Make Knowledge Veritable, Visible and Valuable.

Real-time delineation of basement membrane in human oral and esophageal mucosa with micro-optical coherence tomography

Si Chen 1 , Xin Ge 2 , Xinyu Liu 3 , Nanshuo Wang 4 , Qiaozhou Xiong 5 , Xiaojun Yu 6 , Jinhan Li 7 , Qianshan Ding 8 , Linbo Liu 9 *

  • 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
  • 2. School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
  • 3. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
  • 4. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
  • 5. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
  • 6. School of Automation, Northwestern Polytechnical University, Xi'an, Shanxi Province, China
  • 7. Beijing Jiaotong University, Beijing, China; China Railway Siyuan Survey and Design Group Company Ltd., Wuhan, Hubei Province, China
  • 8. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore; Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
  • 9. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Correspondence: liulinbo@ntu.edu.sg

DOI: https://doi.org/10.55976/atm.1202219936-44

  • Received

    18 July 2022

  • Revised

    09 October 2022

  • Accepted

    11 October 2022

  • Published

    14 October 2022

Optical coherence tomography Basement membrane Oral mucosa Esophagus Optical imaging

Show More

Abstract

Introduction


Conclusion

References
V

[1]Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer. 2003;3(6): 422-433. doi: https://doi.org:10.1038/nrc1094

[2]Fujimoto J.G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology. 2003;21(11): 1361-1367. doi: https://doi.org:10.1038/nbt892

[3]Tsai C.C., Chang C.K., Hsu K.Y., et al. Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography. Biomedical Optics Express. 2015;5(9): 3001-3010 . doi: https://doi.org:10.1364/boe.5.003001

[4]Carlson K., Pavlova I., Collier T., et al. Confocal microscopy: imaging cervical precancerous lesions. Gynecologic Oncology. 2005;99(30): S84-88. doi: https://doi.org:10.1016/j.ygyno.2005.07.049

[5]Kang D., Suter M.J., Boudoux C., et al. Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy. Gastrointest Endoscopy. 2010;71(1): 35-43. doi: https://doi.org:10.1016/j.gie.2009.08.026

[6]Drexler W., Morgner U., Ghanta R.K., et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine. 2001;7(4): 502-507. doi: https://doi.org:10.1038/86589

[7]Liu L., Gardecki J.A., Nadkarni S.K., et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nature Medicine. 2011;17(8): 1010-1014. doi: https://doi.org:10.1038/nm.2409

[8]Wilder-Smith P.B., Krasieva T.B., Jung W.G., et al. Noninvasive imaging of oral premalignancy and malignancy. Journal of Biomedical Optics. 2005;10(5): 051601. doi: https://doi.org:10.1117/1.2098930

[9]Ridgway J.M., Armstrong W.B., Guo S., et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Archives of Otolaryngology–Head & Neck Surgery. 2006;132(10): 1074-1081. doi: https://doi.org:10.1001/archotol.132.10.1074

[10]Jerjes W., Upile T., Conn B., et al. In vitro examination of suspicious oral lesions using optical coherence tomography. The British Journal of Oral & Maxillofacial Surgery. 2010;48(1): 18-25. doi: https://doi.org:10.1016/j.bjoms.2009.04.019

[11]Wong B.J., Jackson R.P., Guo S., et al. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. The Laryngoscope. 2005;115(11): 1904-1911. doi: https://doi.org:10.1097/01.mlg.0000181465.17744.be

[12]Armstrong W.B., Ridgway J.M., Vokes D.E., et al. Optical coherence tomography of laryngeal cancer. The Laryngoscope. 2006;116(7): 1107-1113. doi: https://doi.org:10.1097/01.mlg.0000217539.27432.5a

[13]Pitris C., Goodman A., Boppart S.A., et al. High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstetrics & Gynecology. 1999;93(1): 135-139. doi: https://doi.org/10.1016/S0029-7844(98)00375-5

[14]Escobar P.F., Belinson J.L., White A., et al. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. International Journal of Gynecological Cancer. 2004;14(3): 470-474. doi: https://doi.org:10.1111/j.1048-891x.2004.14307.x

[15]Welzel J., Lankenau E., Birngruber, R., et al. Optical coherence tomography of the human skin. Journal of the American Academy of Dermatology. 1997;37(6): 958-963. doi: https://doi.org/10.101/S0190-9622(97)70072-0

[16]Hariri L.P., Mino-Kenudson M., Mark E.J., et al. In vivo optical coherence tomography: the role of the pathologist. Archives of Pathology & Laboratory Medicine. 2012;136(12): 1492-1501. doi: https://doi.org:10.5858/arpa.2012-0252-SA

[17]Zeng X., Zhang X., Li C., et al. Ultrahigh-resolution optical coherence microscopy accurately classifies precancerous and cancerous human cervix free of labeling. Theranostics. 2018;8(11): 3099-3110. doi: https://doi.org:10.7150/thno.24599

[18]Israelsen N.M., Maria M., Mogensen M., et al. The value of ultrahigh resolution OCT in dermatology -delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express. 2018;9(5): 2240-2265. doi: https://doi.org:10.1364/BOE.9.002240

[19]Chen S., Ge X., Liu X., et al. Understanding optical reflectance contrast for real-time characterization of epithelial precursor lesions. Bioengineering & Translational Medicine. 2019;4(3): e10137. doi: https://doi.org:10.1002/btm2.10137

[20]Chen S., Liu X., Wang N., et al. Contrast of nuclei in stratified squamous epithelium in optical coherence tomography images at 800 nm. Journal of Biophotonics. 2019;12(9): e201900073. doi: https://doi.org:10.1002/jbio.201900073

[21]Yu X., Luo Y., Liu X., et al. Toward High-Speed Imaging of Cellular Structures in Rat Colon Using Micro-optical Coherence Tomography. IEEE Photonics Journal. 2016;8(4): 1-8. doi: https://doi.org:10.110/JPHOT.2016.2589659

[22]Saglani S., Molyneux C., Gong H., et al. Ultrastructure of the reticular basement membrane in asthmatic adults, children and infants. European Respiratory Journal. 2006;28(3): 505-512. doi: https://doi.org:10.1183/09031936.06.00056405

[23]Weissman J., Hancewicz T. Kaplan P. Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Optics Express. 2004;12(23): 5760-5769. doi: https://doi.org/10.1364/OPEX.12.005760

[24]Boone M., Jemec G.B. Del Marmol V. High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy. Experimental Dermatology. 2012;21(10): 740-744. doi: https://doi.org:10.1111/j.1600-0625.2012.01569.x

[25]Neerken S., Lucassen G.W., Bisschop M.A., et al. Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography. Journal of Biomedical Optics. 2004;9(2): 274-281. doi: https://doi.org:10.1117/1.1645795

[26]Yin B., Chu K.K., Liang C.P., et al. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe. Optics Express. 2016;24(5): 5555-5564. doi:https://doi.org:10.1364/OE.24.005555

[27]Luo Y., Cui D., Yu X., et al. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts. Journal of Biophotonics. 2018;11(4): e201700141. doi: https://doi.org:10.1002/jbio.201700141

How to Cite

Chen, S., X. Ge, X. Liu, N. Wang, Q. Xiong, X. Yu, J. Li, Q. Ding, and L. Liu. “Real-Time Delineation of Basement Membrane in Human Oral and Esophageal Mucosa With Micro-Optical Coherence Tomography”. Advances in Translational Medicine, vol. 1, no. 1, Oct. 2022, pp. 36-44, doi:10.55976/atm.1202219936-44.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.