Make Knowledge Veritable, Visible and Valuable.

Comparative functional aspects of 3T3 fibroblasts in 2D and 3D cell-culture environment

Madhusudan Chaturvedi# 1 , Rishi Man Chugh#* 2 , Sheikh Raisuddin 3 , Lakshmana Kumar Yerneni 4

  • 1. Cell Biology Laboratory, National Institute of Pathology (ICMR), Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
  • 2. Cell Biology Laboratory, National Institute of Pathology (ICMR), New Delhi, India; Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160 USA
  • 3. Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
  • 4. Cell Biology Laboratory, National Institute of Pathology (ICMR), New Delhi, India

Correspondence: rchugh@kumc.edu

DOI: https://doi.org/10.55976/atm.4202514255-20

  • Received

    11 July 2025

  • Revised

    20 August 2025

  • Accepted

    04 September 2025

  • Published

    22 September 2025

2D culture 3D culture 3T3 feeder cells Epidermal culture

Show More

Abstract


References
V

[1]Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, et al. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel). 2023;10(2): 218. doi: 10.3390/bioengineering10020218.

[2]Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 2017; 32(4):266-77. doi: 10.1152/physiol.00036.2016.

[3]Badr-Eldin SM, Aldawsari HM, Kotta S, Deb PK, Venugopala KN. Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals (Basel). 2022; 15(8): 926. doi: 10.3390/ph15080926.

[4]Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel). 2023;15(7): 422. doi: 10.3390/toxins15070422.

[5]Lehmann R, Gallert C, Roddelkopf T, Junginger S, Wree A, Thurow K. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads. Cytotechnology. 2016;68(4):1049-62. doi: 10.1007/s10616-015-9861-1.

[6]Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Archives of Medical Science. 2018;14(4):910-9. doi: 10.5114/aoms.2016.63743.

[7]Kaukonen R, Jacquemet G, Hamidi H, Ivaska J. Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nature Protocols. 2017;12(11):2376-90. doi: 10.1038/nprot.2017.107.

[8]Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. International Journal of Molecular Sciences. 2015; 16(3):5517-27. doi: 10.3390/ijms16035517.

[9]Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies. 2014;12(4):207-18. doi: 10.1089/adt.2014.573.

[10]Malakpour-Permlid A, Oredsson S. A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicology Reports. 2021;8:627-35. doi: 10.1016/j.toxrep.2021.03.015.

[11]Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 2009; 5(10):1213-21. doi: 10.1002/smll.200801788.

[12]Gargotti M, Lopez-Gonzalez U, Byrne HJ, Casey A. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology. 2018;70(1):261-73. doi: 10.1007/s10616-017-0139-7.

[13]Riss T, Trask OJ, Jr. Factors to consider when interrogating 3D culture models with plate readers or automated microscopes. In Vitro Cellular & Developmental Biology - Animal. 2021;57(2):238-56. doi: 10.1007/s11626-020-00537-3.

[14]Ravikanth M, Soujanya P, Manjunath K, Saraswathi TR, Ramachandran CR. Heterogenecity of fibroblasts. Journal of Oral and Maxillofacial Pathology. 2011;15(2):247-50. doi: 10.4103/0973-029X.84516.

[15]Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, et al. Fibroblasts: Origins, definitions, and functions in health and disease. Cell. 2021;184(15): 3852-72. doi: 10.1016/j.cell.2021.06.024.

[16]Stark HJ, Willhauck MJ, Mirancea N, Boehnke K, Nord I, Breitkreutz D, et al. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. European Journal of Cell Biology. 2004;83(11-12):631-45. doi: 10.1078/0171-9335-00435.

[17]Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European Journal of Cell Biology. 2015; 94(11):483-512. doi: 10.1016/j.ejcb.2015.08.001.

[18]Chugh RM, Chaturvedi M, Yerneni LK. Occurrence and control of sporadic proliferation in growth arrested Swiss 3T3 feeder cells. PLoS One. 2015;10(3):e0122056. doi: 10.1371/journal.pone.0122056.

[19]Li Y, Kilian KA. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Advanced Healthcare Materials. 2015; 4(18):2780-96. doi: 10.1002/adhm.201500427.

[20]Kumar A, Ali A, Yerneni LK. Tandem use of immunofluorescent and DNA staining assays to validate nested PCR detection of mycoplasma. In Vitro Cellular & Developmental Biology - Animal. 2008;44(7):189-92. doi: 10.1007/s11626-008-9081-5.

[21]Sugihara H, Toda S, Yonemitsu N, Watanabe K. Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. British Journal of Dermatology. 2001;144(2):244-53. doi: 10.1046/j.1365-2133.2001.04008.x.

[22]Chugh RM, Chaturvedi M, Yerneni LK. An optimization protocol for Swiss 3T3 feeder cell growth-arrest by Mitomycin C dose-to-volume derivation strategy. Cytotechnology. 2017; 69(2):391-404. doi: 10.1007/s10616-017-0064-9.

[23]Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331-43. doi: 10.1016/S0092-8674(75)80001-8.

[24]Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioactive Materials. 2022; 9:198-220. doi: 10.1016/j.bioactmat.2021.07.005.

[25]Krebs J, Stealey S, Brown A, Krohn A, Zustiak SP, Case N. Carrageenan-Based Crowding and Confinement Combination Approach to Increase Collagen Deposition for In Vitro Tissue Development. Gels. 2023;9(9):705. doi: 10.3390/gels9090705.

[26]Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials. 2019; 209:10-24. doi: 10.1016/j.biomaterials.2019.04.009.

[27]Cheema U, Rong Z, Kirresh O, Macrobert AJ, Vadgama P, Brown RA. Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models. Journal of Tissue Engineering and Regenerative Medicine. 2012; 6(1):77-84. doi: 10.1002/term.402.

[28]Tian B, Lessan K, Kahm J, Kleidon J, Henke C. β1 integrin regulates fibroblast viability during collagen matrix contraction through a phosphatidylinositol 3-kinase/Akt/protein kinase B signaling pathway. Journal of Biological Chemistry. 2002; 277(27):24667-75. doi: 10.1074/jbc.M203565200.

[29]Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. Journal of Biological Chemistry. 2004;279(31):33024-34. doi: 10.1074/jbc.M313265200.

[30]Bowen-Pope DF, Vogel A, Ross R. Production of platelet-derived growth factor-like molecules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proceedings of the National Academy of Sciences of the United States of America. 1984;81(8):2396-400. doi: 10.1073/pnas.81.8.2396.

[31]Rubin H, Xu K. Evidence for the progressive and adaptive nature of spontaneous transformation in the NIH 3T3 cell line. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(6):1860-4. doi: 10.1073/pnas.86.6.1860.

[32]Takeuchi T, Wang L, Mori S, Nakagawa K, Yoshikura H, Kanda T. Characterization of mouse 3T3-swiss albino cells available in Japan: necessity of quality control when used as feeders. Japanese Journal of Infectious Diseases. 2008;61(1):9-12.

[33]Blacker KL, Williams ML, Goldyne M. Mitomycin C-treated 3T3 fibroblasts used as feeder layers for human keratinocyte culture retain the capacity to generate eicosanoids. The Journal of Investigative Dermatology. 1987; 89(6):536-9. doi: 10.1111/1523-1747.ep12461169.

[34]Balasubramanian S, Jasty S, Sitalakshmi G, Madhavan HN, Krishnakumar S. Influence of feeder layer on the expression of stem cell markers in cultured limbal corneal epithelial cells. The Indian Journal of Medical Research. 2008;128(5):616-22.

[35]Sharma SM, Fuchsluger T, Ahmad S, Katikireddy KR, Armant M, Dana R, et al. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium. Stem Cell Reviews and Reports. 2012;8(3):696-705. doi: 10.1007/s12015-011-9319-6.

[36]Fukasawa K, Vande Woude GF. Mos overexpression in Swiss 3T3 cells induces meiotic-like alterations of the mitotic spindle. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(8):3430-4. doi: 10.1073/pnas.92.8.3430.

[37]Llames S, García-Pérez E, Meana Á, Larcher F, del Río M. Feeder Layer Cell Actions and Applications. Tissue Engineering Part B: Reviews. 2015;21(4):345-53. doi: 10.1089/ten.teb.2014.0547.

[38]Tsuboi R, Sato C, Kurita Y, Ron D, Rubin JS, Ogawa H. Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes. The Journal of Investigative Dermatology. 1993;101(1):49-53. doi: 10.1111/1523-1747.ep12358892.

How to Cite

Chaturvedi, M., R. M. Chugh, S. Raisuddin, and L. K. Yerneni. “Comparative Functional Aspects of 3T3 Fibroblasts in 2D and 3D Cell-Culture Environment”. Advances in Translational Medicine, vol. 4, no. 1, Sept. 2025, pp. 5-20, doi:10.55976/atm.4202514255-20.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.