yes Yes Yes None New Algorithm

Ning Zhang Yes Yes None Karst cave features Extended model, new indicators

Dongku Kim Yes Yes Yes None New optimizer
Chen, L. None None None None New Algorithm
Chen, R.-P Yes Yes Yes None improved indicators
Kumar, A None None None Only settelment New Algorithm
Ren, M None None None Only settelment New Algorithm
Zhang, P Yes Yes Yes anomalies parameters Feature Selection, New optimizer

Zhang, W.G Yes Yes Yes None Feature Selection

Hai-ying Fu None None None Karst boundary New indicators
Fu-Chao Kong None Yes Yes None New Algorithm

Chao Zhou Yes Yes Yes None Algorithm Comparison
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Figure 11. Typical monitoring points’ data preprocessing

4.2 Evaluation of different AI methods

The most commonly utilised metrics for the evaluation of
predictive model performance encompass R-squared (R?),
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute percentage Error (MAPE).

The value of R? ranges from 0 to 1, with a closer proximity
to 1 indicating a superior model fit:

-5
-
2=y

RMSE is a common measure of the discrepancy between
an observed value and a true value. A lower RMSE value
indicated a smaller deviation between the observed and

true values:
n_
RMSE = ;Z(yl 7);1)2

MAE and MAPE were calculated as the mean of the
absolute value of the difference between the predicted
and actual values. Additionally, MAE and MAPE were
calculated as the mean of the absolute value as a proportion
of the actual value. It is desirable for these values to be as
small as possible:

1 A
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Table 3 presents the four evaluation indices of the
predicted value of the surface settlement for each algorithm,
including the original and improved algorithms. As
shown in Table 3, the mean R? of each original algorithm
is 0.9938, the root mean square error is 0.2162 mm, the
mean error is 0.1449, and the mean error percentage is
8.536 %. RF and ELM performed best in the surface
settlement time series prediction task with high prediction
accuracy and low error. While BP performs relatively
average, other algorithms such as CNN, Bi-GRU, Bi-
LSTM, PSO-LSTM and PSO-GRU perform moderately
well, each with certain application scenarios and values.
However, this assessment is specifically targeted at the
Kunming dataset, the generalizability of these models to
other datasets remains uncertain due to potential region-
specific biases and limitations in the dataset's diversity.
For instance, preprocessing techniques and features
optimized for Kunming's geological and environmental
conditions may not translate well to datasets from other
regions with differing characteristics. Additionally, the
dataset may overrepresent certain conditions, leading
to overfitting and reduced performance on new data. To
enhance generalizability, future work should incorporate
diverse datasets, employ adaptive preprocessing methods,
and identify universal features relevant across various
scenarios. Cross-dataset validation is also essential to
ensure the models' robustness and applicability beyond the
Kunming dataset.
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Table 3. R2, RMSE, MAE and MAPE using ATD model algorithm

Algorithm R2 RMSE MAE MAPE
SVM 0.99365 0.327 0.269 20.02%
RF 0.99943 0.098 0.043 2.78%
ELM 0.99962 0.080 0.040 2.67%
BP 0.98278 0.539 0.341 14.40%
CNN 0.99876 0.145 0.085 5.43%
BI-GRU 0.99666 0.237 0.197 10.29%
BI-LSTM 0.99896 0.132 0.094 4.20%
PSO-LSTM 0.99669 0.236 0.116 7.99%
PSO-GRU 0.99800 0.184 0.135 9.04%

5. Discussion

Current research mainly focuses on the application of
artificial intelligence methods, particularly machine learning
and deep learning algorithms, to predict surface settlement
induced by tunnel excavation. These studies encompass not
only the prediction of Maximum Surface Settlement (MSS)
but also the prediction of Surface Settlement Time Series
(SSTS), offering a more comprehensive understanding of
the dynamic changes in surface settlement. Algorithms play
a pivotal role in the current landscape of surface settlement
prediction.

However, many Al models, function as "black boxes"
, making it challenging to interpret how predictions are
generated. This lack of transparency can hinder their
adoption in engineering applications, where understanding
the underlying mechanisms is essential. Additionally,
training advanced Al models, especially DL models,
demands substantial computational resources (e.g., GPUs
or TPUs) and time, which can pose a significant barrier
to practical implementation, particularly in resource-
constrained environments. Furthermore, AI models trained
on specific datasets often struggle to generalize to different
geological conditions or construction scenarios. Variations
in soil properties, groundwater levels, or construction
methods can significantly reduce prediction accuracy when
applied to new environments.

Traditional methods, such as the convergence-confinement
method, are grounded in well-established physical
principles and offer clear interpretability. However, they
often rely on simplified assumptions and may fail to fully
capture the complexity of soil behavior. In contrast, Al
models excel at learning intricate patterns from data but
typically lack physical interpretability. Similarly, the Finite
Element Method (FEM) is highly versatile and capable
of simulating complex geotechnical conditions with
high accuracy. Nevertheless, FEM demands significant
expertise and computational resources for model setup
and analysis. While Al models are data-driven and adept
at handling nonlinearity and large datasets, they do not
inherently incorporate physical laws, which can lead
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to less reliable predictions in scenarios where physical
constraints are critical. In summary, traditional methods
are more interpretable and physically grounded but are
often constrained by their assumptions and computational
demands. On the other hand, Al models excel in processing
complex data but may suffer from a lack of transparency
and struggle with extrapolation beyond their training data.

In terms of feature engineering, specific methods often
cannot be directly applied to other engineering scenarios.
This is because the selection and optimization of feature
engineering approaches are highly dependent on the
specific research context and data characteristics. For
instance, methods that utilize unique parameters such as
Karst boundaries and cave features may yield significant
results in regions with similar geological conditions but
may not be applicable in areas with different geological
settings. Similarly, prediction methods based on time series
data may perform exceptionally well in scenarios where
the data exhibits strong temporal characteristics. However,
their effectiveness may diminish in cases of missing
data or when temporal features are less pronounced.
Consequently, a single feature engineering approach lacks
generalizability. To enhance the accuracy and robustness
of predictive models, it is essential to select and optimize
feature engineering methods tailored to the specific research
context and data characteristics.

High-quality, labeled datasets for ground surface
settlement are often scarce due to the high cost and
complexity of data collection. Limited datasets can result
in overfitting and poor generalization of AI models,
compromising their effectiveness. Additionally, datasets
may be biased toward specific geological conditions or
construction methods, causing models to perform well only
in similar contexts and limiting their applicability to diverse
scenarios. Furthermore, data preprocessing steps, such as
normalization and feature selection, play a critical role in
model performance. Inadequate preprocessing choices can
introduce noise or discard essential information, ultimately
reducing prediction accuracy.

Therefore, in current research, both the application
and improvement of algorithms coexist, with a stronger
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emphasis on the improvement of algorithms. This is
because the diversity and complexity of data in surface
settlement prediction make it challenging to directly
apply existing algorithms and achieve ideal results. As
a result, researchers tend to experiment with various
algorithms to identify the most suitable solution for specific
scenarios and datasets. Based on the literature review
and example analysis, in surface settlement prediction,
the most recommended algorithms are Long Short-Term
Memory (LSTM) networks or their variants, such as
Gated Recurrent Units (GRU). The reason for this is that
LSTM and GRU excel at handling time-series data and
can effectively capture long-term dependencies within the
data, which is crucial for surface settlement time-series
prediction. Nevertheless, as research progresses, there has
been an increasing focus on algorithm optimization and
improvement, such as introducing new function optimizers
to enhance training efficiency and prediction accuracy, or
conducting feature engineering to select and optimize input
parameters, further boosting the performance of prediction
models. Moreover, these algorithms have been shown to
exhibit high prediction accuracy and robustness in several
studies. For example, Qing Kang et al.(Kang et al. 2023)
combined an attention mechanism with the LSTM model
to predict the posture and position of a shield machine,
significantly improving prediction accuracy.

Currently, significant progress has been made in
predicting surface settlement caused by tunnel excavation
using artificial intelligence methods, particularly machine
learning and deep learning algorithms. These algorithms
have not only improved prediction accuracy but also
expanded the scope of predictions, ranging from maximum
surface settlement to surface settlement time series,
providing strong support for engineering practice.

In the future, research on surface settlement prediction
could integrate the physical mechanisms underlying
surface settlement to further improve prediction
accuracy and reliability. Surface settlement is a complex
physical process involving various factors, such as soil
compression, deformation, and changes in pore water
pressure. By gaining a deeper understanding of these
physical mechanisms, more accurate predictive models
can be developed, capable of capturing the interactions and
dynamic changes among different factors. For example,
numerical simulation methods can be incorporated to
simulate the development of surface settlement under
various construction parameters and geological conditions,
providing machine learning algorithms with richer training
data and features. Additionally, advancements in automated
monitoring technologies enable researchers to obtain
more accurate geological and construction parameter
information, offering more reliable inputs for predictive
models. This approach—integrating physical mechanisms
with machine learning algorithms—holds the potential not
only to improve prediction accuracy and generalization but
also to deepen the understanding of the complex processes
of surface settlement. Such an approach can provide more
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scientific guidance for engineering practices. While this
research direction is promising, it requires interdisciplinary
collaboration and in-depth investigation. Moreover, ML
and DL algorithms can also be utilized to improve dataset
quality, thereby enhancing prediction accuracy. For
example, data augmentation can be employed to generate
diverse samples [47], auto-labeling and semi-supervised
learning can reduce the cost of manual annotation [25],
data cleaning techniques can repair noise and missing
values [34] and generative adversarial networks (GANSs)
[35] can create high-quality synthetic data to compensate
for data scarcity. These methods, when combined, can
significantly enhance the quality, scale, and diversity of
datasets, ultimately improving model performance and
generalization capabilities.

6. Conclusion

In this review, we systematically summarize the progress
made in the application of machine learning (ML) and
deep learning (DL) to land subsidence prediction. We
introduce the core principles of commonly used ML and
DL algorithms for land subsidence prediction. The land
subsidence problem is categorized into the following
types: maximum land subsidence (MSS) prediction and
land subsidence time series (SSTS) prediction. Using the
Kunming dataset, we validate the effectiveness of various
algorithms, including SVM, RF, ELM, BP, CNN, BI-GRU,
BI-LSTM, PSO-LSTM, and PSO-GRU, in land subsidence
prediction. Additionally, we discuss the advantages
and limitations of ML and DL algorithms compared to
traditional prediction methods.

This paper offers an in-depth analysis of the current use
and effectiveness of machine learning and deep learning
algorithms in this field. The study highlights the limitations
of traditional prediction methods, which often struggle to
meet the demands of complex and dynamic engineering
scenarios due to challenges in parameter determination and
reliance on empirical values. In contrast, machine learning
and deep learning algorithms, such as Support Vector
Machines (SVM), Random Forests (RF), Extreme Learning
Machines (ELM), XGBoost, and Recurrent Neural
Networks (RNN), have shown significant improvements
in prediction accuracy and generalization capabilities by
automatically learning complex features and temporal
dependencies within data.

In particular, recurrent neural networks (RNN) and
their variants, such as Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs), have
demonstrated exceptional performance in handling time-
series data, offering innovative solutions for surface
settlement time-series prediction. Through a thorough
literature review and case analysis, this paper highlights the
varying performance of different algorithms across diverse
scenarios and datasets, underscoring the critical importance
of algorithm selection and optimization.
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However, ML and DL also face significant limitations in
engineering applications: lack of transparency, making it
difficult to interpret prediction processes; training requires
substantial computational resources and time; scarce and
biased datasets for ground surface settlement often lead
to overfitting, poor generalization, and reduced Al model
accuracy. While Al models excel at handling complex data,
they fall short in transparency, generalization, and physical
consistency. Current research faces several challenges,
such as the need for targeted algorithm improvements and
the generalizability of feature engineering methods. Future
studies should integrate the physical mechanisms of surface
settlement to further enhance the accuracy and reliability
of predictive models. For example, combining numerical
simulations with field monitoring data can provide
richer training data and features for machine learning
algorithms, thereby enabling the construction of more
accurate predictive models. Furthermore, interdisciplinary
collaboration and in-depth research will be key drivers for
advancing this field. In summary, with the increase in big
data and computational capabilities, artificial intelligence
methods will play an increasingly important role in
predicting surface settlement induced by tunnel excavation.
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