Zahra Abedi kichi 1 , Zeynab Rezaei 2 , Mona Soltani 3 , Zeinab Shirvani Farsani 4 *
Correspondence: z_shirvani@sbu.ac.ir
DOI: https://doi.org/10.55976/atm.120221391-16
Show More
[1]Mousavi, S.M., Gouya M.M., Ramazani R., et al. Cancer incidence and mortality in Iran. Annals of Oncology. 2009;20(3): 556-563. doi: 10.1093/annonc/mdn642.
[2]Xie D., Qian B., Yang J., et al. Can Elderly Patients With Pancreatic Cancer Gain Survival Advantages Through More Radical Surgeries? A SEER-Based Analysis. Frontiers in Oncology. 2020;10: 1-10. doi: 10.3389/fonc.2020.598048.
[3]Orth M., Metzger P., Gerum S., et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiation Oncology. 2019;14(1): 141. doi: 10.1186/s13014-019-1345-6.
[4]Siri F.H. and H. Salehiniya Pancreatic Cancer in Iran: an Epidemiological Review. Journal of Gastrointestinal Cancer. 2020;51(2): 418-424. doi: 10.1007/s12029-019-00279-w.
[5]Salehi F., Ahmadi A., Seyede Soghra AHMADI SOODEJANI, et al. The changing trend of mortality caused by gastrointestinal cancers in iran during the years 2006-2010. Arquivos de Gastroenterologia. 2018;55(3): 237-241. doi: 10.1590/S0004-2803.201800000-60.
[6]Roshandel G., Ghanbari-Motlagh A., Partovipour E., et al. Cancer incidence in Iran in 2014: Results of the Iranian National Population-based Cancer Registry. Cancer Epidemiology. 2019;61: 50-58. doi: 10.1016/j.canep.2019.05.009.
[7]Momenyan S., et al. Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression. Asian Pacific Journal of Cancer Prevention. 2016;17(S3): 113-117. doi: 10.7314/APJCP.2016.17.S3.113.
[8]Jamali A., Sadeghifar M., Sarvi F., et al. Pancreatic Cancer: State Of The Art And Current Situation In The Islamic Republic Of Iran. Govaresh Journal. 2009;14(3 (SN 68)): 189-197. Available from: http://www.govaresh.org/index.php/dd/article/view/583.
[9]Hadizadeh M., Padashi M., Alizadeh A.H.M., et al. Clinical, laboratory biomarkers and imaging findings of pancreatic adenocarcinoma in Iran. Asian Pacific Journal of Cancer Prevention. 2014;15(10): 4349-4352. doi: 10.7314/APJCP.2014.15.10.4349.
[10]Yuan J., Hegde P.S., Clynes R., et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 2016;4(1): 1-25. doi: 10.1186/s40425-016-0107-3.
[11]Rawla P., T. Sunkara and V. Gaduputi Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World Journal Oncology. 2019;10(1): 10-27. doi: 10.14740/wjon1166.
[12]Khanlarzadeh E., Nazari S., Ghobakhloo M., et al. Prognosis of Pancreatic Cancer in Hamadan, Iran (2008-2018): A case Series Study. Available from: https://assets.researchsquare.com/files/rs-827808/v1_covered.pdf?c=1631877046.
[13]Sanat Z.M., Masoudi S., Mansouri M., et al. Diabetes Mellitus, Obesity, and Risk of Pancreatic Ductal Adenocarcinoma: a Large Case-Control Study from Iran. Middle East Journal of Digestive Diseases. 2021;13(1): 15-20. doi: 10.34172/mejdd.2021.198.
[14]Shakeri R., Pourshams A., Tabrizi R., et al. Tu1940 Pancreas Cancer in Iran: Epidemiologic Feature, Risk Factors and Survival. Gastroenterology. 2015;148(4): S-941. doi: 10.1016/S0016-5085(15)33211-X.
[15]Moossavi S., Mohamadnejad M., Pourshams A., et al. Opium Use and Risk of Pancreatic Cancer: A Prospective Cohort Study. Cancer Epidemiology, Biomarkers & Prevention. 2018;27(3): 268-273. doi: 10.1158/1055-9965.EPI-17-0592.
[16]Fotouhi A., Khabazkhoub M., Hashemi H., et al. The Prevalence Of Cigarette Smoking In Residents Of Tehran. Archives Of Iranian Medicine. 2009;12(4): 358-364. Available from: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=141312.
[17]Davoodi S.H., Malek-Shahabi T., Malekshahi-Moghadam A., et al. Obesity as an important risk factor for certain types of cancer. Iranian Journal of Cancer Prevention. 2013;6(4): p. 186-194. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142931/.
[18]Xu M., Jung X., Hines O.J., et al. Obesity and Pancreatic Cancer: Overview of Epidemiology and Potential Prevention by Weight Loss. Pancreas 2018;47(2): 158-162. doi: 10.1097/MPA.0000000000000974.
[19]Wang J., Zhang W., Sun L., et al. Dietary Energy Density Is Positively Associated with Risk of Pancreatic Cancer in Urban Shanghai Chinese. The Journal of Nutrition. 2013;143(10): 1626-1629. doi: 10.3945/jn.113.178129.
[20]Pourshams A., B. Kazemi, and S. Kalantari A review of the etiology and biomarkers of pancreatic cancer, with emphasis on the role of diabetes: review article. Tehran University Medical Journal. 2018;75(11): 773-778. Available from: http://tumj.tums.ac.ir/article-1-8538-en.html.
[21]Li D. Diabetes and pancreatic cancer. Molecular carcinogenesis. 2012;51(1): 64-74. doi: 10.1002/mc.20771.
[22]Mao Y., Tao M., Jia X., et al. Effect of Diabetes Mellitus on Survival in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Scientific Reports. 2015;5(1): 1-11. doi: 10.1038/srep17102.
[23]Barman, S. and K. Srinivasan Zinc supplementation alleviates hyperglycemia and associated metabolic abnormalities in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology. 2016;94(12): 1356-1365. doi: 10.1139/cjpp-2016-0084.
[24]Andersen D.K., Korc M., Petersen G.M., et al. Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes. 2017;66(5): 1103-1110. doi: 10.2337/db16-1477.
[25]Leclerc E. and S.W. Vetter The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2015;1852(12): 2706-2711. doi: 10.1016/j.bbadis.2015.09.022.
[26]De Souza A., Irfan K., Masud F., et al. Diabetes Type 2 and Pancreatic Cancer: A History Unfolding. JOP : Journal of the pancreas. 2016;17(2): 144-148. Available from: https://pubmed.ncbi.nlm.nih.gov/29568247.
[27]Korc M. Pathogenesis of Pancreatic Cancer-Related Diabetes Mellitus: Quo Vadis? Pancreas. 2019;48(5): 594-597. doi: 10.1097/MPA.0000000000001300.
[28]Chiou W.K., Huang B.Y., Chou W.Y., et al. Incidences of cancers in diabetic and non-diabetic hospitalized adult patients in Taiwan. Asian Pacific journal of cancer prevention : APJCP. 2011;12(6): 1577-1581. Available from: http://europepmc.org/abstract/MED/22126502.
[29]Matsuo K., Ito H., Wakai K., et al. Cigarette Smoking and Pancreas Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiologic Evidence in the Japanese Population. Japanese Journal of Clinical Oncology. 2011;41(11): 1292-1302. doi: 10.1093/jjco/hyr141.
[30]Kabir A. Comment on: Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea: a case-control study. Journal of Korean medical science. 2013;28(2): 247-251. doi: 10.3346/jkms.2013.28.2.247.
[31]Engin H., Bilir C., Ustun H., et al. ABO blood group and risk of pancreatic cancer in a Turkish population in Western Blacksea region. Asian Pacific journal of cancer prevention : APJCP. 2012;13(1): 131-133. doi: 10.7314/APJCP.2012.13.1.131.
[32]Ahmadloo N., Bidouei F., Omidvari S., et al. Pancreatic Cancer in Southern Iran. Iran Red Crescent Medical Journal. 2010;12(6): 624-630. Available from: https://sites.kowsarpub.com/ircmj/articles/77396.html.
[33]Uson Jr P.L.S., Samadder N.J., Riegert-Johnson D., et al. Clinical Impact of Pathogenic Germline Variants in Pancreatic Cancer: Results From a Multicenter, Prospective, Universal Genetic Testing Study. Clinical Translational Gastroenterology, 2021;12(10): 4118. doi: 10.1200/JCO.2021.39.15_suppl.4118.
[34]Permuth-Wey J. and K.M. Egan Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Familial Cancer. 2009;8(2): 109-117. doi: 10.1007/s10689-008-9214-8.
[35]Ottenhof N.A., Milne A.N., Morsink F.H., et al. Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men. Archives of pathology & laboratory medicine. 2009;133(3): 375-381. doi: 10.5858/133.3.375.
[36]Alimirzaie S., Mohamadkhani A., Masoudi S., et al. Mutations in Known and Novel cancer Susceptibility Genes in Young Patients with Pancreatic Cancer. Archives of Iranian Medicine. 2018;21(6): 228-233. Available from: http://www.aimjournal.ir/FullHtml/aim-1630.
[37]Connor A.A. and S. Gallinger Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nature Reviews Cancer, 2021: 1-12. doi: 10.1038/s41568-021-00418-1.
[38]Chhoda A., Lu L., Clerkin B.M., et al. Current Approaches to Pancreatic Cancer Screening. The American Journal of Pathology. 2019;189(1): 22-35. doi: 10.1016/j.ajpath.2018.09.013.
[39]Banke M.G., J.J. Mulvihill, and C.E. Aston Inheritance Of Pancreatic Cancer In Pancreatic Cancer–Prone Families. Medical Clinics of North America. 2000;84(3): 677-690. doi: 10.1016/S0025-7125(05)70250-9.
[40]Cowgill S.M. and P. Muscarella The genetics of pancreatic cancer. The American journal of surgery. 2003;186(3): 279-286. doi: 10.1016/S0002-9610(03)00226-5.
[41]Zambirinis C.P. and G. Miller Pancreatic Inflammation and Carcinogenesis. Pancreapedia: The Exocrine Pancreas Knowledge Base. 2015. doi: 10.3998/panc.2015.6.
[42]Bosetti C., Turati F., Dal Pont A., et al. The role of Mediterranean diet on the risk of pancreatic cancer. British journal of cancer. 2013;109(5): 1360-1366. doi: 10.1038/bjc.2013.345.
[43]Yadav D. and A.B. Lowenfels The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6): 1252-1261. doi: 10.1053/j.gastro.2013.01.068.
[44]Woo S.M., Joo J., Lee W.J., et al. Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea: a case-control study. J Journal of Korean Medical Science. 2013;28(2): 247-251. doi: 10.3346/jkms.2013.28.2.247.
[45]Rizzato C., Campa D., Pezzilli R., et al. ABO blood groups and pancreatic cancer risk and survival: results from the PANcreatic Disease ReseArch (PANDoRA) consortium. Oncology reports. 2013;29(4): 1637-1644. doi: 10.3892/or.2013.2285.
[46]Farzin L., Moassesi M.E., Sajadi F., et al. Evaluation of Trace Elements in Pancreatic Cancer Patients in Iran. Middle East Journal of Cancer. 2013;4(2): 79-86. Available from: https://mejc.sums.ac.ir/article_41844_56db37a8c07c3218bde8fd88ba21c52c.pdf.
[47]Padoan A., M. Plebani, and D. Basso Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. International Journal of Molecular Sciences. 2019;20(3): 676. doi: 10.3390/ijms20030676.
[48]Wang Y., Jin G., Li Q., et al. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma. Journal of Cancer. 2016;7(14): 2067-2076. doi: 10.7150/jca.15786.
[49]Kishi T., Nakamura A., Itasaka S., et al. Pretreatment C-reactive protein level predicts outcome and patterns of failure after chemoradiotherapy for locally advanced pancreatic cancer. Pancreatology. 2015;15(6): 694-700. doi: 10.1016/j.pan.2015.09.016.
[50]Mohamadkhani A., Pourshams A., Viti J., et al. Pancreatic Cancer is Associated with Peripheral Leukocyte Oxidative DNA Damage. Asian Pacific Journal of Cancer Prevention. 2017;18(5): 1349-1355. doi:10.22034/APJCP.2017.18.5.1349.
[51]Mohamadkhani A., Naderi E., Sharafkhah M., et al. Detection of TP53 R249 Mutation in Iranian Patients with Pancreatic Cancer. Journal of Oncology. 2013. doi: 10.1155/2013/738915.
[52]Mohamadkhani A., Akbari M.R., Ghanbari R., et al. Direct Sequencing of Cyclooxygenase-2 (COX-2) Revealed an Intronic Variant rs201231411 in Iranian Patients with Pancreatic Cancer. Middle East Journal of Digestive Diseases. 2015;7(1): 14-18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293795/.
[53]Pylayeva-Gupta Y., Lee K.E., Hajdu C.H., et al. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21(6): 836-847. doi: 10.1016/j.ccr.2012.04.024.
[54]Ling J., Kang Y.A., Zhao R., et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(1): 105-120. doi: 10.1016/j.ccr.2011.12.006.
[55]Tjomsland V., Spångeus A., Välilä J., et al. Interleukin 1α Sustains the Expression of Inflammatory Factors in Human Pancreatic Cancer Microenvironment by Targeting Cancer-Associated Fibroblasts. Neoplasia. 2011;13(8): 664-675. doi: 10.1593/neo.11332.
[56]Brunetto E., De Monte L., Balzano G., et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. Journal for ImmunoTherapy of Cancer. 2019;7(1): 45. doi: 10.1186/s40425-019-0521-4.
[57]Litmanovich A., K. Khazim, and I. Cohen The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Oncology and Therapy. 2018;6(2): 109-127. doi: 10.1007/s40487-018-0089-z.
[58]Feng L., Qi Q., Wang P., et al. Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. The Journal of international medical research. 2018;46(12): 5228-5236. doi: 10.1177/0300060518800588.
[59]Batchu R.B., Gruzdyn O.V., Mahmud E.M., et al. Inhibition of Interleukin-10 in the tumor microenvironment can restore mesothelin chimeric antigen receptor T cell activity in pancreatic cancer in vitro. Surgery. 2018;163(3): 627-632. doi: 10.1016/j.surg.2017.10.056.
[60]Zhao C., Pu Y., Zhang H., et al. IL10-modified Human Mesenchymal Stem Cells inhibit Pancreatic Cancer growth through Angiogenesis Inhibition. Journal of Cancer. 2020;11(18): 5345-5352. doi: 10.7150/jca.38062.
[61]Razidlo G.L., K.M. Burton and M.A. McNiven Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. Journal of Biological Chemistry. 2018;293(28): 11143-11153. doi: 10.1074/jbc.RA118.003276.
[62]Kim H.W., Lee J.C., Paik K.H., et al. Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine. 2017;96(5): e5926-e5926. doi: 10.1097/MD.0000000000005926.
[63]Du Y., Gao L., Zhang K., et al. Association of the IL6 polymorphism rs1800796 with cancer risk: a meta-analysis. Genetics Molecular Research. 2015;14(4): 13236-13246. doi: 10.4238/2015.
[64]Modi S., Kir D., Banerjee S., et al. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer. Journal of cellular biochemistry. 2016;117(2): 279-288. doi: 10.1002/jcb.25284.
[65]Ayres Pereira M. and I.I.C. Chio Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes. 2019;11(1): 6. doi: 10.3390/genes11010006.
[66]Zińczuk J., Zaręba K., Guzińska-Ustymowicz K., et al. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic. Irish Journal of Medical Science (1971 -), 2018;187(3): 629-637. doi: 10.1007/s11845-018-1751-z.
[67]Hoogervorst E.M., van Oostrom C.T., Beems R.B., et al. p53 heterozygosity results in an increased 2-acetylaminofluorene-induced urinary bladder but not liver tumor response in DNA repair-deficient Xpa mice. Cancer Research. 2004;64(15): 5118-5126. doi: 10.1158/0008-5472.CAN-04-0350.
[68]Yamaguchi T., Ikehara S., Akimoto Y., et al. TGF-β signaling promotes tube-structure-forming growth in pancreatic duct adenocarcinoma. Scientific Reports. 2019;9(1): 1-13. doi: 10.1038/s41598-019-47101-y.
[69]Behboudi Farahbakhsh F., Nazemalhosseini Mojarad E., Azimzadeh P., et al. TGF-β1 polymorphisms -509 C>T and +915 G>C and risk of pancreatic cancer. Gastroenterology and hepatology from bed to bench. 2017;10(1): 14-20. Available from: https://pubmed.ncbi.nlm.nih.gov/28496942.
[70]Ahmed S., Bradshaw A.D., Gera S., et al. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. Journal of clinical medicine. 2017;6(1): 5. doi: 10.3390/jcm6010005.
[71]Mortenson M., Schlieman M., Virudachalam S., et al. Increasing BAK expression in pancreatic cancer: A novel method of chemosensitization. Journal of the American College of Surgeons. 2004;199(3, Supplement): 84. doi: 10.1016/j.jamcollsurg.2004.05.182.
[72]Piri Z., A. Esmaeilzadeh, and M. Hajikhanmirzaei Interleukin-25 as a candidate gene in immunogene therapy of pancreatic cancer. Journal of Medical Hypotheses and Ideas. 2012;6(2): 75-79. doi: 10.1016/j.jmhi.2012.08.003.
[73]Roshanravan N., Asgharian P., Dariushnejad H., et al. Eryngium Billardieri Induces Apoptosis via Bax Gene Expression in Pancreatic Cancer Cells. Advanced pharmaceutical bulletin. 2018;8(4): 667-674. doi: 10.15171/apb.2018.075.
[74]Zhang L., Li J., Zong L., et al. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxidative medicine and cellular longevity. 2016. doi: 10.1155/2016/1616781.
[75]Yu J.H. and H. Kim Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. Journal of cancer prevention. 2014;19(2): 97-102. doi: 10.15430/JCP.2014.19.2.97.
[76]Sharma V., Collins L.B., Chen T.H., et al. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget. 2016;7(18): 25377-25390. doi: 10.18632/oncotarget.8298.
[77]Benzel J. and V. Fendrich Familial Pancreatic Cancer. Oncology Research and Treatment. 2018;41(10): 611-618. doi: 10.1159/000493473.
[78]Martino C., Pandya D., Lee R., et al. ATM-Mutated Pancreatic Cancer: Clinical and Molecular Response to Gemcitabine/Nab-Paclitaxel After Genome-Based Therapy Resistance. Pancreas. 2020;49(1): 143. doi: 10.1097/MPA.0000000000001461.
[79]Keijzers G., Bakula D., Petr M.A., et al. Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. International journal of molecular sciences. 2018;20(1): 74. Available from: doi: 10.3390/ijms20010074.
[80]Savardashtaki A., Shabaninejad Z., Movahedpour A., et al. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics. 2019;11(14): 1627-1645. doi: 10.2217/epi-2019-0110.
[81]Vafadar A., Shabaninejad Z., Movahedpour A., et al. Long non-coding RNAs as epigenetic regulators in cancer. Current pharmaceutical design. 2019;25(33): 3563-3577. doi: 10.2174/1381612825666190830161528.
[82]Lv Y. and S. Huang Role of non-coding RNA in pancreatic cancer. Oncology letters. 2019;18(4): 3963-3973. doi: 10.3892/ol.2019.10758.
[83]Zhou W., Chen L., Li C., et al. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell International. 2020; 20(1): 41. doi: 10.1186/s12935-020-1126-1.
[84]Naeli P., Pourhanifeh M.H., Karimzadeh M.R., et al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Critical reviews in oncology/hematology. 2020;145: 102854. doi: 10.1016/j.critrevonc.2019.102854.
[85]Yu X., M.R. Koenig, and Y. Zhu Plasma miRNA, an emerging biomarker for pancreatic cancer. Annals of Translational Medicine. 2015;3(19): 19. doi: 10.3978/j.issn.2305-5839.2015.11.03.
[86]Yu S., Lu Z., Liu C., et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Research. 2010;70(14): 6015-6025. doi: 10.1158/0008-5472.CAN-09-4531.
[87]Huang X., Lv W., Zhang J.H., et al. miR‑96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. International Journal of Molecular Medicine. 2014;34(6): 1599-1605. doi: 10.3892/ijmm.2014.1940.
[88]Cioffi M., Trabulo S.M., Sanchez-Ripoll Y., et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015;64(12): 1936-1948. doi: 10.1136/gutjnl-2014-308470.
[89]Szafranska A.E., Davison T.S., John J., et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30): 4442-4452. doi: 10.1038/sj.onc.1210228.
[90]Calatayud D., Dehlendorff C., Boisen M.K., et al. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomarker Research. 2017; 5(1): 8. doi: 10.1186/s40364-017-0087-6.
[91]Barman S., Fatima I., Singh A.B., et al. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. International Journal of Molecular Sciences. 2021;22(9): 4765. doi: 10.3390/ijms22094765.
[92]Sun Y., Zhang T., Wang C., et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One. 2015;10(5): e0128257. doi: 10.1371/journal.pone.0119783.
[93]Azizi M., Teimoori-Toolabi L., Arzanani M.K., et al. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biology Therapy. 2014;15(4): 419-427. doi: 10.4161/cbt.27630.
[94]Azizi M., Fard-Esfahani P., Mahmoodzadeh H., et al. MiR-377 reverses cancerous phenotypes of pancreatic cells via suppressing DNMT1 and demethylating tumor suppressor genes. Epigenomics. 2017;9(8): 1059-1075. doi: 10.2217/epi-2016-0175.
[95]Wei W., Liu Y., Lu Y., et al. LncRNA XIST Promotes Pancreatic Cancer Proliferation Through miR-133a/EGFR. Journal of cellular biochemistry. 2017;118(10): 3349-3358. doi: 10.1002/jcb.25988.
[96]Shi W., Zhang C., Ning Z., et al. Long non-coding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3p to derepress BRD4 expression. Journal of Experimental & Clinical Cancer Research. 2019;38(1): 60. doi: 10.1186/s13046-019-1055-9.
[97]Tahira A.C., Kubrusly M.S., Faria M.F., et al. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Molecular cancer. 2011;10: 141. doi: 10.1186/1476-4598-10-141.
[98]Yang S.Z., Xu F., Zhou T., et al. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. The Journal of biological chemistry. 2017;292(25): 10390-10397. doi: 10.1074/jbc.M117.786830.
[99]Li Z., Zhao X., Zhou Y., et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. Journal of translational medicine. 2015;13(1): 1-16. doi: 10.1186/s12967-015-0442-z.
[100]Pang E.J., Yang R., Fu X.B., et al. Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biology. 2015;36(4): 2403-2407. doi: 10.1007/s13277-014-2850-8.
[101]Liu J.H., Chen G., Dang Y.W., et al. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pacific Journal of Cancer Prevention. 2014;15(7): 2971-2977. doi: 10.7314/APJCP.2014.15.7.2971.
[102]Jiao F., Hu H., Yuan C., et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncology reports. 2014;32(6): 2485-2492. doi: 10.3892/or.2014.3518.
[103]Zhao L., Kong H., Sun H., et al. LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. Journal of cellular physiology. 2018;233(5): 4044-4055. doi: 10.1002/jcp.26072.
[104]Sun Y.W., Chen Y.F., Li J., et al. A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1α in pancreatic ductal adenocarcinoma. British Journal of Cancer. 2014;111(11): 2131-2141. doi: 10.1038/bjc.2014.520.
[105]Natale F., Vivo M., Falco G., et al. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clinical Epigenetics. 2019;11(1): 132. doi: 10.1186/s13148-019-0728-8.
[106]Zhang W., Shang S., Yang Y., et al. Identification of DNA methylation‑driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma. Experimental and therapeutic medicine. 2020;19(4): 2963-2972. doi: 10.3892/etm.2020.8554.
[107]Matsubayashi H., Canto M., Sato N., et al. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Research. 2006;66(2): 1208-1217. doi: 10.1158/0008-5472.CAN-05-2664.
[108]Neureiter D., Jäger T., Ocker M., et al. Epigenetics and pancreatic cancer: pathophysiology and novel treatment aspects. World journal of gastroenterology. 2014;20(24): 7830-7848. doi: 10.3748/wjg.v20.i24.7830.
[109]Zhang S., Hao J., Xie F., et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32(8): 1183-1189. doi: 10.1093/carcin/bgr105.
[110]Wang P., Chen L., Zhang J., et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene. 2014;33(4): 514-524. doi: 10.1038/onc.2012.598.
[111]Hanoun N., Delpu Y., Suriawinata A.A., et al. The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clinical Chemistry. 2010;56(7): 1107-1118. doi: 10.1373/clinchem.2010.144709.
[112]Lee K.H., Lotterman C., Karikari C., et al. Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-Dependent Kinase 6 Expression in Pancreatic Cancer. Pancreatology. 2009;9(3): 293-301. doi: 10.1159/000186051.
[113]Lodygin D., Tarasov V., Epanchintsev A., et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16): 2591-600. doi: 10.4161/cc.7.16.6533.
[114]Ueki T., Toyota M., Sohn T., et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research. 2000;60(7): 1835-1839. Available from: https://aacrjournals.org/cancerres/article/60/7/1835/507152/Hypermethylation-of-Multiple-Genes-in-Pancreatic.
[115]Sato N., Maitra A., Fukushima N., et al. Frequent Hypomethylation of Multiple Genes Overexpressed in Pancreatic Ductal Adenocarcinoma. Cancer Research. 2003;63(14): 4158-4166. Available from: https://cancerres.aacrjournals.org/content/canres/63/14/4158.full.pdf.
[116]Fairhall E.A., Charles M.A., Probert P.M., et al. Pancreatic B-13 Cell Trans-Differentiation to Hepatocytes Is Dependent on Epigenetic-Regulated Changes in Gene Expression. PLOS ONE, 2016;11(3): e0150959. doi: 10.1371/journal.pone.0150959.
[117]Amaral A.F.S., Porta M., Silverman D.T., et al. Pancreatic cancer risk and levels of trace elements. Gut. 2012;61(11): 1583-1588. doi: 10.1136/gutjnl-2011-301086.
[118]Lener M.R., Scott R.J., Wiechowska-Kozłowska A., et al. Serum Concentrations of Selenium and Copper in Patients Diagnosed with Pancreatic Cancer. Cancer Research and Treatment. 2016;48(3): 1056-64. doi:10.4143/crt.2015.282.
[119]Smith M.L., Lancia J.K., Mercer T.I., et al. Selenium compounds regulate p53 by common and distinctive mechanisms. Anticancer Res. 2004;24(3a): 1401-8. Available from: https://pubmed.ncbi.nlm.nih.gov/15274301/.
[120]Stathis A. and M.J. Moore Advanced pancreatic carcinoma: current treatment and future challenges. Nature reviews Clinical oncology. 2010;7(3): 163. doi: 10.1038/nrclinonc.2009.236.
[121]Fong Z.V. and J.M. Winter Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive. The Cancer Journal. 2012;18(6): 530-538. doi: 10.1097/PPO.0b013e31827654ea.
[122]Wang Q., Ding Q., Dong Z.I., et al. Downregulation of mitogen-activated protein kinases in human colon cancers. Anticancer research. 2000;20(1A): 75-83. Available from: https://europepmc.org/article/med/10769637.
[123]Martinez-Useros J. and J. Garcia-Foncillas Can Molecular Biomarkers Change the Paradigm of Pancreatic Cancer Prognosis? BioMed research international, 2016. doi: 10.1155/2016/4873089.
Copyright © 2022 Zahra Abedi kichi, Zeynab Rezaei, Mona Soltani, Zeinab Shirvani Farsani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn