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Abstract: The accuracy of surface settlement predictions, which aim to limit theoretical, numerical and experimental 
simulation errors, is influenced by several factors, including parameter values, assumption conditions and other 
limitations. However, the recent introduction of machine learning (ML) and deep learning (DL) has provided new 
ideas for surface settlement prediction. In this paper, the advances of ML and DL in surface settlement prediction are 
systematically reviewed. The classification of surface settlement prediction methods is first conducted based on the 
principles of commonly used ML and DL algorithms, including maximum surface settlement prediction and surface 
settlement time series prediction. Existing studies are then analysed, and common methods for improving prediction 
accuracy are presented. Finally, the performance of common ML and DL algorithms in predicting surface settlement 
is compared using the Kunming dataset. The study then draws conclusions based on the results of the comparative 
studies and literature research, highlighting the impact of dataset quality and feature selection on the generalisation 
ability of prediction models and the real-time prediction ability of existing studies.
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1. Introduction

   The release of unbalanced ground stresses during 
the process of excavation frequently results in surface 
settlement [14,45,57]. Surface settlements caused by 
excavations for tunnels commonly result in the impairment 
of surface structures. This may potentially undermine 
the load-bearing capacity of beams and columns, while 
also adversely affecting the structural stability of the 
whole structure [2,40]. A plethora of theories have been 
formulated by researchers, including continuum theory 
and stochastic medium theory [43,45,49]. Based on these 
theories, traditional prediction methods – including, 
but not limited to, fitting formulas(e.g.,using the gap 

parameter to define the equivalent ground loss parameter 
[28], theoretical calculations(e.g.,Fourier series-based 
displacement function for circular shallow tunnels [29], 
numerical simulations(e.g.,Finite Element Method [32], 
Discrete element modelling [33]), and model estimation 
[18] – can be utilised for predicting surface settlement.
   However, the conventional surface settlement prediction 
methodologies outlined above are predominantly 
founded upon simplified assumptions [56] or empirical 
formulae [55], impeding the capacity to predict surface 
settlement with precision. The mechanical properties of 
soil are influenced by multiple factors, such as geological 
conditions, groundwater, and construction methods, which 
interact with each other in complex ways. To improve 
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the prediction accuracy of surface settlement, machine 
learning (ML) and deep learning (DL) algorithms have 
been introduced. Compared to traditional prediction 
methods, ML and DL have the capacity to discern intricate 
non-linear correlations from surface settlement data, 
thereby identifying more nuanced patterns and trends. 
In recent studies, Back-Propagation (BP) [4], Radial 
Basis Function (RBF) [3-4], Long Short-Term Memory 
(LSTM) [21,30,37,52], Gated Recurrent Unit (GRU) 
[51], eXtreme Gradient Boosting (XGBoost) [21,53], 
Generalized  Regression  Neural Network (GRNN) [4], 
Support Vector Machine (SVM) [21,30,38,52-53] and 
Extreme Learning Machine (ELM) [12,22], are frequently 
used for surface settlement prediction.  
   However, these ML and DL algorithms also have 
certain limitations. For instance, factors such as the 
computational resources available, and the quality of the 
datasets can influence the accuracy of the predictions and 
the generalisability of the models [60-61]. In order to 
enhance the efficacy and performance of machine learning 
(ML) and deep learning (DL) algorithms, the utilisation of 
optimised parameters (e.g.,modified standard penetration 
tests [4]) or advanced algorithms (e.g.,Particle Swarm 
Optimization (PSO) [22,58]) has been demonstrated in 
related studies. This has led to a substantial improvement in 
the generalisation capability and precision of SS predictions 
[4,12,14-15,18,21-22,29,33,41-42,55-56,58,59].
   This paper provides a comprehensive overview of recent 
advancements in the application of machine learning (ML) 
and deep learning (DL) algorithms for predicting surface 
settlement.Specifically, the review addresses the following 
key questions: (i) What are the commonly used ML and DL 
algorithms in surface settlement prediction, and what are 
their underlying principles? (ii) How can surface settlement 
problems be formulated as ML and DL tasks, and how 
should they be categorized? (iii) What critical challenges 
must be addressed in future research to advance the use of 
ML- and DL-based surface settlement prediction methods?
The structure of this paper is organized as follows. Section 
2 begins with a brief introduction to the core principles 
of commonly used ML and DL algorithms. This section 
also highlights the applications of these algorithms in 
areas of civil engineering. In Section 3, we discuss how 
DL and ML algorithms can be utilized to predict surface 
settlement and categorize surface settlement problems into 
the following types:Maximum Surface Settlement (MSS) 
prediction and Surface Settlement Time Series (SSTS) 
prediction. Subsequently, Section 4 compares and analyzes 
the performance of commonly used ML and DL algorithms 
in surface settlement prediction tasks using the Kunming 
dataset. Based on the research findings and a review of 
the literature, Section 5 provides a critical discussion of 
the main issues addressed in the study and offers insights 
into future directions for development. Finally, the paper 
concludes with some concluding remarks.

2. Overview of AI method in surface 
settlement prediction

   The application of machine learning and deep learning 
algorithms in surface settlement prediction caused by 
tunnel excavation has significantly improved prediction 
accuracy and generalization ability. These algorithms are 
clearly categorized into two main types: machine learning 
algorithms and deep learning algorithms, based on their 
algorithmic structure and learning approaches. Machine 
learning algorithms, such as Random Forest (RF), Support 
Vector Machine (SVM), and Extreme Learning Machine 
(ELM), primarily rely on constructing mathematical 
models to extract features from historical data and make 
predictions. The advantage of these algorithms lies 
in the high interpretability of their prediction models. 
Deep learning algorithms, particularly Recurrent Neural 
Networks (RNN) and their variants, such as Long Short-
Term Memory (LSTM) networks and Gated Recurrent 
Units (GRU), excel in automatically learning complex 
features and temporal dependencies in data by constructing 
multi-layer neural network structures. These algorithms 
perform exceptionally well when dealing with large-scale, 
high-dimensional data, though their model interpretability 
tends to be weaker. Both types of algorithms offer unique 
advantages in surface settlement prediction, contributing to 
the continuous improvement in the accuracy and efficiency 
of prediction models.
   We have summarized 5 commonly used ML algorithms 
and 2 DL algorithms in the field of regression prediction, 
elucidated their core principles, and provided examples of 
their applications within the realm of civil engineering.

2.1 Machine learning methods  

2.1.1 Support Vector Machine (SVM)

   Support Vector Machines [8] (SVM) have been extensively 
studied and applied in the field of machine learning and 
have become a crucial tool for solving classification and 
regression problems. In regression prediction tasks, SVM 
aims to find a function model that accurately fits the data 
samples, minimizing the deviation between predicted and 
actual values. In recent studies, Min-Yuan Cheng et al.[7] 
utilized the SVM algorithm to predict trends in building 
prices. Similarly, Bonsang Koo et al. [23] applied the SVM 
algorithm to examine the semantic integrity of the mapping 
between Building Information Modeling (BIM) elements 
and Industry Foundation Classes (IFC). Furthermore, Anna 
Hoła et al. [16] employed SVM for the non-destructive 
identification of brick wall moisture. 
   The core principle of SVM lies in identifying an optimal 
hyperplane in the feature space to perform regression 
prediction tasks. This process involves maximizing the 
margin between the support vectors and the hyperplane to 
enhance the model's generalization capability. Additionally, 
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by introducing kernel functions, SVM can handle nonlinear 
problems, making it applicable to more complex data 
scenarios. Finally, optimization algorithms are employed 
to solve the quadratic programming problem, thereby 
determining the precise position of the optimal hyperplane. 
In order to find the optimal hyperplane, researchers often 
assume a specific form for the hyperplane regression 
function. Building on this foundation, subsequent steps 
involving solution and optimization are performed to 
finalize the model parameters:

   Here, w represents the weight matrix, b is the bias term, 
and Φ(x) denotes the kernel mapping function, which maps 
the input x to a higher-dimensional feature space. For 
simplicity of representation, the high-dimensional feature 
vectors are projected onto a two-dimensional plane, as 
illustrated in Figure 1.

Figure 1. SVM feature space

   The optimization interval is governed by Eq below, where  
represents the maximized margin between the two support 
vectors, as shown in the interval between the two dashed 
lines in the figure:

   Thus, for regression prediction problems, the prediction 
function can be expressed as:

   Here, ai, ai
* are the Lagrange multipliers of the support 

vectors, where ai corresponds to negative errors and ai
* 

corresponds to positive errors, x represents the input feature 
vector, xi denotes the feature vector of the i-th training 
sample, K(xi,x) is the kernel function used to compute the 
similarity between the new input x and the support vectors.

2.1.2 Random Forest (RF)

   The Random Forest algorithm(Random Forests) (RF) 

has gained widespread application and recognition in 
data mining and machine learning due to its remarkable 
robustness against outliers and noise, as well as its 
resilience to overfitting. Xiong Wang et al. [44] integrated 
the RF algorithm to develop an innovative risk management 
system for deep foundation pits. This system enhances the 
accuracy of risk prediction and improves the intelligence 
level of the system through real-time data interaction 
and inversion. On the other hand, Xianguo Wu et al. 
[46] proposed a novel framework that leverages the RF 
algorithm to accurately predict the impact of foundation pit 
construction on the deformation of existing tunnels.
   The core principle of using the RF algorithm for regression 
prediction lies in constructing multiple decision trees to 
form the regression model. During the tree construction 
process, an element of "randomness" is cleverly 
introduced. This randomization introduces diversity 
among the decision trees, which effectively enhances the 
model's generalization ability, as illustrated in Figure 2. 
Specifically, when constructing each decision tree, the 
RF algorithm employs the bootstrap method to randomly 
sample subsets from the original dataset as training data. 
Additionally, during the splitting process at each node, the 
algorithm randomly selects features for splitting, further 
enhancing the model's diversity and robustness.
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Figure 2. RF Decision tree construction

   For regression prediction problems, assume that the 
random forest consists of T decision trees, and each 
decision tree outputs a predicted value  for the input 
sample x. The final predicted value  of the random forest 
is obtained by averaging the predicted values of all trees:

2.1.3 Extreme Learning Machine (ELM)

   Extreme Learning Machine [13] (ELM) algorithm is 
primarily used to enhance the training efficiency of neural 
networks and optimize the learning process through a 
randomized approach, addressing the computational 
complexity issues in traditional neural network training. 
ELM has been widely applied to binary classification 
and multi-class classification problems. Due to its high 
computational efficiency, it is particularly suitable for 
handling large-scale datasets. Giulio Mariniello et al.[31] 
developed an automated damage assessment method based 
on ELM (LA-ELM), focusing on the prestressed tendon 
failure problem in prestressed concrete bridges. Qiubing 
Ren et al.[38] proposed an online learning model based 
on SOS-ELM, which enables real-time monitoring of dam 
displacement behavior.
   The core idea of the ELM algorithm is to randomize the 
parameters of the hidden layer nodes (i.e., input weights 
and biases), and then calculate the output layer weights 
using the least squares method. This approach reduces the 
iterative process typically required in traditional neural 
network training, as shown in Figure 3.

   First, the parameters of the hidden layer nodes are 
randomly generated, and the output of each input sample in 
the hidden layer is calculated using an activation function 
(such as Sigmoid, ReLU, etc.):

   Where hj(xi) represents the output of the i-th sample after 
passing through the activation function of the j-th hidden 
node. The output layer weights β are then directly solved 
using the least squares method:

β = (HTH)-1HTT
   Where T is the target value matrix of the training samples. 
Based on the computed hidden layer weights and biases, as 
well as the output layer weights, the predicted result can be 
calculated:

2.1.4 eXtreme Gradient Boosting (XGBoost)

   eXtreme Gradient Boosting [6] (XGBoost) is an efficient 
implementation of the Gradient Boosting Decision 
Tree (GBDT) algorithm. By improving the underlying 
algorithm, XGBoost enhances both training speed and 
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   The prediction formula of XGBoost can be expressed as:

   Here,  is the predicted value for sample i, K is the total 
number of weak learners (trees), fk(xi) is the predicted value 
for sample xi from the K-th tree.
   The goal of XGBoost is to learn the model parameters 
by optimizing the objective function, which consists of the 
loss function and the regularization term:

   Where yi is the true value of sample i, and Ω(f) is the 
regularization term: 

Where T is the number of leaves in the tree, fk represents 

the weights of the tree leaves, λ and γ are the regularization 
parameters.

2.1.5 Back-Propagation (BP)

   The Back Propagation Neural Network [39] (BPNN) 
is a classic artificial neural network model. Yang Liu et 
al. [27] used a BP neural network to analyze the spatial 
vulnerability of rural settlements in the hilly areas of 
Sichuan, identifying the main influencing factors and their 
distribution characteristics. Sheng-Hua Xiong et al. [48] 
employed the BP neural network to process and predict 
SAR data for runway settlement issues at airports.
   The core idea of the BP algorithm is to propagate 
information forward through the network and then use 
the chain rule (chain differentiation) to backpropagate the 
error from the output layer to the input layer. The weights 
and biases of the network are then updated using gradient 
descent. The BP network typically consists of three main 
layers: the Input Layer, Hidden Layer, and Output Layer, 
as shown in Figure 5:

concrete, thereby reducing uncertainties in experimental 
results.
   The core idea of XGBoost is to optimize the model's 

prediction capability by integrating multiple weak 
classifiers, typically decision trees, as shown in Figure 4.

Figure 4. XGBoost Model optimization

Figure 3. ELM operating mechanism
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Figure 5. BP framework

   The mathematical relationship(Dong et al. 2018) of the 
propagation process in these three layers can be expressed 
as:
   From the input layer to the hidden layer:

   From the hidden layer to the output layer:

   Where ym and yj represent the inputs to the input layer and 
the hidden layer, yt represents the predicted value at point t, 
μjm and λoj represent the network weights between the output 
layer and the hidden layer, μj and λo are the thresholds of the 
hidden layer and the output layer, n and Idenote the number 
of nodes in the input layer and hidden layer, respectively, fl 
and fo represent the activation functions of the hidden layer 
and the output layer.

2.2 Deep learning methods

2.2.1 Recurrent Neural Network (RNN)

   In time series forecasting, numerous algorithms are 
employed, including Deep Belief Networks (DBN), Support 
Vector Machines (SVM) or Support Vector Regression 
(SVR), Convolutional Neural Networks (CNN), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), and 
Recurrent Neural Networks (RNN). Compared to other 
algorithms, the nodes between the hidden layers of RNN 
are not disconnected, but rather connected. The input to the 

hidden layers includes not only the output from the input 
layer, but also the output from the previous time step of the 
hidden layer. Long Short-Term Memory [36] (LSTM) and 
Gated Recurrent Unit [7,23] (GRU) are both variants of 
Recurrent Neural Networks [16] (RNNs).

Figure 6. RNN unit

   Figure 6 shows an RNN unit xt where A represents the 
neural network module, denotes the input at the current time 
step, and ht represents the hidden state at the current time 
step. By combining the input sample weights, the previous 
hidden state ht-1, the output sample weights V,t he input data 
bias vector b , and the output data bias vector c, the current 
hidden state ht and the output yt can be determined based on 
the input data xt, as follows:

ht = f(Uxt + Wht-1 + b)
yt = Softmax(Vht + c)

   In this context, f represents the activation function for 
the input, Softmaxrepresents the activation function for 
the output. In RNN, U, W and b are shared, which is 
different from LSTM and GRU. However, RNNs face 
issues such as vanishing and exploding gradients, making 
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it difficult to handle long-term dependencies. To address 
these problems, LSTM networks were introduced. LSTM 
introduces a gating mechanism, consisting of the input 
gate, forget gate, and output gate, to control the flow of 
information. These gates allow for selective updating and 
forgetting of information, enabling better capture of long-
term dependencies. Additionally, LSTM introduces a cell 
state to store and transfer information.

Figure 7. LSTM Unit

   In the forget gate and input gate, the sigmoid function is 
used to transform xt and ht into a vector of values between 0 
and 1, where 0 indicates forgetting and 1 indicates storing:

ft = σ(Wf · [ht-1,xt] + bf)
Subsequently, the input gate determines whether to add 
new information to the cell state:

it = σ(Wi·[hi-1,xt] + bi)

    Next, the previously discarded information is combined 
with the newly retained information to update the cell state:

   Finally, the output gate regulates the amount of information 
extracted from the cell state and generates the new output 
using the tanh activation function:

ot = σ (Wo·[ht-1,xt] + bo)

ht = ot* tanh(Ct)
   Here, b represents the bias vector, and W denotes the 
weight matrix for each gate.
   To enhance the LSTM structure and reduce the number 
of parameters, the Gated Recurrent Unit (GRU) was 
developed. The GRU simplifies the LSTM structure by 
merging the forget gate and input gate into a single update 
gate, effectively combining the cell state and hidden state. 
This reduction in parameters enables the GRU to achieve 
comparable accuracy with improved computational 
efficiency, making it particularly well-suited for resource-
constrained environments.

Figure 8. GRU Unit

   The reset gate determines how new input information is 
combined with previous memory:

rt = σ(Wr·[ht-1,xt])
   The update gate determines how much of the previous 
memory is retained and combined with the new input:

Zt = σ(Wz·[hz-1,xt])
   The hidden state can be obtained using the following 
formula:

   The LSTM and GRU networks, by incorporating forget 
gates and update gates, effectively capture long-term 
dependency information, demonstrating widespread 
applications and excellent performance in fields such as 
time series forecasting, pattern recognition, and signal 
processing. The application of RNN-based algorithms 
provides new solutions for predicting complex problems in 
the field of civil engineering. Qing Kang et al. [20] combined 
the attention mechanism with the LSTM model to predict 
the posture and position of the tunnel boring machine, 
improving prediction accuracy. The average R-squared 
value increased from 0.625 to 0.736, while the average root 
mean square error (RMSE) decreased from 3.31 to 2.24. 
Iman Ranjbar et al. [36] developed two architectures based 
on the LSTM network to assess the distributed damage of 
concrete, including a classification model and a regression 
model. They used time-series ultrasound response signals 
as input, which outperformed manually extracted features.

2.2.2 Convolutional Neural Network (CNN)

   CNN has become a competitive method in time series 
prediction due to its efficiency, flexibility, and feature 
learning capability. Compared to traditional time series 
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algorithms, CNN can quickly train on large-scale data by 
sharing convolution kernel parameters and performing 
parallel computation. It also automatically learns complex 
features from the data without relying on manually 
designed features. CNN is particularly effective at 
capturing periodicity and local trends, making it especially 
proficient in handling time series data with short-term 
fluctuations. Additionally, CNN has strong generalization 
capabilities(Zhang et al. 2024) , allowing it to handle both 
univariate and multivariate time series data. It can also be 
combined with other models(Huang et al. 2024; Bai et al. 
2025), to further improve performance. In contrast, while 
RNN and LSTM can capture long-term dependencies, their 
training efficiency is lower, and they are less effective at 
extracting local features compared to CNN.
   The LSTM and GRU networks, by incorporating forget 
gates and update gates, effectively capture long-term 
dependency information, demonstrating widespread 

applications and excellent performance in fields such as 
time series forecasting, pattern recognition, and signal 
processing. The application of RNN-based algorithms 
provides new solutions for predicting complex problems 
in the field of civil engineering. Qing Kang et al.(Kang 
et al. 2023) combined the attention mechanism with the 
LSTM model to predict the posture and position of the 
tunnel boring machine, improving prediction accuracy. 
The average R-squared value increased from 0.625 to 
0.736, while the average root mean square error (RMSE) 
decreased from 3.31 to 2.24. Iman Ranjbar et al.(Ranjbar 
and Toufigh 2022) developed two architectures based on 
the LSTM network to assess the distributed damage of 
concrete, including a classification model and a regression 
model. They used time-series ultrasound response signals 
as input, which outperformed manually extracted features.

Figure 9. CNN 1D Convolution

   The key characteristic of time series is its sequentiality 
and temporal correlation. CNN can extract the local 
features between consecutive time steps using one-
dimensional convolution (1D Convolution). A typical 
CNN algorithm consists of several layers, including input 
layer, convolutional layer, activation layer, pooling layer, 
fully connected layer, and output layer. The core structure 
includes:
   Input layer: Suppose the length of the input time series 
is  T, and the data dimension at each time step is d. The 
input data can be represented as a two-dimensional matrix, 
where the rows correspond to time steps, and the columns 
correspond to the features at each time step.
   Convolutional layer: The convolutional layer is the core 
component of CNN, primarily responsible for capturing 

local patterns and features in the sequence through sliding 
window operations. In 1D convolution, the convolutional 
layer uses a filter (or kernel) that slides over the input time 
series, computing the weighted sum of the filter and the 
local time window at each position. The convolutional 
kernel is a fixed-length small window with size k × d, 
which slides within the time window of size k to extract the 
local features of each time step. The kernel size d is chosen 
to match the dimensionality of the input features. The 
convolution operation is defined by the following formula:

   Here, xi is the input sequence, yi is the output sequence,   
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wk are the parameters of the convolution kernel, and K is 
the size of the convolution kernel.
   Activation Layer: The activation layer is a key component 
in neural networks, as it introduces non-linearity, allowing 
the network to learn complex patterns and mappings from 
the features output by the convolutional layer. In CNN, this 
layer is typically placed after each neuron’s output and uses 
a non-linear function to transform the network's output. 
Common activation functions include ReLU, Sigmoid, 
Tanh, and Leaky ReLU, among others. For example, using 
the ReLU activation function:

Zt = ReLU(yt) = max(0,yt)
   In this case, yt represents the value input into the activation 
function. The activation function enables the network 
to capture more complex patterns, enhances the model's 
non-linear expression ability, and improves its predictive 
performance.
   Pooling layer: The pooling layer is a crucial component 
of CNN, typically placed after the convolutional layer, and 
serves to reduce the dimensionality and summarize the 
features extracted by the convolutional layer. The main 
purpose of the pooling layer is to decrease the spatial 
dimensions (i.e., the width and height of the image or feature 
map), thus reducing the computational load and number of 
parameters, while retaining the essential features. In time 
series processing, max pooling is commonly used:

Zt = max(xt, xt+1, ..., xt+k-1) 
or average pooling:

   Where zt represents the pooling result corresponding to 
the current time step t, and xt, xt+1, ..., xt+k-1 represents the 
values from the input data sequence. These values come 
from the original time series data, containing the input 
values from t for k consecutive time steps.
   CNN, when handling time series data, significantly 
reduces the model's parameter count through parameter 
sharing, improving computational efficiency and reducing 
the risk of overfitting. By stacking multiple convolutional 
layers or adjusting the convolution kernel size, CNN can 
flexibly extract features at different scales, balancing both 
local and global patterns, thus adapting to a wide range 
of task requirements. The application of CNN algorithms 
provides a new approach to solving complex prediction 
problems in the field of civil engineering. Furkan Elmaz 
et al. [11] proposed a Convolutional Neural Network-Long 
Short-Term Memory (CNN-LSTM) architecture for indoor 
temperature prediction. This architecture outperformed 
both the Multi-Layer Perceptron (MLP) and standalone 
LSTM models across all prediction ranges, demonstrating 
superior robustness. Shuting Chen et al. [5] combined 
the CNN algorithm to extract local patterns related to the 
spatial characteristics of pavement deformation basins, 
providing high-quality features for subsequent LSTM time 

series modeling. This approach enabled high-precision 
prediction of the pavement deformation basin area (DBA).  

3. AI methods in surface settlement 
prediction

   Traditional surface settlement prediction methods 
mainly rely on empirical formulas, analytical methods, 
and numerical simulations. However, these approaches 
have limitations in prediction accuracy and applicability. 
In contrast, machine learning (ML) and deep learning 
(DL) methods are capable of processing large and complex 
datasets, automatically learning the nonlinear relationships 
between input features and surface settlement, without 
relying heavily on physical assumptions. The advantages 
of ML/DL methods lie in their high flexibility and 
adaptability, enabling them to capture complex factors 
that are difficult to model with traditional methods, thus 
improving prediction accuracy. However, these methods 
require high-quality data and have relatively poor model 
interpretability. 

3.1 Transformation of the surface settlement 
prediction problem

   Surface settlement prediction based on ML/DL 
methods is inherently a regression prediction problem. 
In surface settlement prediction, multivariate regression 
and time series forecasting methods are commonly used. 
Multivariate regression forecasting utilizes multiple 
independent variables (features) to predict a dependent 
variable (target value). In surface settlement prediction, 
this may include various independent variables such as 
geological conditions, tunnel parameters, construction 
factors, etc. The advantage of this approach lies in its ability 
to comprehensively consider various factors, thereby 
improving the overall accuracy of the prediction. However, 
the model complexity is relatively high, which may lead 
to overfitting. On the other hand, time series forecasting 
predicts based on data arranged in chronological order, 
considering the trend of data changes over time. In surface 
settlement prediction, monitoring data that changes 
over time can be used to forecast future settlement. The 
advantage of this approach lies in its ability to capture 
dynamic changes over time. However, it requires high 
temporal consistency and completeness of the data and 
may be influenced by seasonal and cyclical factors. To 
better utilize ML/DL methods, it is necessary to transform 
and analyze the surface settlement prediction problem to 
some extent.

3.1.1 Maximum Surface Settlement (MSS) prediction

   When using multiple regression prediction, it is necessary 
to first identify key factors that influence settlement as 
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independent variables, such as tunnel depth, diameter, 
geological conditions, construction methods, etc., with 
surface settlement as the dependent variable. By collecting a 
large amount of data samples containing these independent 
and dependent variables, a multiple regression model is 
constructed. Finally, machine learning algorithms (such 
as random forests, gradient boosting trees, etc.) are used 
to automatically learn the complex relationships between 
the independent and dependent variables, thereby enabling 
accurate prediction of the Maximum Surface Settlement 
(MSS).

3.1.2 Surface Settlement Time Series (SSTS) prediction

   When using time series forecasting, settlement monitoring 
data should be arranged in chronological order to construct 
a time series model. Considering the changing trends and 
seasonality of settlement data over time, deep learning 
algorithms (such as Long Short-Term Memory networks, 
LSTM, and Gated Recurrent Units, GRU) are employed 
to capture long-term dependencies and dynamic changes 
within the time series. By training the model to learn 
temporal patterns from historical settlement data, future 
settlement trends (SSTS) can be predicted. This method 
is particularly suitable for scenarios where settlement data 
evolves continuously over time with periodicity, as well as 
for long-term automated monitoring of surface settlement.

3.2 ML and DL based surface settlement 
prediction  

   Through a search in the Web of Science (WOS) database, 
256 articles related to surface settlement prediction 
published from 2016 to 2025 were found. These articles 
were processed using Citespace software to generate the 
keyword clustering distribution map shown in Figure 10, 
which illustrates the clustering of keywords from relevant 
research papers. The different colors of the clusters and 
labels represent different research topics or groups of 
keywords. Figure 10 indicates that recent research has 
mainly focused on construction parameters and machine 
learning studies. Additionally, techniques from computer 
science and statistics, such as machine learning and 
Bayesian methods, are increasingly being applied in the 
field of surface settlement prediction. The application of 
numerical models and imaging technologies in surface 
settlement prediction can help researchers more accurately 
simulate and forecast surface settlement. However, a 
single method is often insufficient to address the complex 
problem of surface settlement. The integrated use of 
multiple methods and technologies, such as combining 
machine learning with numerical models, is a key focus of 
future research. This suggests that with the advancement 
of big data, computational power, and the interdisciplinary 
integration of surface settlement prediction with the field of 
computer science, machine learning techniques are playing 
an increasingly important role in tackling complex surface 

settlement problems.
   By analyzing 21 high-quality articles, as shown in Tables 
1 and 2, recent research in the field of surface settlement 
prediction has primarily focused on the application of new 
algorithms, the adoption of new optimization methods, 
and feature engineering. Through the introduction of new 
algorithms, parameter tuning, and feature selection and 
construction, the goal has been to improve the accuracy and 
robustness of prediction models.
   Table 1 shows that SVM, LSTM, and RF are the 
most frequently used algorithms in surface settlement 
prediction. Researchers have explored various algorithms, 
ranging from traditional machine learning techniques 
to deep learning methods. This suggests that no single 
algorithm is universally optimal, as different algorithms 
perform differently across various scenarios and datasets. 
Additionally, only six related studies involve surface 
settlement time series prediction (SSTS), indicating 
that this approach is rarely adopted in current research. 
However, some studies on maximum surface settlement 
prediction still employ algorithms that are more suited for 
time series prediction tasks related to surface settlement. 
In Mahmoodzadeh's study [30], LSTM was used, and its 
prediction accuracy was only surpassed by DNNS. In the 
articles related to surface settlement time series prediction, 
the R2 values for SSTS predictions were all greater than 
0.95, which is higher than the average R2 value of 0.9 in 
MSS predictions. This indicates that surface settlement 
time series prediction (SSTS) holds significant potential.
   In Table 2 , T stands for tunnel excavation parameters, 
G denotes geometric parameters, and S signifies shield 
parameters, Table 2 shows that some studies use a 
single type of feature for prediction, while others, such 
as STF-Network and 3D-ResUnite, combine multiple 
features to enhance prediction accuracy. Some studies 
focus particularly on feature engineering, for example, 
using Karst boundary and cave features, indicating that 
well-chosen features can significantly improve model 
performance. Additionally, current research incorporates 
various optimization strategies, including the introduction 
of new algorithms, parameter tuning, and feature selection. 
Combining these strategies often results in better prediction 
outcomes.

4. A case for time series prediction of 
surface settlement

4.1 Brief introduction of dataset

   In this study, a 267-metre-long and 80-metre-wide section 
of the tunnel through the airport was selected to predict 
surface settlement. This section contains 159 monitoring 
points that were measured with the MS60 3D scanning 
robot. The measurement robot works with continuous 
measurement, the target search mode is super search, the 
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Figure 10. Keyword clustering distribution map

scanning frequency is 30 KHz, the standard deviation of 
angle measurement is 1, the standard deviation of distance 
measurement is 2 mm + 1.5 ppm, and the standard deviation 
of the elevation measurement is 2.0 mm. The spacing of the 
measurement points along the tunnel excavation direction 
was maintained to coincide with the construction progress. 
159 monitoring sites were observed and 287,297 samples 
were obtained, with an average collection interval of 3.85 
hours and 290 d of continuous monitoring. 
   By employing the MATLAB resampling function, the 
signals from 1,792 (equals to 7×28) resample points 
were obtained. Then, a combination of the MATLAB 
filloutlier function and medfilt function was used for data 
outliers. The filloutlier function detects outliers using 
the 'Generalized Extreme Studentized Deviate (GESD)' 
method, a statistically robust approach for identifying 
data points that significantly deviate from the rest of the 
dataset, and replaces them with spline interpolation to 
estimate values based on the overall trend of the data, 
ensuring smoothness and continuity. Simultaneously, the 
medfilt function applies median filtering, calculating the 
median value within a sliding window of eight sample 
lengths around each data point to effectively remove noise 
and outliers while preserving the data's essential features. 
The combination of these two methods—filloutlier for 
outlier detection and replacement, and medfilt for noise 

reduction—ensures the data is consistent, reliable, and free 
from distortions, providing a high-quality foundation for 
accurate analysis and robust modeling. This preprocessing 
step is crucial for enhancing data integrity and supporting 
subsequent computational tasks.
   The ML algorithms introduced in this paper are support 
vector machine (SVM), random forest (RF), extreme 
learning machine (ELM), and back propagation (BP). Deep 
learning algorithms include convolutional neural networks 
(CNN), long short-term memory networks (LSTM), and 
gated recurrent units (GRU).
   During training, the dataset was divided into small 
batches. To optimize GPU performance and prevent 
variations in data batch fluctuations from affecting the 
loss, the resampled signals must contain integer multiples 
of the minimum batch size, chosen as a power of 2 due 
to hardware limitations. The minimum batch size is 
a hyperparameter whose optimal value is determined 
through experimentation. In this study, the author 
determined the minimum batch size as 32. Additionally, a 
dynamic validation set was used to maintain sample size 
and validation features, preventing overfitting and ensuring 
model reliability. Validation iterations depended on batch 
and simplex sizes.
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Table 2. Parameter types and optimisation tables

Researcher T G S Special parameter Optimization approach
Mahmoodzadeh Yes Yes Yes None Algorithm Comparison
Mohammadi. F Yes Yes None None New Algorithm
V. R. Kohestani Yes Yes None None New Algorithm
Jingsheng Shi Yes Yes None None New Algorithm

Abouzar Darabi Yes Yes None None Algorithm Comparison
Santos Jr. Yes Yes None None Feature Selection

Da Hu Yes Yes None None New Algorithm
A. Pourtaghi Yes Yes None None New optimizer
Hasanipanah Yes Yes None None New optimizer
Qing Kang Yes Yes Yes None New Algorithm
Ning Zhang Yes Yes None Karst cave features Extended model, new indicators
Dongku Kim Yes Yes Yes None New optimizer

Chen, L. None None None None New Algorithm
Chen, R.-P Yes Yes Yes None improved indicators
Kumar, A None None None Only settelment New Algorithm
Ren, M None None None Only settelment New Algorithm

Zhang, P Yes Yes Yes anomalies parameters Feature Selection, New optimizer
Zhang, W.G Yes Yes Yes None Feature Selection
Hai-ying Fu None None None Karst boundary New indicators

Fu-Chao Kong None Yes Yes None New Algorithm
Chao Zhou Yes Yes Yes None Algorithm Comparison

Table 1. Algorithm statistics table

Researcher Algorithms Number of features Prediction type
Mahmoodzadeh LSTM, DNNS, KNN, GPR, SVR, DT, LR 6 MSS
Mohammadi. F MR, MLP, BP 6 MSS
V. R. Kohestani RF, ANN 9 MSS
 Jingsheng Shi BPNN, MNN 11 MSS

Abouzar Darabi AANN, BPNN 19 MSS
Santos Jr. ANN 14 MSS

Da Hu BP, PSO, PSO-BP, AWPSO-BP, PWPSO-
BP 12 MSS

A. Pourtaghi ANN, Wavenet, BP 9 MSS
Hasanipanah ANN, PSO, PSO-ANN 5 MSS
Qing Kang Attention-LSTM 9 SSTS
Ning Zhang LSTM, GRU and Conv1d 18 SSTS
Dongku Kim SVR, RF, GBM, XGB and LGBM 32 MSS

Chen, L. STF-Network, 3D-ResUnit / MSS
Chen, R.-P BP, RBF, GRNN 10 MSS
Kumar, A LSTM 1 SSTS
Ren, M DTW, GRA, ARM, SVR 1 SSTS

Zhang, P LSTM, RF, PSO, GRG 13 Both
Zhang, W.G XGBoost, ANN, SVM, MARS 7 MSS
Hai-ying Fu BP, RF 4 MSS

Fu-Chao Kong PSO-ELM 7 SSTS
Chao Zhou RF 10 MSS
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(a) Resampling processing                      (b) Outlier processing

Figure 11. Typical monitoring points’ data preprocessing

4.2 Evaluation of different AI methods

   The most commonly utilised metrics for the evaluation of 
predictive model performance encompass R-squared (R²), 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Mean Absolute percentage Error (MAPE). 
   The value of R² ranges from 0 to 1, with a closer proximity 
to 1 indicating a superior model fit:

   RMSE is a common measure of the discrepancy between 
an observed value and a true value. A lower RMSE value 
indicated a smaller deviation between the observed and 
true values:

   
MAE and MAPE were calculated as the mean of the 
absolute value of the difference between the predicted 
and actual values. Additionally, MAE and MAPE were 
calculated as the mean of the absolute value as a proportion 
of the actual value. It is desirable for these values to be as 
small as possible:

   Table 3 presents the four evaluation indices of the 
predicted value of the surface settlement for each algorithm, 
including the original and improved algorithms. As 
shown in Table 3, the mean R² of each original algorithm 
is 0.9938, the root mean square error is 0.2162 mm, the 
mean error is 0.1449, and the mean error percentage is 
8.536 %. RF and ELM performed best in the surface 
settlement time series prediction task with high prediction 
accuracy and low error. While BP performs relatively 
average, other algorithms such as CNN, Bi-GRU, Bi-
LSTM, PSO-LSTM and PSO-GRU perform moderately 
well, each with certain application scenarios and values. 
However, this assessment is specifically targeted at the 
Kunming dataset, the generalizability of these models to 
other datasets remains uncertain due to potential region-
specific biases and limitations in the dataset's diversity. 
For instance, preprocessing techniques and features 
optimized for Kunming's geological and environmental 
conditions may not translate well to datasets from other 
regions with differing characteristics. Additionally, the 
dataset may overrepresent certain conditions, leading 
to overfitting and reduced performance on new data. To 
enhance generalizability, future work should incorporate 
diverse datasets, employ adaptive preprocessing methods, 
and identify universal features relevant across various 
scenarios. Cross-dataset validation is also essential to 
ensure the models' robustness and applicability beyond the 
Kunming dataset.
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Table 3. R2, RMSE, MAE and MAPE using ATD model algorithm

Algorithm R2 RMSE MAE MAPE
SVM 0.99365 0.327 0.269 20.02%
RF 0.99943 0.098 0.043 2.78%

ELM 0.99962 0.080 0.040 2.67%
BP 0.98278 0.539 0.341 14.40%

CNN 0.99876 0.145 0.085 5.43%
BI-GRU 0.99666 0.237 0.197 10.29%

BI-LSTM 0.99896 0.132 0.094 4.20%
PSO-LSTM 0.99669 0.236 0.116 7.99%
PSO-GRU 0.99800 0.184 0.135 9.04%

5. Discussion

   Current research mainly focuses on the application of 
artificial intelligence methods, particularly machine learning 
and deep learning algorithms, to predict surface settlement 
induced by tunnel excavation. These studies encompass not 
only the prediction of Maximum Surface Settlement (MSS) 
but also the prediction of Surface Settlement Time Series 
(SSTS), offering a more comprehensive understanding of 
the dynamic changes in surface settlement. Algorithms play 
a pivotal role in the current landscape of surface settlement 
prediction.
   However, many AI models, function as "black boxes" 
, making it challenging to interpret how predictions are 
generated. This lack of transparency can hinder their 
adoption in engineering applications, where understanding 
the underlying mechanisms is essential. Additionally, 
training advanced AI models, especially DL models, 
demands substantial computational resources (e.g., GPUs 
or TPUs) and time, which can pose a significant barrier 
to practical implementation, particularly in resource-
constrained environments. Furthermore, AI models trained 
on specific datasets often struggle to generalize to different 
geological conditions or construction scenarios. Variations 
in soil properties, groundwater levels, or construction 
methods can significantly reduce prediction accuracy when 
applied to new environments.
   Traditional methods, such as the convergence-confinement 
method, are grounded in well-established physical 
principles and offer clear interpretability. However, they 
often rely on simplified assumptions and may fail to fully 
capture the complexity of soil behavior. In contrast, AI 
models excel at learning intricate patterns from data but 
typically lack physical interpretability. Similarly, the Finite 
Element Method (FEM) is highly versatile and capable 
of simulating complex geotechnical conditions with 
high accuracy. Nevertheless, FEM demands significant 
expertise and computational resources for model setup 
and analysis. While AI models are data-driven and adept 
at handling nonlinearity and large datasets, they do not 
inherently incorporate physical laws, which can lead 

to less reliable predictions in scenarios where physical 
constraints are critical. In summary, traditional methods 
are more interpretable and physically grounded but are 
often constrained by their assumptions and computational 
demands. On the other hand, AI models excel in processing 
complex data but may suffer from a lack of transparency 
and struggle with extrapolation beyond their training data.
   In terms of feature engineering, specific methods often 
cannot be directly applied to other engineering scenarios. 
This is because the selection and optimization of feature 
engineering approaches are highly dependent on the 
specific research context and data characteristics. For 
instance, methods that utilize unique parameters such as 
Karst boundaries and cave features may yield significant 
results in regions with similar geological conditions but 
may not be applicable in areas with different geological 
settings. Similarly, prediction methods based on time series 
data may perform exceptionally well in scenarios where 
the data exhibits strong temporal characteristics. However, 
their effectiveness may diminish in cases of missing 
data or when temporal features are less pronounced. 
Consequently, a single feature engineering approach lacks 
generalizability. To enhance the accuracy and robustness 
of predictive models, it is essential to select and optimize 
feature engineering methods tailored to the specific research 
context and data characteristics. 
   High-quality, labeled datasets for ground surface 
settlement are often scarce due to the high cost and 
complexity of data collection. Limited datasets can result 
in overfitting and poor generalization of AI models, 
compromising their effectiveness. Additionally, datasets 
may be biased toward specific geological conditions or 
construction methods, causing models to perform well only 
in similar contexts and limiting their applicability to diverse 
scenarios. Furthermore, data preprocessing steps, such as 
normalization and feature selection, play a critical role in 
model performance. Inadequate preprocessing choices can 
introduce noise or discard essential information, ultimately 
reducing prediction accuracy.
   Therefore, in current research, both the application 
and improvement of algorithms coexist, with a stronger 
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emphasis on the improvement of algorithms. This is 
because the diversity and complexity of data in surface 
settlement prediction make it challenging to directly 
apply existing algorithms and achieve ideal results. As 
a result, researchers tend to experiment with various 
algorithms to identify the most suitable solution for specific 
scenarios and datasets. Based on the literature review 
and example analysis, in surface settlement prediction, 
the most recommended algorithms are Long Short-Term 
Memory (LSTM) networks or their variants, such as 
Gated Recurrent Units (GRU). The reason for this is that 
LSTM and GRU excel at handling time-series data and 
can effectively capture long-term dependencies within the 
data, which is crucial for surface settlement time-series 
prediction. Nevertheless, as research progresses, there has 
been an increasing focus on algorithm optimization and 
improvement, such as introducing new function optimizers 
to enhance training efficiency and prediction accuracy, or 
conducting feature engineering to select and optimize input 
parameters, further boosting the performance of prediction 
models.  Moreover, these algorithms have been shown to 
exhibit high prediction accuracy and robustness in several 
studies. For example, Qing Kang et al.(Kang et al. 2023) 
combined an attention mechanism with the LSTM model 
to predict the posture and position of a shield machine, 
significantly improving prediction accuracy. 
   Currently, significant progress has been made in 
predicting surface settlement caused by tunnel excavation 
using artificial intelligence methods, particularly machine 
learning and deep learning algorithms. These algorithms 
have not only improved prediction accuracy but also 
expanded the scope of predictions, ranging from maximum 
surface settlement to surface settlement time series, 
providing strong support for engineering practice.
   In the future, research on surface settlement prediction 
could integrate the physical mechanisms underlying 
surface settlement to further improve prediction 
accuracy and reliability. Surface settlement is a complex 
physical process involving various factors, such as soil 
compression, deformation, and changes in pore water 
pressure. By gaining a deeper understanding of these 
physical mechanisms, more accurate predictive models 
can be developed, capable of capturing the interactions and 
dynamic changes among different factors. For example, 
numerical simulation methods can be incorporated to 
simulate the development of surface settlement under 
various construction parameters and geological conditions, 
providing machine learning algorithms with richer training 
data and features. Additionally, advancements in automated 
monitoring technologies enable researchers to obtain 
more accurate geological and construction parameter 
information, offering more reliable inputs for predictive 
models. This approach—integrating physical mechanisms 
with machine learning algorithms—holds the potential not 
only to improve prediction accuracy and generalization but 
also to deepen the understanding of the complex processes 
of surface settlement. Such an approach can provide more 

scientific guidance for engineering practices. While this 
research direction is promising, it requires interdisciplinary 
collaboration and in-depth investigation. Moreover, ML 
and DL algorithms can also be utilized to improve dataset 
quality, thereby enhancing prediction accuracy. For 
example, data augmentation can be employed to generate 
diverse samples [47], auto-labeling and semi-supervised 
learning can reduce the cost of manual annotation [25], 
data cleaning techniques can repair noise and missing 
values [34] and generative adversarial networks (GANs)
[35] can create high-quality synthetic data to compensate 
for data scarcity. These methods, when combined, can 
significantly enhance the quality, scale, and diversity of 
datasets, ultimately improving model performance and 
generalization capabilities.

6. Conclusion

   In this review, we systematically summarize the progress 
made in the application of machine learning (ML) and 
deep learning (DL) to land subsidence prediction. We 
introduce the core principles of commonly used ML and 
DL algorithms for land subsidence prediction. The land 
subsidence problem is categorized into the following 
types: maximum land subsidence (MSS) prediction and 
land subsidence time series (SSTS) prediction. Using the 
Kunming dataset, we validate the effectiveness of various 
algorithms, including SVM, RF, ELM, BP, CNN, BI-GRU, 
BI-LSTM, PSO-LSTM, and PSO-GRU, in land subsidence 
prediction. Additionally, we discuss the advantages 
and limitations of ML and DL algorithms compared to 
traditional prediction methods.
   This paper offers an in-depth analysis of the current use 
and effectiveness of machine learning and deep learning 
algorithms in this field. The study highlights the limitations 
of traditional prediction methods, which often struggle to 
meet the demands of complex and dynamic engineering 
scenarios due to challenges in parameter determination and 
reliance on empirical values. In contrast, machine learning 
and deep learning algorithms, such as Support Vector 
Machines (SVM), Random Forests (RF), Extreme Learning 
Machines (ELM), XGBoost, and Recurrent Neural 
Networks (RNN), have shown significant improvements 
in prediction accuracy and generalization capabilities by 
automatically learning complex features and temporal 
dependencies within data.
   In particular, recurrent neural networks (RNN) and 
their variants, such as Long Short-Term Memory (LSTM) 
networks and Gated Recurrent Units (GRUs), have 
demonstrated exceptional performance in handling time-
series data, offering innovative solutions for surface 
settlement time-series prediction. Through a thorough 
literature review and case analysis, this paper highlights the 
varying performance of different algorithms across diverse 
scenarios and datasets, underscoring the critical importance 
of algorithm selection and optimization.
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   However, ML and DL also face significant limitations in 
engineering applications: lack of transparency, making it 
difficult to interpret prediction processes; training requires 
substantial computational resources and time; scarce and 
biased datasets for ground surface settlement often lead 
to overfitting, poor generalization, and reduced AI model 
accuracy. While AI models excel at handling complex data, 
they fall short in transparency, generalization, and physical 
consistency. Current research faces several challenges, 
such as the need for targeted algorithm improvements and 
the generalizability of feature engineering methods. Future 
studies should integrate the physical mechanisms of surface 
settlement to further enhance the accuracy and reliability 
of predictive models. For example, combining numerical 
simulations with field monitoring data can provide 
richer training data and features for machine learning 
algorithms, thereby enabling the construction of more 
accurate predictive models. Furthermore, interdisciplinary 
collaboration and in-depth research will be key drivers for 
advancing this field. In summary, with the increase in big 
data and computational capabilities, artificial intelligence 
methods will play an increasingly important role in 
predicting surface settlement induced by tunnel excavation.
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