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Abstract: In recent years, the frequency of seismic activity has increased, highlighting the importance of evaluating
the response of structures to varying seismic intensities to ensure their safety. This study explores the stochastic
incremental dynamic analysis (IDA) of multi-degree-of-freedom (MDOF) structures under unsteady seismic
excitation. To address the complexity of unsteady seismic events, stochastic precesses are integrated into the IDA to
generate stochastic seismic records that adhere to the elastic response spectra specified in Eurocode 8. A Monte Carlo
simulation approach was employed to generate seismic waves using MATLAB, followed by a nonlinear time-history
analysis in ABAQUS to evaluate the structural response, particularly focusing on the maximum interstory drift ratio.
The findings indicate that: (1) at low Peak Ground Acceleration (PGA) levels, the structure exhibits a minimal risk of
failure. However, the risk of structural failure escalates significantly as the PGA increases, particularly beyond 0.4g.
(2) The study also identifies gaps in current seismic analysis practices, especially the need for more robust stochastic
IDA applications and the consideration of non-smooth excitations. This research offers a more comprehensive
understanding of the seismic performance of MDOF structures and provides valuable insights for enhancing seismic
design and risk assessment. Nevertheless, the study acknowledges certain limitations, such as the use of simplified
structural models and the constraints imposed by computational time and suggests that future research should focus
on more sophisticated modelling and simulations with larger sample sizes.

Keywords: Multi-degree-of-freedom (MDOF) structures, Stochastic Incremental Dynamic Analysis (IDA), Seismic
excitation, Monte Carlo Simulation (MCS), Peak Ground Acceleration (PGA), Maximum interstory drift ratio,
Nonlinear time-history analysis

1. Introduction 30 seconds with distinct rupture dynamics. Within 24
hours, the region experienced 150 aftershocks of M>4.0,
including a Mw 7.5 event as the largest aftershock.

On February 6, 2023, at 04:17 local time (04:17 UTC+3), ~ Casualties and economic impacts included:
a Mw 7.8 earthquake struck southern Turkey, characterized ~*  >50,000 fatalities across Turkey and Syria
by an 80-second duration of strong ground motion. * 100,000 injuries
Nine hours later, a second Mw 7.8 earthquake occurred * 2,800+ building collapses

approximately 96 km north of the initial epicentre, lasting *  USD 100 billion in economic losses
This _seismic__sequence represents Turkey's most
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devastating disaster since the 1939 Erzincan earthquake
(Mw 7.8). Notably, newly constructed buildings exhibited
unexpected severe damage patterns. Gurbuz attributed these
failures to underestimated non-stationary ground motion
characteristics in structural design codes, particularly the
time-varying spectral acceleration and cumulative energy
input during the dual mainshocks [1].

In the field of engineering, structures are often classified
into single-degree-of-freedom (SDOF) and multi-degree-
of-freedom (MDOF) systems when conducting dynamic
studies. SDOF systems are typically used for simplified
analysis and allow for easier evaluation of a building's
response to seismic forces. In contrast, MDOF systems
provide a more accurate representation of the dynamic

behaviour of complex structures. As noted by Makarios, the
study of MDOF systems is crucial in structural engineering,
particularly when assessing the impact of extreme loads
[2]. In recent years, increased tectonic activity has led to
an increase in the frequency of earthquakes worldwide.
It is often reported in the news that some buildings in
earthquake-stricken areas are destroyed, while others
remain largely intact, with only specific beams or columns
suffering significant deformation or damage. These
disparate results not only affect the cost of post-earthquake
repairs but also have serious implications for the safety of
people in the affected areas. This concern underscores the
importance of research on the "dynamic analysis of multi-
degree-of-freedom structures."

Figure 1. Completely failure (left) and partial failure (right) [3]

Research on earthquakes predates the 21st century, and
over time, our understanding of how structures respond
to seismic events has evolved—ifrom the equivalent static
method to pushover analysis. To further investigate the
relationship between earthquake intensity and structural
response metrics, the incremental dynamic analysis (IDA)
method was introduced in 2001, which establishes a
significant link between these two factors [4]. However,
this method typically relies on one or more specific
seismic inputs and cannot fully capture the uncertainties
associated with earthquake events. As computing power
has increased and the demand for structural safety
has grown, existing earthquake records have proven
insufficient for large-scale simulations. For this reason,
stochastic analysis has been incorporated into earthquake
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engineering, in which earthquake records are generated
through computer simulations. These simulated records,
combined with the incremental loading approach of
incremental dynamics, mitigate the limitations imposed
by the scarcity of earthquake records while introducing
additional uncertainties into the analysis, providing a more
comprehensive framework for the seismic assessment of
buildings.

Building on these advancements, seismic analysis has
gained momentum. Researchers, after examining the
relationship between structural response and seismic
intensity, have begun to explore the application of statistical
methods in incremental analysis. To derive higher-order
statistics of engineering demand parameters (EDP), such as
probability density functions, researchers have extended the
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outcomes of incremental dynamic analysis and introduced
the concept of the IDA surface [S]. This development
not only encapsulates the relationship between intensity
measures (IM) and EDP but also visualizes the probability
of various EDPs occurring under different IMs, further
refining seismic analysis methodologies.

Compared to conventional methods, the equivalent static
method simplifies seismic loads as static forces and neglects
time-dependent effects and nonlinear material responses
[6]. In contrast, Stochastic Incremental Dynamic Analysis
(SIDA) explicitly captures the degradation of structural
performance under progressively amplified seismic actions
by incorporating non-stationary ground motion inputs [7].
For instance, static methods exhibit prediction errors of 20—
40% in the evaluation of collapse mechanism assessments,
whereas SIDA significantly enhances accuracy through
dynamic analysis.

Pushover analysis, on the other hand, assumes a lateral
load distribution dominated by a single mode of vibration
(e.g., the first vibration mode) and does not take into
account the contributions of higher modes of vibration
or load redistribution after plastic hinge formation [8].
SIDA addresses this limitation by employing scaled
accelerograms to excite multi-mode responses, thereby
revealing critical weak points in irregular structures, such
as the development of plastic hinges at beam-column joints
in steel frames.

Recent advancements in the integration of stochastic
incremental dynamic analysis (IDA) and meta-modelling
techniques have significantly enhanced the efficiency of
seismic response analysis for complex structures. For
instance, Chen demonstrated that multi-input multi-output
nonlinear autoregressive (MIMO-NARX) models enable
efficient response prediction for stochastic nonlinear
multi-degree-of-freedom (MDOF) systems, reducing
computational costs while maintaining high accuracy [9].
Mitseas and Beer introduced a first-excursion stochastic
incremental dynamics methodology, which incorporates
Monte Carlo simulations and hysteretic models to quantify
time-dependent failure probabilities of MDOF systems
under non-stationary seismic excitations [10]. Additionally,
Xu proposed a deep reinforcement learning framework
for generating non-stationary ground motions that align
with target response spectra, offering a novel approach to
simulate realistic seismic inputs for infrastructure resilience
assessment [11]. These methodologies collectively address
critical gaps in conventional seismic analysis, particularly
in capturing uncertainties and time-varying characteristics
of earthquake events.

Despite these advancements, most existing studies
focus on analysing the structural response in stationary
seismic excitations and neglect the impact of non-
stationary excitations. Additionally, although IDA has been
widely used in seismic analysis, research on stochastic
incremental dynamic analysis (Stochastic IDA) is still
insufficient, particularly when applied to MDOF systems.
Given the non-stationarity of actual seismic excitations
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and the complexity of MDOF structural systems, there is
an urgent need to perform stochastic incremental dynamic
analysis. With this method, the behavior of structures
under complex seismic conditions can be simulated more
accurately, providing more reliable data for seismic design
and structural safety assessment.

2. Methodology

This study aims to perform a stochastic incremental
dynamic analysis of multi-degree-of-freedom (MDOF)
structures under non-stationary seismic excitations
using Monte Carlo simulation method, with the goal of
establishing the relationship between Intensity Measures
(IM), Engineering Demand Parameters (EDP), and
probability density. To achieve this, the research starts with
the identification of the relevant IM and EDP. A combined
approach utilising programming software and finite element
analysis is then applied. A structural model is developed in
ABAQUS, and, following the guidelines of EUROCODE
8, random seismic waves are generated in MATLAB using
Monte Carlo simulation. These waves are then input into
ABAQUS for nonlinear time-history analysis to determine
the maximum inter-story drift ratio of the structure.

2.1 Parameter selection for incremental
dynamic analysis

Incremental Dynamic Analysis (IDA) establishes a
connection between IM and EDP. In this study, Peak
Ground Acceleration (PGA) is selected as the Intensity
Measure (IM), and the maximum inter-story drift ratio is
chosen as the Engineering Demand Parameter (EDP).

2.2 Model
2.2.1 Introduction to ABAQUS

ABAQUS is an important tool for finite element analysis
in earthquake engineering, which is used for static and
quasi-static problems, as well as complex nonlinear
analysis. Static and quasi-static analyses are employed to
simulate the deformation and internal force distribution of
structures before and after an earthquake. These analyses
help engineers understand the residual deformation and
potential damage patterns of structures after an earthquake.
On the other hand, dynamic analysis in ABAQUS can
deal with complex material nonlinearity and geometric
nonlinearity (such as plasticity, fracture, buckling, etc.),
which makes it particularly effective for simulating large
deformations and complex contact problems.

In dynamic analysis, ABAQUS's implicit solver method
demonstrates extremely high stability when dealing
with nonlinear large deformation problems caused by

Civil and Energy Research



earthquakes, especially when analysed over long-duration
and when integraing large time steps, making it an ideal
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Figure 2. Overview flow chart of the methodology

choice for detailed structural analysis in earthquake
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2.2.2 Model development

Structure Member
Style

Boundary}—.‘ Load }—»‘ Job }—»‘ Result ’

. Analyse
Material }—»

Figure 3. Flow chart of modelling in ABAQUS3.3. Generate Seismic Wave

Monte Carlo Simulation is a numerical method that
utilizes random sampling to estimate the outcomes of
complex systems or processes. By repeatedly performing
random sampling and iterating numerous times, Monte
Carlo Simulation can approximate solutions to problems
that are typically challenging to solve directly through
analytical methods. The core concept of Monte Carlo
Simulation is to model the behaviour of a system or process
through extensive random sampling, thereby estimating the
probability distribution of its outcomes. In simple terms,
if researchers wish to understand the output results of a
complex system under varying input conditions, they can
randomly generate these input conditions, simulate the
system, and then observe the distribution of the resulting
outputs. This method is valuable for estimating statistical
quantities such as the expected value and variance of the
system and is widely used in risk assessment and decision
analysis.

Mathematically, Monte Carlo Simulation relies on the
Law of Large Numbers and the Central Limit Theorem.
Suppose we have a random variable with a probability
density function f(x), and we want to estimate the expected

value dfyiggia E(X):

+0

E(X) = f xf(x) dx#(1)

Since directly calculating the above integral can be very
challenging, the Monte Carlo method estimates it through
the following steps:

(1) Generate Random Samples: Randomly generate N
samples X, X, ...,x_from the distribution f(x).
(2) Calculate Sample Mean: Calculate the mean of these
samples as an estimate of the expected value:

N

~ 1

B(X) = ﬁz X #(2)
i—1

According to the Law of Large Numbers, when the
sample size N is sufficiently large, the sample mean E®
will converge to the true expected value.

Additionally, by calculating the sample variance and
standard error, the uncertainty of the simulation results can
also be estimated.

In earthquake engineering, the response of multi-degree-
of-freedom (MDOF) systems is often complex and highly
nonlinear. Monte Carlo simulation effectively addresses
this complexity, particularly under non-stationary seismic
excitations. By randomly generating various seismic
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inputs, it captures the dynamic behaviour of the system
across different potential earthquake scenarios [12].
This approach offers distinct advantages for analysing
the dynamic response of MDOF systems, especially
when seismic motion exhibits significant time-varying
characteristics.

Monte Carlo simulation quantifies the response uncertainty
of MDOF systems under different seismic excitations
by generating a large number of random samples. This
capability is crucial in earthquake engineering, as it enables
engineers to assess potential risks to structures during
future seismic events, providing a quantitative basis for
design and retrofit decisions. The method is highly flexible
and can adapt to various types of seismic excitations and
structural characteristics. Whether dealing with short-
period or long-period non-stationary seismic waves or
considering complex factors such as material and geometric
nonlinearities in MDOF systems, Monte Carlo simulation
offers accurate response predictions.

In this study, Monte Carlo simulation is primarily
employed to simulate seismic uncertainty by generating
random peak ground accelerations (PGA) a, following a
lognormal distribution and random phase angles ¢ with
uniform distribution. Other parameters, such as the natural
vibration period 7, are deterministic due to structural
configuration and height variations, while soil parameters
lack randomness as they are governed by region-specific
geotechnical conditions. By integrating these parameters
(excluding the random phase angle ¢) with Equations
(6)-(8) in Section 3.2.1, the elastic response spectrum of
the structure is derived. The randomly generated phase
angles ¢ are then utilized to synthesize frequency-domain
seismic records in MATLAB. Through N independent
repeated experiments (where N is researcher-defined based
on computational resources and precision requirements),
the methodology outputs N sets of ground motion time
histories compliant with Eurocode 8 specifications [13].
The complete MATLAB implementation is provided in
Appendix A.

The inverse Fourier transform (IFT) is implemented
in MATLAB to synthesize time-domain ground motion
accelerograms from stochastic frequency-domain signals.
The procedure comprises the following steps:

A.Frequency-domain signal construction:

The target elastic response spectrum S (f) is derived from
Eurocode 8, incorporating site coefficients () and damping
correction factors (#):
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20 f
+5(5)
— T
1+ (E)

Where a, follows a lognormal distribution to represent
seismic intensity variability.

B.Phase randomization:
A stochastic phase vector ¢ € [0, 2m) is generated for
each frequency component to emulate natural earthquake
randomness

C.Complex spectrum synthesis:
The frequency-domain signal combines spectral amplitudes
S.(Dand randomized phases:

Se(f)=5'n'ag #(3)

Decide EC8
parameters

Modulation
function

X(f) = S.(f) - P D)

ensuring conjugate symmetry for real-valued time-domain
outputs.
D.Time-domain conversion via IFT:
The discrete inverse Fourier transform is executed with the
'symmetric' flag to enforce Hermitian symmetry
E.Non-stationary modulation:
A trapezoidal envelope o(t) modulates the synthesized
signal to introduce time-dependent energy characteristics:

anon—stationary = (U(f) : a(t) #(5)

Decide MCS Generate Save into
parameters Seismic Wave Excel

Figure 4. Flow chart of generating a random seismic wave

2.3 Non-linear Time History Analysis (NTHA)

Nonlinear Time History Analysis (NTHA) is a detailed
and complex seismic engineering analysis method used
to evaluate the dynamic response of structures under
seismic excitation. Unlike linear analysis methods, NTHA
considers material nonlinearity, geometric nonlinearity, and
the interactions between components, allowing for a more
accurate simulation of the real behaviour of structures under
extreme loads. The general analysis steps are as follows:

e Seismic Input: In NTHA, the structural model is
subjected to actual or artificially generated seismic
inputs. The seismic input is provided in the form of
acceleration time histories, and multiple seismic
records are usually employed to capture the uncertainty
of the earthquake.

*  Modelling of nonlinear behaviour: The nonlinear
factors considered in the analysis include: (i) Material
nonlinearity: Such as the yielding of steel structures or
cracking of concrete. (ii) Geometric nonlinearity: Such
as large deformation effects and P-A effects.

*  Numerical solution: The structural equations of motion
are solved using numerical integration methods (such
as the Newmark method or the Hilber-Hughes-Taylor
method) to obtain the structural response at each time
step.

Through NTHA, detailed information about the structural
response under seismic action can be obtained. This study
mainly focuses on:

*  Displacement and deformation: The time history of
displacement and deformation at various points of the
structure, especially the displacement curves of key
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nodes. These data help understand the deformation
pattern and identify the maximum deformation
locations of the structure during an earthquake.

e Interstory drift ratio: The inter-story drift ratio of each
floor is calculated to evaluate whether the structure
meets the seismic code requirements and to identify
potential mechanisms of story drift or collapse.

In certain cases, by analysing the energy distribution (such
as kinetic energy, potential energy, and dissipated energy),
the structure's ability to absorb and dissipate energy under
seismic action can be assessed, providing further insights
into the seismic resilience of the structure.

3. Simulation of multi-degree-of-
freedom structures under non-
stationary seismic excitations

3.1 Overview of the structure

The structural model in this study is based on the Sentinel
Tower dormitory at the University of Leeds. It is simplified
in ABAQUS as a five-story steel frame with five spans
in the x-direction and three spans in the y-direction. The
model is shown in the figure below.

The structure uses S355 grade steel, with a floor height
of 2.7 meters. Total length of structure 17.5 metres, width
10.5 metres, height 13.5 metres. The columns have a box
section, and the beams have an I-shaped section. The
specific dimensions are shown in the table.
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Figure 5. Schematic of the model

Table 1. Member size of the ABAQUS model

Member Steel Grade Section Size(mm)
Beam S355 I shape 533x210x109UB
Column S355 Box shape 400x400x10

For S355 steel, considering its density, elastic stress, and plastic stress/strain, the specific data are provided in the table below.

Table 2. Elastic data of ABAQUS model

Steel Grade Density (kg/m?)

E (Gpa) Poison’s ratio

S355 7850

206 0.3

Table 3. Plastic data of ABAQUS model

Steel Grade: S355

Plastic stress (N/mm3)

Plastic strain (10-2)

o, 360
o, 554
o 480

St

0.175
25
26

3.2 Seismic wave

The process of generating random seismic waves using
Monte Carlo simulation through MATLAB has already
been presented in the previous chapter with a flowchart.
Here, only the explanation and selection of the key
parameters in the code are provided; the full code can be
found in the appendix.

3.2.1 Parameters

According to ECS, the soil type is Class B with a viscous
damping ratio of 5%, a Type 1 response spectrum is used.
The parameters describing the response spectrum are
provided in the table below.

Table 4. Spectrum parameters according to EUROCODE 8

Soil Type Damping S T, T, T,
B 0.05 1.2 0.15 0.5 2.0

46 | Volume 1 Issue 1, 2025
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The horizontal elastic response spectrum of the structure is as follows:

T
0<T<Ts5.(T) = a,S [1+ (257 — 1)] #(6)
B

Ty <T <T.S,.(T) =2.57a,5%(7)

T
Te < T < Ty, S.(T) =2.5na,S [?‘7} #(8)

Tp =T < 4s,5.(T) =2.5na,5

3.2.2. Parameters for Monte Carlo Simulation

The structure has a floor height of 2.7 meters and a total
height of 13.5 meters. The period of the first mode is
calculated using the empirical formula as follows?:

T, = C.H*#(10)

Where C and x are coefficients; for steel structures, they
are selected as 0.085 and 0.75, respectively.
T,=0.085*13.5°7=0.51s

To capture the high-frequency characteristics during

analysis, the lower limit of the period is set to seconds,

and to ensure the accuracy of low-frequency information,

the upper-frequency limit is set to seconds. Considering

computational efficiency and convergence, 1000 sampling

points are selected for the period.

During an earthquake, PGA follows a lognormal
distribution, but the elastic response spectrum in EC8 does
not directly provide PGA. Therefore, a, is assumed to follow
a lognormal distribution, and by changing the logarithmic
mean of a_, PGA can be controlled. Changing the standard
deviation of a, allows adjustment of the dispersion of
acceleration at different moments in the seismic record and
the probability of generating extreme values.

3.2.3 Time modification function

Amin and Jennings proposed using a time modulation
function to simulate the non-stationary characteristics of an
earthquake, specifically to represent the initial and decay
stages of an earthquake through the following equation

[14]:
(.=

a
Lty <t<ty, #(11)

e t-t) g,

fo) =

Where t_and t, are the start and end times of the stationary
phase of the seismic motion, respectively, and a is the
control parameter for the decay phase. For an earthquake
record with a total duration of 30 seconds, t is set to 8
seconds, t, is set to 18 seconds, and a. = 0.2.
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3.3 Mesh control

Mesh generation is a critical step in ABAQUS analysis,
where a continuous component is divided into a finite
number of elements, allowing for the individual solution of
these elements. This discretization process is particularly
effective for analysing geometrically complex shapes.
However, a denser mesh requires solving more finite
elements, which can significantly increase computation
time. For the model used in this study, which features a
regular shape and simple components, it is especially
important to balance computational accuracy and efficiency.
In this section, to minimise the influence of seismic records
on the results, the north-south component of the El Centro
earthquake is used for the simulation. All other settings
remain unchanged except for the mesh size. The mesh sizes
and corresponding simulation times are presented in the
table below, and the displacement diagrams are illustrated
in the accompanying figure.

Typically, the smaller the mesh size, the more accurate
the results. However, in Group C, with a mesh size of 500,
the displacement of the structure at the same measurement
points became highly distorted. Moreover, during the
30-second earthquake simulation, displacement was
only recorded in the first 4 seconds, indicating that the
analysis results are divergent. In contrast, the displacement
diagrams for Groups A and B are nearly identical, but the
computation time for Group B was 30% longer than for
Group A. Therefore, a mesh size of 250 will be uniformly
applied for all subsequent analyses in this study.

3.4 Selection of monitor point

When seismic motion occurs, the maximum inter-story
drift in a regular structure generally occurs at the corners
of the structure. Therefore, the measurement points are
selected as shown in the figure below:
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Table 6. Analysis time for different mesh sizes

Group name Seismic record Mesh size Total time
A El Centro-NS 100 11min30s
B El Centro-NS 250 8min5s
C El Centro-NS 500 7min30s
MP-5 o
MP-4
MP-3
MP-2 e
MP-1 &
MP-0

Figure 9. Monitoring points (MP) for structural modelling
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4.1 Interstory drift ratio
4.1.1 Limit value

According to EC8 Clause 4.4.3.2, consider the worst
case’:

d,v < 0.005h#(12)

Where d_is the inter-story drift, and v is a reduction factor
related to damage limitation requirements. However, due
to varying practical requirements, the story heights of a
structure often differ across floors. To eliminate the influence
of varying story heights and more intuitively quantify
structural deformation per unit height under seismic loads,
it is more rational to perform failure probability analysis
using the ratio of the maximum interstory displacement to
the corresponding story height for each floor.

Therefore, the inter-story drift ratio:

_ max (d;4(6) — di(0)) P

i ,i=12,..,5#(13)
h;

Which 7, is the height of each floor, considering the low
recurrence period of seismic activity. It is generally taken
as 0.4 or 0.5, depending on the importance level of the
structure. In this study, considered the worst case, v =1 is
used.

4.1.2 Analysis of incremental dynamic analysis surface
After performing kernel density estimation on the

simulation results, the resulting IDA surface is shown in
the figure below:

IDA Surface with Probability Density

300
250,
200,

150

Probability Density

Limit Value

~<—1/2000.005

100

%107

Interstory Drift Ratio

Figure 11. IDA surface (IM: PGA, EDP: Max inter-story drift ratio)

The red plane represents the maximum elastic inter-story
drift ratio limit. The probability density peak in the figure
is concentrated between an inter-story drift ratio of 0.003-
0.004, which is more likely to occur during lower-intensity
earthquakes (with PGA ranging from 0.1g to 0.3g).

The IDA surface is presented in a three-dimensional
format, illustrating the relationship between PGA (one
horizontal axis) and inter-story drift ratio (the other
horizontal axis), with probability density as the third
dimension (vertical axis). This 3D surface reflects the
inter-story drift response of the structure under different
earthquake intensities (PGA) and represents the probability
density through colour. The yellow areas in the figure
indicate that, at specific combinations of PGA and inter-
story drift ratio, the structure has a higher probability of
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reaching that drift ratio. This implies that as earthquake
intensity increases, the structure is more likely to exhibit a
particular range of inter-story drift ratios.

The red plane represents a limit value of 0.005 for the drift
ratio between the projecticles. This is the limit value for the
elastic inter-story drift ratio for steel frame structures as
specified by Eurocode 8. This limit value is used to assess
whether the structure remains in a safe state under seismic
action. Exceeding this value generally indicates structural
failure or the potential for significant deformation. The
area on the right side of the IDA surface, beyond the red
plane, indicates that the structure is very likely to exveed
the Interstory Drift Ratio limit at these specific PGA values.
As the PGA value increases, the IDA surface demonstrates
a corresponding increase in the inter-story drift ratio. This

Civil and Energy Research



trend aligns with physical intuition: as earthquake intensity
increases, structural deformation also increases.

The figure illustrates that at lower PGA values (e.g., 0.1g
to 0.2g), the inter-story drift ratio remains relatively small,
and the surface appears fairly flat. This indicates that in
these cases, most structural deformation is concentrated
within a narrower range, with a lower risk of exceeding the
specified limit. Conversely, at higher PGA values (e.g., 0.4g
to 0.5g), the inter-story drift ratio increases significantly,
and the surface becomes steeper, suggesting that structural
deformation is more widespread, and the risk of exceeding
the limit is greater.

On the right side of the red plane, the probability density
is at its lowest when the PGA reaches 0.2g, followed by
a general upward trend as the PGA reaches or exceeds
0.35g. For structural engineers, this indicates that once the
PGA surpasses this threshold, the risk of structural failure
becomes significant. The shape of the surface also reflects
the deformation distribution under different combinations of
PGA and inter-story drift ratio. For instance, the probability

density associated with higher PGAs and larger inter-story
drift ratios is lower, suggesting that while such scenarios
are less likely, they could result in severe structural failure
if they do occur.

Engineers might use an IDA surface like this to identify
critical PGA values for design purposes. For example, if a
building is situated in a high seismic risk area where the
expected PGA could reach 0.4g or higher, it is essential
to ensure that the structure maintains sufficient elasticity
at these levels to avoid exceeding the limit. Based on
this figure, engineers could also calculate the cumulative
failure probability of the structure at different PGA levels
by integrating the surface above the red plane, which would
help quantify the overall risk of failure at a specific PGA.

4.1.3 Estimation of failure probability
The failure probability of the structure at different PGA

levels was calculated using the cumulative distribution
function (CDF). The results are shown in the table below.

Table 8. Means, standard deviations, and failure probabilities of maximum inter-story displacement ratios of structures under

different PGAs
PGA(g) Y/ c Failure Probability(%)
0.1 0.00063 0.00020 0
0.2 0.00108 0.00019 0
0.3 0.00234 0.00045 0
0.4 0.00386 0.00062 3.254
0.5 0.00421 0.00114 24.281

The data includes the mean (u), standard deviation (o),
and failure probability of the structure's inter-story drift
ratio at different PGA levels.

The mean value of the inter-story drift ratio gradually
increases with increasing PGA. This is due to the fact that
the higher the seismic intensity, the greater the deformation
of the structure. At PGA=0.1g, the mean inter-story drift
ratio is 0.00063, while it increases to 0.00421 at PGA=0.5g.
The standard deviation represents the degree of dispersion
in the data. As the PGA increases, the standard deviation
of the inter-story drift ratio also increases, indicating that
the uncertainty (or variability) of the structural deformation
increases with stronger seismic actions. For example,
the standard deviation at PGA=0.1g is 0.00020, while it
increases to 0.00114 at PGA=0.5g.

At PGA=0.1g, 0.2g, and 0.3g, the probability of failure is
0. This means that at these earthquake intensities, the inter-
story drift ratio of the structure is not to exceed the set failure
limit (i.e., 1/200 = 0.005). When the PGA reaches 0.4g, the
failure probability rises to 0.03254 (approximately 3.3%).
This indicates that at a seismic intensity of PGA=0.4g,
there is a 3.3% probability that the structure will fail. At
PGA=0.5g, the failure probability significantly increases
to 0.24281 (approximately 24.3%). This means that at this
level of seismic intensity, there is a high risk of structural
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failure, with nearly a one-in-four chance that the inter-story
drift ratio will exceed the set limit.

As the PGA increases, the failure probability shows a
nonlinear growth trend. Particularly beyond PGA=0.4g,
the failure probability begins to rise sharply, indicating a
higher risk of failure. This nonlinear growth may be related
to factors such as the nonlinear behaviour of structural
materials and geometric nonlinear deformation. The data
suggests that PGA=0.4g is a critical point. Beyond this
point, the failure probability begins to increase significantly,
indicating that structures approaching PGA=0.4g may
require higher safety design or reinforcement measures.

Therefore, for buildings located in high seismic risk areas,
particularly those that may experience seismic intensities
of PGA=0.4g or higher, special consideration should be
given to enhancing the seismic capacity of the structure in
the design to reduce the failure probability.

4.1.4 Data distribution fitting
To validate the statistical characteristics of the inter-story
drift ratio, a normal distribution fitting was performed.

The probability density function (PDF) and cumulative
distribution function (CDF) graphs are shown below:
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Figure 13. CDF for PGA=0.5g
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Figure 19. CDF for PGA=0.2g
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Observing the probability density function graph, as
the PGA increases, the probability density of generating a
larger interstory drift ratio also increases, which is a natural
response of the structure under stronger seismic excitation.
At lower PGA levels (e.g., 0.1g and 0.2g), the normal
distribution can fit the inter-story drift ratio data well.
However, as the PGA increases, at PGA=0.3g, the fitting
curve shows deviations from the actual data in the extreme
value regions, i.e., the tails of the probability density
distribution. This deviation becomes more pronounced at
PGA=0.4g and PGA=0.5g, where the normal distribution
starts to struggle in accurately describing the data
distribution, especially in the high inter-story drift ratio

region. Similarly, the cumulative distribution function
graph exhibits similar characteristics, with its variability
becoming more pronounced at PGA=0.5g.

4.2. Peak ground acceleration

As mentioned in Chapter 4, PGA follows a lognormal
distribution [15]. To verify the fit of the simulated data to
a lognormal distribution and to confirm the data variability
resulting from increased PGA as discussed in Section 5.1,
the logarithm of PGA was taken in MATLAB, and a normal
distribution fitting was performed. The Q-Q plot is shown
below:

Q-Q Plot of Log(0.1g) Data vs. Normal Distribution
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Figure 22. Q-Q plot for PGA=0.1g

Observing the Q-Q plot, whether for small PGA (0.1g)
or large PGA (0.4-0.5g), the middle-range data fits the
curve quite well, with 0.1g being the closest and 0.4g
showing slightly more fluctuation. However, the data set
for PGA=0.5g shows significant deviations at the ends and
tails, which could be due to the smaller sample size, making

it more susceptible to random fluctuations. Therefore,
a second verification was conducted using the Akaike
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). The results are shown in the table below.

Table 9. AIC/BIC values at different PGAs

PGA(g) AIC BIC
0.1 2.4759 2.8703
0.4 -30.1217 -29.5165
0.5 -23.7989 -23.1938
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Figure 24. Q-Q plot for PGA=0.5g

The smaller the values of AIC and BIC, the more
precise the fit. Using this method, it was found that the
data for PGA=0.4g conforms more closely to a lognormal
distribution, which differs from the results obtained from
the Q-Q plot. This discrepancy may be due to the following
reasons:

(1) Difference Between Visual Judgment from Q-Q Plot
and Numerical Differences in AIC/BIC: The Q-Q plot is an
intuitive tool used to compare the fit between the actual data
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distribution and the theoretical distribution. By observing
whether the data points align along the theoretical straight
line, one can judge the similarity between the data and the
theoretical distribution. The conclusion from a Q-Q plot
relies on the comparison of data quantiles, particularly the
performance of the data's tail and middle parts.

AIC and BIC are numerical indicators calculated based
on the log-likelihood function. They evaluate models
by combining goodness of fit and complexity. AIC/BIC
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considers the fit of the model to the entire dataset and
includes a penalty term to prevent overfitting. Therefore,
the results from AIC/BIC might differ from the visual
judgment of the Q-Q plot.

(2) Different Weights on Data Characteristics: When
judging the goodness of fit, the Q-Q plot might focus more
on the match of the distribution shape, especially the match
of quantiles with the theoretical distribution. It visually
demonstrates the deviation of the data from the theoretical
distribution, particularly in extreme values (tails).

AIC and BIC evaluate the model's log-likelihood as a
whole and pay less attention to local distribution shapes.
Thus, even if the Q-Q plot shows that some local fits (such
as the middle part) are good, AIC/BIC might give a poorer
score due to a lower overall log-likelihood.

(3) Impact of Model Complexity: AIC and BIC include
a complexity penalty term. If a model has a good fit to the
data but is complex, the penalty term increases the AIC
and BIC values. This could result in models with good fit
performing poorly in AIC/BIC scores. Conversely, simpler
models have smaller penalty terms, potentially leading to
better AIC/BIC scores.

(4) Sample Size and Data Characteristics: With a smaller
sample size, the Q-Q plot may be more susceptible to random
fluctuations, potentially leading to misleading results. AIC/
BIC considers sample size and adjusts through complexity
penalties, which might explain the inconsistency between
the two results. If there are significant differences in
distribution characteristics between datasets (e.g., different
frequencies of extreme values), the Q-Q plot may be more
sensitive in such cases, while AIC/BIC may focus more on
overall fit.

(5) Bias in Model Assumptions: AIC/BIC relies on the
assumptions of the chosen model. If the assumed model
does not fully suit the data distribution, it may lead to
higher AIC/BIC values. On the other hand, the Q-Q plot is
a visual comparison against a specific model distribution,
so its sensitivity to model assumption bias might differ.

5. Conclusion

This study first describes a method for generating
stochastic non-stationary seismic records in MATLAB
that align with the elastic response spectrum outlined in
EUROCODE 8. Monte Carlo simulations were employed
to generate ground accelerations (ag) following a lognormal
distribution. An inverse Fourier transform was then
applied to produce a smooth seismic excitation, which was
subsequently modified with a time modulation function
to simulate its non-smooth characteristics. Statistical
estimation and distribution fitting of the PGA from the
generated seismic recordings demonstrated that

(1) Its statistical characteristics are largely consistent with
a lognormal distribution. Subsequently, the generated series
of seismic records were input into ABAQUS to perform
a nonlinear time-dependent analysis of a five-degree-of-
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freedom steel frame model to obtain the probability density
of the maximum inter-story drift ratio of the structure, i.c.,
the IDA surface, at different PGAs. It is found that for a
limit of 1/200 of the interstory drift ratio.

(2) At low Peak Ground Accelerations (PGA) of 0.1g,
0.2g, and 0.3g, the interstory drift ratio of the structure is
minimal, indicating that the relative movement between
floors is limited. This suggests that the building undergoes
very little deformation small deformations under these
seismic loads, which minimizes stress and strain on the
structural components. As a result, the risk of structural
failure is almost negligible, so the integrity of the building
is maintained even under such low-level seismic events.
Consequently, the structure is considered safe and stable
under these conditions, providing confidence in its ability
to withstand minor ground motions without any significant
damage.

(3) Under medium Peak Ground Acceleration (PGA) of
0.4g, the probability of structural failure begins to increase,
signaling a shift in the performance level of the building.
At this level of seismic intensity, the interstory drift ratio
becomes more pronounced, indicating greater relative
movement between floors. This increased movement can
result in heightened stress and strain on the structural
components, such as beams, columns, and joints, which
may compromise their ability to perform optimally.
Consequently, there is a growing need for careful
monitoring and assessment of the structure's response to
ensure that any signs of potential damage or failure are
promptly identified and addressed. Special attention should
be given to the design, detailing, and material properties
of the structural elements to ensure they can adequately
resist the forces and deformations imposed by such seismic
events. Reinforcement strategies, retrofitting measures, or
other forms of intervention may be necessary to maintain
the desired level of safety and performance.

(4) The failure probability increases significantly at high
PGA (0.5g), indicating that the structure has a high risk of
failure at this seismic intensity. This set of data can help
engineers in seismic risk assessment to better understand
the performance of structures under different seismic
intensities, and in particular to identify which PGA levels
have a significantly higher risk of structural failure so that
targeted protective measures can be developed.

It is important to note that this study has certain limitations,
primarily manifested in limited computational resources and
the use of simplified structural models. The computational
power constraints of a single workstation restrict the
number of simulations that can be performed within a
reasonable timeframe, potentially resulting in a limited
number of samples that may not fully capture the statistical
characteristics of seismic responses. Furthermore, modern
architectural designs increasingly adoptirregular geometries
to enhance aesthetic and functional performance. However,
such irregularities can amplify or attenuate seismic waves,
significantly increasing uncertainty in structural responses.
Consequently, the simplified models employed in this study
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lack generalizability for practical applications involving
complex architectural configurations.

To address these limitations, a potential solution is
proposed for future research. First, artificial intelligence
(AI) could be leveraged to predict and model irregular
building geometries, enabling realistic representation
of modern architectural forms. Subsequently, cloud
computing platforms (e.g., AWS, Azure) could be utilized
to perform large-scale Monte Carlo simulations. This
approach not only mitigates the oversimplification of
building geometries but also overcomes computational
bottlenecks, thereby reducing costs while improving
simulation accuracy and efficiency. Such advancements
would enhance the applicability of the methodology to
real-world seismic risk assessments.

Overall, this study addresses the limitations of
conventional stationary ground motion models in capturing
critical features of extreme seismic events, such as long-
period pulses, while revealing the nonlinear relationship
between the probability of structural failure and seismic
intensity. Specifically, the results demonstrate that under
low Peak Ground Acceleration (PGA) conditions (e.g.,
0.1-0.3g), the structure remains predominantly elastic,
aligning with current code-based safety requirements for
minor earthquakes. However, a sharp nonlinear increase
in failure probability is observed at high PGA levels (e.g.,
>0.5¢g), highlighting the necessity for optimized ductility
design strategies, including joint reinforcement and energy
dissipation mechanisms, to enhance structural resilience
under extreme loading. By integrating Monte Carlo
simulations for probabilistic ground motion generation
with ABAQUS-based nonlinear time-history analysis, this
research establishes a probabilistic framework for seismic
risk assessment. This framework enables the identification
of high-risk zones (e.g., 0.5g PGA thresholds) to prioritize
retrofitting efforts and quantifies expected economic losses
under varying seismic intensities, thereby informing data-
driven resource allocation and infrastructure resilience
planning. The findings collectively advance performance-
based seismic design by bridging non-stationary excitation
modeling, nonlinear structural response prediction, and
probabilistic risk management.
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Nomenclatures

Roman symbols

¢: Damping coefficient, use .
k: Structural stiffness, use .
m: Mass, use .

Greek symbols

¢: Damping ratio.
o: Angular frequency, use .

Abbreviations

IDA: Incremental Dynamic Analysis. A method for
assessing structural performance by scaling ground motions
to increasing intensity levels.

MDOF: Multi-Degree-of-Freedom. A structural system
requiring multiple independent coordinates to describe its
motion.

MIMO-NARX: Multi-Input Multi-Output  Nonlinear
Autoregressive with Exogenous Inputs. A surrogate
modelling technique that predicts nonlinear dynamic
responses of multi-parameter systems using historical
outputs and external inputs, enabling efficient seismic
analysis of MDOF structures.

NTHA: Nonlinear Time History Analysis. A computational
approach simulating structural responses using time-
varying earthquake loads and nonlinear material behaviour.
PGA: Peak Ground Acceleration. The maximum horizontal
ground acceleration observed during an earthquake,
measured in g (gravity units).

SDOF: Single-Degree-of-Freedom. A simplified structural
model where motion is described by a single coordinate.
SIDA: Stochastic Incremental Dynamic Analysis. An
extension of IDA that incorporates stochastic ground
motion simulations to quantify uncertainties in structural
fragility estimates.

General terms

Non-stationary excitation: Ground motion with time-
varying frequency/amplitude.

Appedndix

The appendix of this research is available at https://file.
luminescience.cn/CER-344%20Appendix.pdf
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