Make Knowledge Veritable, Visible and Valuable.

Molecular epidemiology and biology of pancreatic cancer among Iranian patients: an updated preliminary review

Zahra Abedi kichi 1 , Zeynab Rezaei 2 , Mona Soltani 3 , Zeinab Shirvani Farsani 4 *

  • 1. Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Germany
  • 2. Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
  • 3. Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
  • 4. Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran

Correspondence: z_shirvani@sbu.ac.ir

DOI: https://doi.org/10.55976/atm.120221391-16

  • Received

    27 October 2021

  • Revised

    24 January 2022

  • Accepted

    08 February 2022

  • Published

    25 February 2022

Pancreatic cancer Tumor biomarker LncRNA Risk factor DNA methylation

Show More

Abstract

Introduction


References
V

[1]Mousavi, S.M., Gouya M.M., Ramazani R., et al. Cancer incidence and mortality in Iran. Annals of Oncology. 2009;20(3): 556-563. doi: 10.1093/annonc/mdn642.

[2]Xie D., Qian B., Yang J., et al. Can Elderly Patients With Pancreatic Cancer Gain Survival Advantages Through More Radical Surgeries? A SEER-Based Analysis. Frontiers in Oncology. 2020;10: 1-10. doi: 10.3389/fonc.2020.598048.

[3]Orth M., Metzger P., Gerum S., et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiation Oncology. 2019;14(1): 141. doi: 10.1186/s13014-019-1345-6.

[4]Siri F.H. and H. Salehiniya Pancreatic Cancer in Iran: an Epidemiological Review. Journal of Gastrointestinal Cancer. 2020;51(2): 418-424. doi: 10.1007/s12029-019-00279-w.

[5]Salehi F., Ahmadi A., Seyede Soghra AHMADI SOODEJANI, et al. The changing trend of mortality caused by gastrointestinal cancers in iran during the years 2006-2010. Arquivos de Gastroenterologia. 2018;55(3): 237-241. doi: 10.1590/S0004-2803.201800000-60.

[6]Roshandel G., Ghanbari-Motlagh A., Partovipour E., et al. Cancer incidence in Iran in 2014: Results of the Iranian National Population-based Cancer Registry. Cancer Epidemiology. 2019;61: 50-58. doi: 10.1016/j.canep.2019.05.009.

[7]Momenyan S., et al. Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression. Asian Pacific Journal of Cancer Prevention. 2016;17(S3): 113-117. doi: 10.7314/APJCP.2016.17.S3.113.

[8]Jamali A., Sadeghifar M., Sarvi F., et al. Pancreatic Cancer: State Of The Art And Current Situation In The Islamic Republic Of Iran. Govaresh Journal. 2009;14(3 (SN 68)): 189-197. Available from: http://www.govaresh.org/index.php/dd/article/view/583.

[9]Hadizadeh M., Padashi M., Alizadeh A.H.M., et al. Clinical, laboratory biomarkers and imaging findings of pancreatic adenocarcinoma in Iran. Asian Pacific Journal of Cancer Prevention. 2014;15(10): 4349-4352. doi: 10.7314/APJCP.2014.15.10.4349.

[10]Yuan J., Hegde P.S., Clynes R., et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 2016;4(1): 1-25. doi: 10.1186/s40425-016-0107-3.

[11]Rawla P., T. Sunkara and V. Gaduputi Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World Journal Oncology. 2019;10(1): 10-27. doi: 10.14740/wjon1166.

[12]Khanlarzadeh E., Nazari S., Ghobakhloo M., et al. Prognosis of Pancreatic Cancer in Hamadan, Iran (2008-2018): A case Series Study. Available from: https://assets.researchsquare.com/files/rs-827808/v1_covered.pdf?c=1631877046.

[13]Sanat Z.M., Masoudi S., Mansouri M., et al. Diabetes Mellitus, Obesity, and Risk of Pancreatic Ductal Adenocarcinoma: a Large Case-Control Study from Iran. Middle East Journal of Digestive Diseases. 2021;13(1): 15-20. doi: 10.34172/mejdd.2021.198.

[14]Shakeri R., Pourshams A., Tabrizi R., et al. Tu1940 Pancreas Cancer in Iran: Epidemiologic Feature, Risk Factors and Survival. Gastroenterology. 2015;148(4): S-941. doi: 10.1016/S0016-5085(15)33211-X.

[15]Moossavi S., Mohamadnejad M., Pourshams A., et al. Opium Use and Risk of Pancreatic Cancer: A Prospective Cohort Study. Cancer Epidemiology, Biomarkers & Prevention. 2018;27(3): 268-273. doi: 10.1158/1055-9965.EPI-17-0592.

[16]Fotouhi A., Khabazkhoub M., Hashemi H., et al. The Prevalence Of Cigarette Smoking In Residents Of Tehran. Archives Of Iranian Medicine. 2009;12(4): 358-364. Available from: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=141312.

[17]Davoodi S.H., Malek-Shahabi T., Malekshahi-Moghadam A., et al. Obesity as an important risk factor for certain types of cancer. Iranian Journal of Cancer Prevention. 2013;6(4): p. 186-194. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142931/.

[18]Xu M., Jung X., Hines O.J., et al. Obesity and Pancreatic Cancer: Overview of Epidemiology and Potential Prevention by Weight Loss. Pancreas 2018;47(2): 158-162. doi: 10.1097/MPA.0000000000000974.

[19]Wang J., Zhang W., Sun L., et al. Dietary Energy Density Is Positively Associated with Risk of Pancreatic Cancer in Urban Shanghai Chinese. The Journal of Nutrition. 2013;143(10): 1626-1629. doi: 10.3945/jn.113.178129.

[20]Pourshams A., B. Kazemi, and S. Kalantari A review of the etiology and biomarkers of pancreatic cancer, with emphasis on the role of diabetes: review article. Tehran University Medical Journal. 2018;75(11): 773-778. Available from: http://tumj.tums.ac.ir/article-1-8538-en.html.

[21]Li D. Diabetes and pancreatic cancer. Molecular carcinogenesis. 2012;51(1): 64-74. doi: 10.1002/mc.20771.

[22]Mao Y., Tao M., Jia X., et al. Effect of Diabetes Mellitus on Survival in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Scientific Reports. 2015;5(1): 1-11. doi: 10.1038/srep17102.

[23]Barman, S. and K. Srinivasan Zinc supplementation alleviates hyperglycemia and associated metabolic abnormalities in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology. 2016;94(12): 1356-1365. doi: 10.1139/cjpp-2016-0084.

[24]Andersen D.K., Korc M., Petersen G.M., et al. Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes. 2017;66(5): 1103-1110. doi: 10.2337/db16-1477.

[25]Leclerc E. and S.W. Vetter The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2015;1852(12): 2706-2711. doi: 10.1016/j.bbadis.2015.09.022.

[26]De Souza A., Irfan K., Masud F., et al. Diabetes Type 2 and Pancreatic Cancer: A History Unfolding. JOP : Journal of the pancreas. 2016;17(2): 144-148. Available from: https://pubmed.ncbi.nlm.nih.gov/29568247.

[27]Korc M. Pathogenesis of Pancreatic Cancer-Related Diabetes Mellitus: Quo Vadis? Pancreas. 2019;48(5): 594-597. doi: 10.1097/MPA.0000000000001300.

[28]Chiou W.K., Huang B.Y., Chou W.Y., et al. Incidences of cancers in diabetic and non-diabetic hospitalized adult patients in Taiwan. Asian Pacific journal of cancer prevention : APJCP. 2011;12(6): 1577-1581. Available from: http://europepmc.org/abstract/MED/22126502.

[29]Matsuo K., Ito H., Wakai K., et al. Cigarette Smoking and Pancreas Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiologic Evidence in the Japanese Population. Japanese Journal of Clinical Oncology. 2011;41(11): 1292-1302. doi: 10.1093/jjco/hyr141.

[30]Kabir A. Comment on: Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea: a case-control study. Journal of Korean medical science. 2013;28(2): 247-251. doi: 10.3346/jkms.2013.28.2.247.

[31]Engin H., Bilir C., Ustun H., et al. ABO blood group and risk of pancreatic cancer in a Turkish population in Western Blacksea region. Asian Pacific journal of cancer prevention : APJCP. 2012;13(1): 131-133. doi: 10.7314/APJCP.2012.13.1.131.

[32]Ahmadloo N., Bidouei F., Omidvari S., et al. Pancreatic Cancer in Southern Iran. Iran Red Crescent Medical Journal. 2010;12(6): 624-630. Available from: https://sites.kowsarpub.com/ircmj/articles/77396.html.

[33]Uson Jr P.L.S., Samadder N.J., Riegert-Johnson D., et al. Clinical Impact of Pathogenic Germline Variants in Pancreatic Cancer: Results From a Multicenter, Prospective, Universal Genetic Testing Study. Clinical Translational Gastroenterology, 2021;12(10): 4118. doi: 10.1200/JCO.2021.39.15_suppl.4118.

[34]Permuth-Wey J. and K.M. Egan Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Familial Cancer. 2009;8(2): 109-117. doi: 10.1007/s10689-008-9214-8.

[35]Ottenhof N.A., Milne A.N., Morsink F.H., et al. Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men. Archives of pathology & laboratory medicine. 2009;133(3): 375-381. doi: 10.5858/133.3.375.

[36]Alimirzaie S., Mohamadkhani A., Masoudi S., et al. Mutations in Known and Novel cancer Susceptibility Genes in Young Patients with Pancreatic Cancer. Archives of Iranian Medicine. 2018;21(6): 228-233. Available from: http://www.aimjournal.ir/FullHtml/aim-1630.

[37]Connor A.A. and S. Gallinger Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nature Reviews Cancer, 2021: 1-12. doi: 10.1038/s41568-021-00418-1.

[38]Chhoda A., Lu L., Clerkin B.M., et al. Current Approaches to Pancreatic Cancer Screening. The American Journal of Pathology. 2019;189(1): 22-35. doi: 10.1016/j.ajpath.2018.09.013.

[39]Banke M.G., J.J. Mulvihill, and C.E. Aston Inheritance Of Pancreatic Cancer In Pancreatic Cancer–Prone Families. Medical Clinics of North America. 2000;84(3): 677-690. doi: 10.1016/S0025-7125(05)70250-9.

[40]Cowgill S.M. and P. Muscarella The genetics of pancreatic cancer. The American journal of surgery. 2003;186(3): 279-286. doi: 10.1016/S0002-9610(03)00226-5.

[41]Zambirinis C.P. and G. Miller Pancreatic Inflammation and Carcinogenesis. Pancreapedia: The Exocrine Pancreas Knowledge Base. 2015. doi: 10.3998/panc.2015.6.

[42]Bosetti C., Turati F., Dal Pont A., et al. The role of Mediterranean diet on the risk of pancreatic cancer. British journal of cancer. 2013;109(5): 1360-1366. doi: 10.1038/bjc.2013.345.

[43]Yadav D. and A.B. Lowenfels The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6): 1252-1261. doi: 10.1053/j.gastro.2013.01.068.

[44]Woo S.M., Joo J., Lee W.J., et al. Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea: a case-control study. J Journal of Korean Medical Science. 2013;28(2): 247-251. doi: 10.3346/jkms.2013.28.2.247.

[45]Rizzato C., Campa D., Pezzilli R., et al. ABO blood groups and pancreatic cancer risk and survival: results from the PANcreatic Disease ReseArch (PANDoRA) consortium. Oncology reports. 2013;29(4): 1637-1644. doi: 10.3892/or.2013.2285.

[46]Farzin L., Moassesi M.E., Sajadi F., et al. Evaluation of Trace Elements in Pancreatic Cancer Patients in Iran. Middle East Journal of Cancer. 2013;4(2): 79-86. Available from: https://mejc.sums.ac.ir/article_41844_56db37a8c07c3218bde8fd88ba21c52c.pdf.

[47]Padoan A., M. Plebani, and D. Basso Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. International Journal of Molecular Sciences. 2019;20(3): 676. doi: 10.3390/ijms20030676.

[48]Wang Y., Jin G., Li Q., et al. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma. Journal of Cancer. 2016;7(14): 2067-2076. doi: 10.7150/jca.15786.

[49]Kishi T., Nakamura A., Itasaka S., et al. Pretreatment C-reactive protein level predicts outcome and patterns of failure after chemoradiotherapy for locally advanced pancreatic cancer. Pancreatology. 2015;15(6): 694-700. doi: 10.1016/j.pan.2015.09.016.

[50]Mohamadkhani A., Pourshams A., Viti J., et al. Pancreatic Cancer is Associated with Peripheral Leukocyte Oxidative DNA Damage. Asian Pacific Journal of Cancer Prevention. 2017;18(5): 1349-1355. doi:10.22034/APJCP.2017.18.5.1349.

[51]Mohamadkhani A., Naderi E., Sharafkhah M., et al. Detection of TP53 R249 Mutation in Iranian Patients with Pancreatic Cancer. Journal of Oncology. 2013. doi: 10.1155/2013/738915.

[52]Mohamadkhani A., Akbari M.R., Ghanbari R., et al. Direct Sequencing of Cyclooxygenase-2 (COX-2) Revealed an Intronic Variant rs201231411 in Iranian Patients with Pancreatic Cancer. Middle East Journal of Digestive Diseases. 2015;7(1): 14-18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293795/.

[53]Pylayeva-Gupta Y., Lee K.E., Hajdu C.H., et al. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21(6): 836-847. doi: 10.1016/j.ccr.2012.04.024.

[54]Ling J., Kang Y.A., Zhao R., et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(1): 105-120. doi: 10.1016/j.ccr.2011.12.006.

[55]Tjomsland V., Spångeus A., Välilä J., et al. Interleukin 1α Sustains the Expression of Inflammatory Factors in Human Pancreatic Cancer Microenvironment by Targeting Cancer-Associated Fibroblasts. Neoplasia. 2011;13(8): 664-675. doi: 10.1593/neo.11332.

[56]Brunetto E., De Monte L., Balzano G., et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. Journal for ImmunoTherapy of Cancer. 2019;7(1): 45. doi: 10.1186/s40425-019-0521-4.

[57]Litmanovich A., K. Khazim, and I. Cohen The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Oncology and Therapy. 2018;6(2): 109-127. doi: 10.1007/s40487-018-0089-z.

[58]Feng L., Qi Q., Wang P., et al. Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. The Journal of international medical research. 2018;46(12): 5228-5236. doi: 10.1177/0300060518800588.

[59]Batchu R.B., Gruzdyn O.V., Mahmud E.M., et al. Inhibition of Interleukin-10 in the tumor microenvironment can restore mesothelin chimeric antigen receptor T cell activity in pancreatic cancer in vitro. Surgery. 2018;163(3): 627-632. doi: 10.1016/j.surg.2017.10.056.

[60]Zhao C., Pu Y., Zhang H., et al. IL10-modified Human Mesenchymal Stem Cells inhibit Pancreatic Cancer growth through Angiogenesis Inhibition. Journal of Cancer. 2020;11(18): 5345-5352. doi: 10.7150/jca.38062.

[61]Razidlo G.L., K.M. Burton and M.A. McNiven Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. Journal of Biological Chemistry. 2018;293(28): 11143-11153. doi: 10.1074/jbc.RA118.003276.

[62]Kim H.W., Lee J.C., Paik K.H., et al. Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine. 2017;96(5): e5926-e5926. doi: 10.1097/MD.0000000000005926.

[63]Du Y., Gao L., Zhang K., et al. Association of the IL6 polymorphism rs1800796 with cancer risk: a meta-analysis. Genetics Molecular Research. 2015;14(4): 13236-13246. doi: 10.4238/2015.

[64]Modi S., Kir D., Banerjee S., et al. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. Journal of cellular biochemistry. 2016;117(2): 279-288. doi: 10.1002/jcb.25284.

[65]Ayres Pereira M. and I.I.C. Chio Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes. 2019;11(1): 6. doi: 10.3390/genes11010006.

[66]Zińczuk J., Zaręba K., Guzińska-Ustymowicz K., et al. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic. Irish Journal of Medical Science (1971 -), 2018;187(3): 629-637. doi: 10.1007/s11845-018-1751-z.

[67]Hoogervorst E.M., van Oostrom C.T., Beems R.B., et al. p53 heterozygosity results in an increased 2-acetylaminofluorene-induced urinary bladder but not liver tumor response in DNA repair-deficient Xpa mice. Cancer Research. 2004;64(15): 5118-5126. doi: 10.1158/0008-5472.CAN-04-0350.

[68]Yamaguchi T., Ikehara S., Akimoto Y., et al. TGF-β signaling promotes tube-structure-forming growth in pancreatic duct adenocarcinoma. Scientific Reports. 2019;9(1): 1-13. doi: 10.1038/s41598-019-47101-y.

[69]Behboudi Farahbakhsh F., Nazemalhosseini Mojarad E., Azimzadeh P., et al. TGF-β1 polymorphisms -509 C>T and +915 G>C and risk of pancreatic cancer. Gastroenterology and hepatology from bed to bench. 2017;10(1): 14-20. Available from: https://pubmed.ncbi.nlm.nih.gov/28496942.

[70]Ahmed S., Bradshaw A.D., Gera S., et al. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. Journal of clinical medicine. 2017;6(1): 5. doi: 10.3390/jcm6010005.

[71]Mortenson M., Schlieman M., Virudachalam S., et al. Increasing BAK expression in pancreatic cancer: A novel method of chemosensitization. Journal of the American College of Surgeons. 2004;199(3, Supplement): 84. doi: 10.1016/j.jamcollsurg.2004.05.182.

[72]Piri Z., A. Esmaeilzadeh, and M. Hajikhanmirzaei Interleukin-25 as a candidate gene in immunogene therapy of pancreatic cancer. Journal of Medical Hypotheses and Ideas. 2012;6(2): 75-79. doi: 10.1016/j.jmhi.2012.08.003.

[73]Roshanravan N., Asgharian P., Dariushnejad H., et al. Eryngium Billardieri Induces Apoptosis via Bax Gene Expression in Pancreatic Cancer Cells. Advanced pharmaceutical bulletin. 2018;8(4): 667-674. doi: 10.15171/apb.2018.075.

[74]Zhang L., Li J., Zong L., et al. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxidative medicine and cellular longevity. 2016. doi: 10.1155/2016/1616781.

[75]Yu J.H. and H. Kim Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. Journal of cancer prevention. 2014;19(2): 97-102. doi: 10.15430/JCP.2014.19.2.97.

[76]Sharma V., Collins L.B., Chen T.H., et al. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget. 2016;7(18): 25377-25390. doi: 10.18632/oncotarget.8298.

[77]Benzel J. and V. Fendrich Familial Pancreatic Cancer. Oncology Research and Treatment. 2018;41(10): 611-618. doi: 10.1159/000493473.

[78]Martino C., Pandya D., Lee R., et al. ATM-Mutated Pancreatic Cancer: Clinical and Molecular Response to Gemcitabine/Nab-Paclitaxel After Genome-Based Therapy Resistance. Pancreas. 2020;49(1): 143. doi: 10.1097/MPA.0000000000001461.

[79]Keijzers G., Bakula D., Petr M.A., et al. Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. International journal of molecular sciences. 2018;20(1): 74. Available from: doi: 10.3390/ijms20010074.

[80]Savardashtaki A., Shabaninejad Z., Movahedpour A., et al. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics. 2019;11(14): 1627-1645. doi: 10.2217/epi-2019-0110.

[81]Vafadar A., Shabaninejad Z., Movahedpour A., et al. Long non-coding RNAs as epigenetic regulators in cancer. Current pharmaceutical design. 2019;25(33): 3563-3577. doi: 10.2174/1381612825666190830161528.

[82]Lv Y. and S. Huang Role of non-coding RNA in pancreatic cancer. Oncology letters. 2019;18(4): 3963-3973. doi: 10.3892/ol.2019.10758.

[83]Zhou W., Chen L., Li C., et al. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell International. 2020; 20(1): 41. doi: 10.1186/s12935-020-1126-1.

[84]Naeli P., Pourhanifeh M.H., Karimzadeh M.R., et al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Critical reviews in oncology/hematology. 2020;145: 102854. doi: 10.1016/j.critrevonc.2019.102854.

[85]Yu X., M.R. Koenig, and Y. Zhu Plasma miRNA, an emerging biomarker for pancreatic cancer. Annals of Translational Medicine. 2015;3(19): 19. doi: 10.3978/j.issn.2305-5839.2015.11.03.

[86]Yu S., Lu Z., Liu C., et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Research. 2010;70(14): 6015-6025. doi: 10.1158/0008-5472.CAN-09-4531.

[87]Huang X., Lv W., Zhang J.H., et al. miR‑96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. International Journal of Molecular Medicine. 2014;34(6): 1599-1605. doi: 10.3892/ijmm.2014.1940.

[88]Cioffi M., Trabulo S.M., Sanchez-Ripoll Y., et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015;64(12): 1936-1948. doi: 10.1136/gutjnl-2014-308470.

[89]Szafranska A.E., Davison T.S., John J., et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30): 4442-4452. doi: 10.1038/sj.onc.1210228.

[90]Calatayud D., Dehlendorff C., Boisen M.K., et al. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomarker Research. 2017; 5(1): 8. doi: 10.1186/s40364-017-0087-6.

[91]Barman S., Fatima I., Singh A.B., et al. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. International Journal of Molecular Sciences. 2021;22(9): 4765. doi: 10.3390/ijms22094765.

[92]Sun Y., Zhang T., Wang C., et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One. 2015;10(5): e0128257. doi: 10.1371/journal.pone.0119783.

[93]Azizi M., Teimoori-Toolabi L., Arzanani M.K., et al. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biology Therapy. 2014;15(4): 419-427. doi: 10.4161/cbt.27630.

[94]Azizi M., Fard-Esfahani P., Mahmoodzadeh H., et al. MiR-377 reverses cancerous phenotypes of pancreatic cells via suppressing DNMT1 and demethylating tumor suppressor genes. Epigenomics. 2017;9(8): 1059-1075. doi: 10.2217/epi-2016-0175.

[95]Wei W., Liu Y., Lu Y., et al. LncRNA XIST Promotes Pancreatic Cancer Proliferation Through miR-133a/EGFR. Journal of cellular biochemistry. 2017;118(10): 3349-3358. doi: 10.1002/jcb.25988.

[96]Shi W., Zhang C., Ning Z., et al. Long non-coding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3p to derepress BRD4 expression. Journal of Experimental & Clinical Cancer Research. 2019;38(1): 60. doi: 10.1186/s13046-019-1055-9.

[97]Tahira A.C., Kubrusly M.S., Faria M.F., et al. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Molecular cancer. 2011;10: 141. doi: 10.1186/1476-4598-10-141.

[98]Yang S.Z., Xu F., Zhou T., et al. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. The Journal of biological chemistry. 2017;292(25): 10390-10397. doi: 10.1074/jbc.M117.786830.

[99]Li Z., Zhao X., Zhou Y., et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. Journal of translational medicine. 2015;13(1): 1-16. doi: 10.1186/s12967-015-0442-z.

[100]Pang E.J., Yang R., Fu X.B., et al. Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biology. 2015;36(4): 2403-2407. doi: 10.1007/s13277-014-2850-8.

[101]Liu J.H., Chen G., Dang Y.W., et al. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pacific Journal of Cancer Prevention. 2014;15(7): 2971-2977. doi: 10.7314/APJCP.2014.15.7.2971.

[102]Jiao F., Hu H., Yuan C., et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncology reports. 2014;32(6): 2485-2492. doi: 10.3892/or.2014.3518.

[103]Zhao L., Kong H., Sun H., et al. LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. Journal of cellular physiology. 2018;233(5): 4044-4055. doi: 10.1002/jcp.26072.

[104]Sun Y.W., Chen Y.F., Li J., et al. A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1α in pancreatic ductal adenocarcinoma. British Journal of Cancer. 2014;111(11): 2131-2141. doi: 10.1038/bjc.2014.520.

[105]Natale F., Vivo M., Falco G., et al. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clinical Epigenetics. 2019;11(1): 132. doi: 10.1186/s13148-019-0728-8.

[106]Zhang W., Shang S., Yang Y., et al. Identification of DNA methylation‑driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma. Experimental and therapeutic medicine. 2020;19(4): 2963-2972. doi: 10.3892/etm.2020.8554.

[107]Matsubayashi H., Canto M., Sato N., et al. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Research. 2006;66(2): 1208-1217. doi: 10.1158/0008-5472.CAN-05-2664.

[108]Neureiter D., Jäger T., Ocker M., et al. Epigenetics and pancreatic cancer: pathophysiology and novel treatment aspects. World journal of gastroenterology. 2014;20(24): 7830-7848. doi: 10.3748/wjg.v20.i24.7830.

[109]Zhang S., Hao J., Xie F., et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32(8): 1183-1189. doi: 10.1093/carcin/bgr105.

[110]Wang P., Chen L., Zhang J., et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33(4): 514-524. doi: 10.1038/onc.2012.598.

[111]Hanoun N., Delpu Y., Suriawinata A.A., et al. The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clinical Chemistry. 2010;56(7): 1107-1118. doi: 10.1373/clinchem.2010.144709.

[112]Lee K.H., Lotterman C., Karikari C., et al. Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-Dependent Kinase 6 Expression in Pancreatic Cancer. Pancreatology. 2009;9(3): 293-301. doi: 10.1159/000186051.

[113]Lodygin D., Tarasov V., Epanchintsev A., et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16): 2591-600. doi: 10.4161/cc.7.16.6533.

[114]Ueki T., Toyota M., Sohn T., et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research. 2000;60(7): 1835-1839. Available from: https://aacrjournals.org/cancerres/article/60/7/1835/507152/Hypermethylation-of-Multiple-Genes-in-Pancreatic.

[115]Sato N., Maitra A., Fukushima N., et al. Frequent Hypomethylation of Multiple Genes Overexpressed in Pancreatic Ductal Adenocarcinoma. Cancer Research. 2003;63(14): 4158-4166. Available from: https://cancerres.aacrjournals.org/content/canres/63/14/4158.full.pdf.

[116]Fairhall E.A., Charles M.A., Probert P.M., et al. Pancreatic B-13 Cell Trans-Differentiation to Hepatocytes Is Dependent on Epigenetic-Regulated Changes in Gene Expression. PLOS ONE, 2016;11(3): e0150959. doi: 10.1371/journal.pone.0150959.

[117]Amaral A.F.S., Porta M., Silverman D.T., et al. Pancreatic cancer risk and levels of trace elements. Gut. 2012;61(11): 1583-1588. doi: 10.1136/gutjnl-2011-301086.

[118]Lener M.R., Scott R.J., Wiechowska-Kozłowska A., et al. Serum Concentrations of Selenium and Copper in Patients Diagnosed with Pancreatic Cancer. Cancer Research and Treatment. 2016;48(3): 1056-64. doi:10.4143/crt.2015.282.

[119]Smith M.L., Lancia J.K., Mercer T.I., et al. Selenium compounds regulate p53 by common and distinctive mechanisms. Anticancer Res. 2004;24(3a): 1401-8. Available from: https://pubmed.ncbi.nlm.nih.gov/15274301/.

[120]Stathis A. and M.J. Moore Advanced pancreatic carcinoma: current treatment and future challenges. Nature reviews Clinical oncology. 2010;7(3): 163. doi: 10.1038/nrclinonc.2009.236.

[121]Fong Z.V. and J.M. Winter Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive. The Cancer Journal. 2012;18(6): 530-538. doi: 10.1097/PPO.0b013e31827654ea.

[122]Wang Q., Ding Q., Dong Z.I., et al. Downregulation of mitogen-activated protein kinases in human colon cancers. Anticancer research. 2000;20(1A): 75-83. Available from: https://europepmc.org/article/med/10769637.

[123]Martinez-Useros J. and J. Garcia-Foncillas Can Molecular Biomarkers Change the Paradigm of Pancreatic Cancer Prognosis? BioMed research international, 2016. doi: 10.1155/2016/4873089.

How to Cite

Abedi kichi, Z. ., Z. . Rezaei, M. . Soltani, and Z. Shirvani Farsani. “Molecular Epidemiology and Biology of Pancreatic Cancer Among Iranian Patients: An Updated Preliminary Review”. Advances in Translational Medicine, vol. 1, no. 1, Feb. 2022, pp. 1-16, doi:10.55976/atm.120221391-16.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.