Alexander Nguyen 1 , Andrew Nguyen 2 , Nikhil Godbole 3 , Raja Al-Bahou 4 , Harrison Lew 5 , Brandon Lucke-Wold 6 *
Correspondence: brandon.lucke-wold@neurosurgery.ufl.edu
DOI: https://doi.org/10.55976/atm.3202411871-13
Show More
[1]Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants. 2019; 8(5): 121. doi: https://doi.org/10.3390/antiox8050121.
[2]Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004; 129(4): 1043-1054. doi: https://doi.org/10.1016/j.neuroscience.2004.06.008.
[3]Rabinowitz L, Aizman RI. The central nervous system in potassium homeostasis. Frontiers in Neuroendocrinology. 1993; 14(1): 1-26. doi: https://doi.org/10.1006/frne.1993.1001.
[4]Keep RF, Xiang J, Betz AL. Potassium transport at the blood-brain and blood-CSF barriers. In: Drewes LR, Betz AL. (eds.) Frontiers in cerebral vascular biology: Transport and its regulation. Boston: Springer; 1993. p. 43-54. doi: https://doi.org/10.1007/978-1-4615-2920-0_8.
[5]White RE, Jakeman LB. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair. Restorative Neurology and Neuroscience. 2008; 26(2-3): 197-214.
[6]Guerra-Gomes S, Sousa N, Pinto L, et al. Functional roles of astrocyte calcium elevations: From synapses to behavior. Frontiers in Cellular Neuroscience. 2018; 11: 427. doi: https://doi.org/10.3389/fncel.2017.00427.
[7]Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences. 2000; 97(15): 8629-8634. doi: https://doi.org/10.1073/pnas.97.15.8629.
[8]Goldsmith DJA, Hilton PJ. Relationship between intracellular proton buffering capacity and intracellular pH. Kidney International. 1992; 41(1): 43-49. doi: https://doi.org/10.1038/ki.1992.6.
[9]Zorec R, Verkhratsky A. Astrocytes in the pathophysiology of neuroinfection. Essays in Biochemistry. 2023; 67(1): 131-145. doi: https://doi.org/10.1042/EBC20220082.
[10]Rostami J, Fotaki G, Sirois J, et al. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson's disease brain. Journal of Neuroinflammation. 2020; 17: 119. doi: https://doi.org/10.1186/s12974-020-01776-7.
[11]Tabata H. Diverse subtypes of astrocytes and their development during corticogenesis. Frontiers in Neuroscience. 2015; 9: 114. doi: https://doi.org/10.3389/fnins.2015.00114.
[12]Kerstetter AE, Miller RH. Isolation and culture of spinal cord astrocytes. In: Milner R. (ed.) Astrocytes: Methods and protocols. Humana Press; 2012. p. 93-104. doi: https://doi.org/10.1007/978-1-61779-452-0_7.
[13]Armstrong RC, Harvath L, Dubois-Dalcq ME. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. Journal of Neuroscience Research. 1990; 27(3): 400-407. doi: https://doi.org/10.1002/jnr.490270319.
[14]Montgomery DL. Astrocytes: Form, functions, and roles in disease. Veterinary Pathology. 1994; 31(2): 145-167. doi: https://doi.org/10.1177/030098589403100201.
[15]Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005; 50(4): 427-434. doi: https://doi.org/10.1002/glia.20207.
[16]Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010; 330(6005): 774-778. doi: https://doi.org/10.1126/science.1190928.
[17]Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology. 2019; 10: 1114. doi: https://doi.org/10.3389/fphar.2019.01114.
[18]Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiological Reviews. 2018; 98(1): 239-389. doi: https://doi.org/10.1152/physrev.00042.2016.
[19]Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences. 2009; 32(12): 638-647. doi: https://doi.org/10.1016/j.tins.2009.08.002.
[20]Kang W, Hebert JM. Signaling pathways in reactive astrocytes, a genetic perspective. Molecular Neurobiology. 2011; 43(3): 147-154. doi: https://doi.org/10.1007/s12035-011-8163-7.
[21]Nicaise AM, D'Angelo A, Ionescu RB, et al. The role of neural stem cells in regulating glial scar formation and repair. Cell and Tissue Research. 2022; 387(3): 399-414. doi: https://doi.org/10.1007/s00441-021-03554-0.
[22]Yang T, Dai Y, Chen G, et al. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Frontiers in Cellular Neuroscience. 2020; 14: 78. doi: https://doi.org/10.3389/fncel.2020.00078.
[23]Gu Y, Cheng X, Huang X, et al. Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair. Brain, Behavior, and Immunity. 2019; 80: 394-405. doi: https://doi.org/10.1016/j.bbi.2019.04.016.
[24]Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016; 532(7598): 195-200. doi: https://doi.org/10.1038/nature17623.
[25]Wang H, Song G, Chuang H, et al. Portrait of glial scar in neurological diseases. International Journal of Immunopathology and Pharmacology. 2018; 31. doi: https://doi.org/10.1177/2058738418801406.
[26]Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell and Tissue Research. 2022; 387(3): 319-336. doi: https://doi.org/10.1007/s00441-021-03477-w.
[27]Hellenbrand DJ, Quinn CM, Piper ZJ, et al. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration. Journal of Neuroinflammation. 2021; 18: 284. doi: https://doi.org/10.1186/s12974-021-02337-2.
[28]Zhang N, Yin Y, Xu SJ, et al. Inflammation & apoptosis in spinal cord injury. The Indian Journal of Medical Research. 2012; 135(3): 287-296.
[29]Garcia E, Mondragon-Caso J, Ibarra A. Spinal cord injury: Potential neuroprotective therapy based on neural-derived peptides. Neural Regeneration Research. 2016; 11(11): 1762-1763. doi: https://doi.org/10.4103/1673-5374.194718.
[30]James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. European Journal of Pharmacology. 2002; 447(2-3): 247-260. doi: https://doi.org/10.1016/S0014-2999(02)01756-9.
[31]Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. British Journal of Pharmacology. 2016; 173(4): 692-702. doi: https://doi.org/10.1111/bph.13125.
[32]Sauerbeck A, Schonberg DL, Laws JL, et al. Systemic iron chelation results in limited functional and histological recovery after traumatic spinal cord injury in rats. Experimental Neurology. 2013; 248: 53-61. doi: https://doi.org/10.1016/j.expneurol.2013.05.011.
[33]Yu M, Wang Z, Wang D, et al. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. Journal of Neuroscience Research. 2023; 101(10): 1538-1554. doi: https://doi.org/10.1002/jnr.25221.
[34]Yu P, Wang H, Katagiri Y, et al. An in vitro model of reactive astrogliosis and its effect on neuronal growth. In: Milner R. (ed.) Astrocytes: Methods and protocols. Humana Press; 2012. p. 327-340. doi: https://doi.org/10.1007/978-1-61779-452-0_21.
[35]Bradbury EJ, Moon LDF, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002; 416(6881): 636-640. doi: https://doi.org/10.1038/416636a.
[36]Laabs TL, Wang H, Katagiri Y, et al. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. Journal of Neuroscience. 2007; 27(52): 14494-14501. doi: https://doi.org/10.1523/JNEUROSCI.2807-07.2007.
[37]Wanner IB, Anderson MA, Song B, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. Journal of Neuroscience. 2013; 33(31): 12870-12886. doi: https://doi.org/10.1523/JNEUROSCI.2121-13.2013.
[38]Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nature Medicine. 2017; 23(7): 818-828. doi: https://doi.org/10.1038/nm.4354.
[39]Yoshizaki S, Tamaru T, Hara M, et al. Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the fibronectin/beta1 integrin pathway. Journal of Neuroinflammation. 2021; 18: 12. doi: https://doi.org/10.1186/s12974-020-02059-x.
[40]Okada S, Hara M, Kobayakawa K, et al. Astrocyte reactivity and astrogliosis after spinal cord injury. Neuroscience Research. 2018; 126: 39-43. doi: https://doi.org/10.1016/j.neures.2017.10.004.
[41]Beck KD, Nguyen HX, Galvan MD, et al. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: Evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain. 2010; 133(2): 433-447. doi: https://doi.org/10.1093/brain/awp322.
[42]Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology. 2017; 35: 441-468. doi: https://doi.org/10.1146/annurev-immunol-051116-052358.
[43]Li Y, Tan MS, Jiang T, et al. Microglia in Alzheimer's disease. BioMed Research International. 2014; 2014: 437483. doi: https://doi.org/10.1155/2014/437483.
[44]Vandamme P, Devriese LA, Pot B, et al. Streptococcus difficile is a nonhemolytic group B, type Ib Streptococcus. International Journal of Systematic Bacteriology. 1997; 47(1): 81-85. doi: https://doi.org/10.1099/00207713-47-1-81.
[45]Adams KL, Gallo V. The diversity and disparity of the glial scar. Nature Neuroscience. 2018; 21(1): 9-15. doi: https://doi.org/10.1038/s41593-017-0033-9.
[46]Vazquez-Chona F, Geisert Jr EE. N-cadherin at the glial scar in the rat. Brain Research. 1999; 838(1-2): 45-50. doi: https://doi.org/10.1016/S0006-8993(99)01679-0.
[47]Klapka N, Muller HW. Collagen matrix in spinal cord injury. Journal of Neurotrauma. 2006; 23(3-4): 422-436. doi: https://doi.org/10.1089/neu.2006.23.422.
[48]Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury. Current Opinion in Neurobiology. 2014; 27: 53-60. doi: https://doi.org/10.1016/j.conb.2014.02.011.
[49]Yokota K, Kobayakawa K, Saito T, et al. Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. The American Journal of Pathology. 2017; 187(3): 639-653. doi: https://doi.org/10.1016/j.ajpath.2016.11.010.
[50]Guijarro-Belmar A, Viskontas M, Wei Y, et al. Epac2 elevation reverses inhibition by chondroitin sulfate proteoglycans in vitro and transforms postlesion inhibitory environment to promote axonal outgrowth in an ex vivo model of spinal cord injury. Journal of Neuroscience. 2019; 39(42): 8330-8346. doi: https://doi.org/10.1523/JNEUROSCI.0374-19.2019.
[51]Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002; 34(6): 885-893. doi: https://doi.org/10.1016/s0896-6273(02)00702-x.
[52]Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002; 34(6): 895-903. doi: https://doi.org/10.1016/s0896-6273(02)00730-4.
[53]Nikulina E, Tidwell JL, Dai HN, et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proceedings of the National Academy of Sciences. 2004; 101(23): 8786-8790. doi: https://doi.org/10.1073/pnas.0402595101.
[54]Murray AJ, Shewan DA. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Molecular and Cellular Neuroscience. 2008; 38(4): 578-588. doi: https://doi.org/10.1016/j.mcn.2008.05.006.
[55]Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiological Reviews. 2018; 98(2): 881-917. doi: https://doi.org/10.1152/physrev.00017.2017.
[56]Dyck SM, Karimi-Abdolrezaee S. Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury. Neural Regeneration Research. 2018; 13(12): 2080-2082. doi: https://doi.org/10.4103/1673-5374.241452.
[57]Zhang H, Zhai Y, Wang J, et al. New progress and prospects: The application of nanogel in drug delivery. Materials Science and Engineering: C. 2016; 60: 560-568. doi: https://doi.org/10.1016/j.msec.2015.11.041.
[58]Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 2017; 46(6): 957-967. doi: https://doi.org/10.1016/j.immuni.2017.06.006.
[59]Ayar Z, Hassannejad Z, Shokraneh F, et al. Efficacy of hydrogels for repair of traumatic spinal cord injuries: A systematic review and meta-analysis. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2022; 110(6): 1460-1478. doi: https://doi.org/10.1002/jbm.b.34993.
[60]Liau LL, Looi QH, Chia WC, et al. Treatment of spinal cord injury with mesenchymal stem cells. Cell & Bioscience. 2020; 10: 112. doi: https://doi.org/10.1186/s13578-020-00475-3.
[61]Colangelo AM, Alberghina L, Papa M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neuroscience Letters. 2014; 565: 59-64. doi: https://doi.org/10.1016/j.neulet.2014.01.014.
[62]Liu Z, Yang Y, He L, et al. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology. 2019; 93(9): e841-e850. doi: https://doi.org/10.1212/WNL.0000000000007998.
[63]Harada R, Furumoto S, Kudo Y, et al. Imaging of reactive astrogliosis by positron emission tomography. Frontiers in Neuroscience. 2022; 16: 807435. doi: https://doi.org/10.3389/fnins.2022.807435.
[64]Benjamini D, Priemer DS, Perl DP, et al. Mapping astrogliosis in the individual human brain using multidimensional MRI. Brain. 2023; 146(3): 1212-1226. doi: https://doi.org/10.1093/brain/awac298.
[65]Bardehle S, Kruger M, Buggenthin F, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience. 2013; 16(5): 580-586. doi: https://doi.org/10.1038/nn.3371.
[66]Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiological Reviews. 2014; 94(4): 1077-1098. doi: https://doi.org/10.1152/physrev.00041.2013.
[67]Kornelsen J, Stroman PW. Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks. Spinal Cord. 2007; 45(7): 485-490. doi: https://doi.org/10.1038/sj.sc.3102019.
[68]Skinner NP, Lee SY, Kurpad SN, et al. Filter-probe diffusion imaging improves spinal cord injury outcome prediction. Annals of Neurology. 2018; 84(1): 37-50. doi: https://doi.org/10.1002/ana.25260.
[69]Kawai M, Imaizumi K, Ishikawa M, et al. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Reports. 2021; 37(8): 110019. doi: https://doi.org/10.1016/j.celrep.2021.110019.
[70]Lukovic D, Stojkovic M, Moreno-Manzano V, et al. Concise review: Reactive astrocytes and stem cells in spinal cord injury: Good guys or bad guys. Stem Cells. 2015; 33(4): 1036-1041. doi: https://doi.org/10.1002/stem.1959.
[71]Tai W, Wu W, Wang LL, et al. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell. 2021; 28(5): 923-937. doi: https://doi.org/10.1016/j.stem.2021.02.009.
[72]Patel M, Li Y, Anderson J, et al. Gsx1 promotes locomotor functional recovery after spinal cord injury. Molecular Therapy. 2021; 29(8): 2469-2482. doi: https://doi.org/10.1016/j.ymthe.2021.04.027.
[73]Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Experimental Neurology. 2022; 354: 114102. doi: https://doi.org/10.1016/j.expneurol.2022.114102.
[74]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996; 272(5259): 263-267. doi: https://doi.org/10.1126/science.272.5259.263.
[75]Schlimgen R, Howard J, Wooley D, et al. Risks associated with lentiviral vector exposures and prevention strategies. Journal of Occupational and Environmental Medicine. 2016; 58(12): 1159-1166. doi: https://doi.org/10.1097/JOM.0000000000000879.
[76]Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. The Neuroscientist. 2015; 21(1): 84-98. doi: https://doi.org/10.1177/1073858414521870.
[77]McCown TJ. Adeno-associated virus (AAV) vectors in the CNS. Current Gene Therapy. 2005; 5(3): 333-338. doi: https://doi.org/10.2174/1566523054064995.
[78]Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Molecular Therapy. 2010; 18(1): 80-86. doi: https://doi.org/10.1038/mt.2009.255.
[79]Chio JCT, Punjani N, Hejrati N, et al. Extracellular matrix and oxidative stress following traumatic spinal cord injury: Physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxidants & Redox Signaling. 2022; 37(1-3): 184-207. doi: https://doi.org/10.1089/ars.2021.0120.
[80]Garcia-Alias G, Lin R, Akrimi SF, et al. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Experimental Neurology. 2008; 210(2): 331-338. doi: https://doi.org/10.1016/j.expneurol.2007.11.002.
[81]Sharifi A, Zandieh A, Behroozi Z, et al. Sustained delivery of chABC improves functional recovery after a spine injury. BMC Neuroscience. 2022; 23: 60. doi: https://doi.org/10.1186/s12868-022-00734-8.
[82]Kathe C, Skinnider MA, Hutson TH, et al. The neurons that restore walking after paralysis. Nature. 2022; 611(7936): 540-547. doi: https://doi.org/10.1038/s41586-022-05385-7.
[83]Li X, Li M, Tian L, et al. Reactive astrogliosis: Implications in spinal cord injury progression and therapy. Oxidative Medicine and Cellular Longevity. 2020; 2020: 9494352. doi: https://doi.org/10.1155/2020/9494352.
[84]Clifford T, Finkel Z, Rodriguez B, et al. Current advancements in spinal cord injury research-glial scar formation and neural regeneration. Cells. 2023; 12(6): 853. doi: https://doi.org/10.3390/cells12060853.
[85]Dias DO, Kim H, Holl D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell. 2018; 173(1): 153-165. doi: https://doi.org/10.1016/j.cell.2018.02.004.
[86]Bennett J, Das JM, Emmady PD. Spinal cord injuries. StatPearls; 2023.
Copyright © 2024 Alexander Nguyen, Andrew Nguyen, Nikhil Godbole, Raja Al-Bahou, Harrison Lew, Brandon Lucke-Wold
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright licenses detail the rights for publication, distribution, and use of research. Open Access articles published by Luminescience do not require transfer of copyright, as the copyright remains with the author. In opting for open access, the author(s) should agree to publish the article under the CC BY license (Creative Commons Attribution 4.0 International License). The CC BY license allows for maximum dissemination and re-use of open access materials and is preferred by many research funding bodies. Under this license, users are free to share (copy, distribute and transmit) and remix (adapt) the contribution, including for commercial purposes, providing they attribute the contribution in the manner specified by the author or licensor.
Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.
E-mail: publisher@luminescience.cn