Si Chen 1 , Xin Ge 2 , Xinyu Liu 3 , Nanshuo Wang 4 , Qiaozhou Xiong 5 , Xiaojun Yu 6 , Jinhan Li 7 , Qianshan Ding 8 , Linbo Liu 9 *
Correspondence: liulinbo@ntu.edu.sg
DOI: https://doi.org/10.55976/atm.1202219936-44
Show More
[1]Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer. 2003;3(6): 422-433. doi: https://doi.org:10.1038/nrc1094
[2]Fujimoto J.G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology. 2003;21(11): 1361-1367. doi: https://doi.org:10.1038/nbt892
[3]Tsai C.C., Chang C.K., Hsu K.Y., et al. Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography. Biomedical Optics Express. 2015;5(9): 3001-3010 . doi: https://doi.org:10.1364/boe.5.003001
[4]Carlson K., Pavlova I., Collier T., et al. Confocal microscopy: imaging cervical precancerous lesions. Gynecologic Oncology. 2005;99(30): S84-88. doi: https://doi.org:10.1016/j.ygyno.2005.07.049
[5]Kang D., Suter M.J., Boudoux C., et al. Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy. Gastrointest Endoscopy. 2010;71(1): 35-43. doi: https://doi.org:10.1016/j.gie.2009.08.026
[6]Drexler W., Morgner U., Ghanta R.K., et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine. 2001;7(4): 502-507. doi: https://doi.org:10.1038/86589
[7]Liu L., Gardecki J.A., Nadkarni S.K., et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nature Medicine. 2011;17(8): 1010-1014. doi: https://doi.org:10.1038/nm.2409
[8]Wilder-Smith P.B., Krasieva T.B., Jung W.G., et al. Noninvasive imaging of oral premalignancy and malignancy. Journal of Biomedical Optics. 2005;10(5): 051601. doi: https://doi.org:10.1117/1.2098930
[9]Ridgway J.M., Armstrong W.B., Guo S., et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Archives of Otolaryngology–Head & Neck Surgery. 2006;132(10): 1074-1081. doi: https://doi.org:10.1001/archotol.132.10.1074
[10]Jerjes W., Upile T., Conn B., et al. In vitro examination of suspicious oral lesions using optical coherence tomography. The British Journal of Oral & Maxillofacial Surgery. 2010;48(1): 18-25. doi: https://doi.org:10.1016/j.bjoms.2009.04.019
[11]Wong B.J., Jackson R.P., Guo S., et al. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. The Laryngoscope. 2005;115(11): 1904-1911. doi: https://doi.org:10.1097/01.mlg.0000181465.17744.be
[12]Armstrong W.B., Ridgway J.M., Vokes D.E., et al. Optical coherence tomography of laryngeal cancer. The Laryngoscope. 2006;116(7): 1107-1113. doi: https://doi.org:10.1097/01.mlg.0000217539.27432.5a
[13]Pitris C., Goodman A., Boppart S.A., et al. High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstetrics & Gynecology. 1999;93(1): 135-139. doi: https://doi.org/10.1016/S0029-7844(98)00375-5
[14]Escobar P.F., Belinson J.L., White A., et al. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. International Journal of Gynecological Cancer. 2004;14(3): 470-474. doi: https://doi.org:10.1111/j.1048-891x.2004.14307.x
[15]Welzel J., Lankenau E., Birngruber, R., et al. Optical coherence tomography of the human skin. Journal of the American Academy of Dermatology. 1997;37(6): 958-963. doi: https://doi.org/10.101/S0190-9622(97)70072-0
[16]Hariri L.P., Mino-Kenudson M., Mark E.J., et al. In vivo optical coherence tomography: the role of the pathologist. Archives of Pathology & Laboratory Medicine. 2012;136(12): 1492-1501. doi: https://doi.org:10.5858/arpa.2012-0252-SA
[17]Zeng X., Zhang X., Li C., et al. Ultrahigh-resolution optical coherence microscopy accurately classifies precancerous and cancerous human cervix free of labeling. Theranostics. 2018;8(11): 3099-3110. doi: https://doi.org:10.7150/thno.24599
[18]Israelsen N.M., Maria M., Mogensen M., et al. The value of ultrahigh resolution OCT in dermatology -delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express. 2018;9(5): 2240-2265. doi: https://doi.org:10.1364/BOE.9.002240
[19]Chen S., Ge X., Liu X., et al. Understanding optical reflectance contrast for real-time characterization of epithelial precursor lesions. Bioengineering & Translational Medicine. 2019;4(3): e10137. doi: https://doi.org:10.1002/btm2.10137
[20]Chen S., Liu X., Wang N., et al. Contrast of nuclei in stratified squamous epithelium in optical coherence tomography images at 800 nm. Journal of Biophotonics. 2019;12(9): e201900073. doi: https://doi.org:10.1002/jbio.201900073
[21]Yu X., Luo Y., Liu X., et al. Toward High-Speed Imaging of Cellular Structures in Rat Colon Using Micro-optical Coherence Tomography. IEEE Photonics Journal. 2016;8(4): 1-8. doi: https://doi.org:10.110/JPHOT.2016.2589659
[22]Saglani S., Molyneux C., Gong H., et al. Ultrastructure of the reticular basement membrane in asthmatic adults, children and infants. European Respiratory Journal. 2006;28(3): 505-512. doi: https://doi.org:10.1183/09031936.06.00056405
[23]Weissman J., Hancewicz T. Kaplan P. Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Optics Express. 2004;12(23): 5760-5769. doi: https://doi.org/10.1364/OPEX.12.005760
[24]Boone M., Jemec G.B. Del Marmol V. High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy. Experimental Dermatology. 2012;21(10): 740-744. doi: https://doi.org:10.1111/j.1600-0625.2012.01569.x
[25]Neerken S., Lucassen G.W., Bisschop M.A., et al. Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography. Journal of Biomedical Optics. 2004;9(2): 274-281. doi: https://doi.org:10.1117/1.1645795
[26]Yin B., Chu K.K., Liang C.P., et al. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe. Optics Express. 2016;24(5): 5555-5564. doi:https://doi.org:10.1364/OE.24.005555
[27]Luo Y., Cui D., Yu X., et al. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts. Journal of Biophotonics. 2018;11(4): e201700141. doi: https://doi.org:10.1002/jbio.201700141
Copyright © 2022 Si Chen, Xin Ge, Xinyu Liu, Nanshuo Wang, Qiaozhou Xiong, Xiaojun Yu, Jinhan Li, Qianshan Ding, Linbo Liu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn