Make Knowledge Veritable, Visible and Valuable.

Molecular nanoprobe for diagnosis of cardiovascular diseases

Chuang Wei 1# , Yin Wang 2# , Peifeng Li 3 , Qinrui Fu 4 *

  • 1. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Shandong Province, China
  • 2. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Shandong Province, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Shandong Province, China.
  • 3. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Shandong Province, China
  • 4. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Shandong Province, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Shandong Province, China.

# Chuang Wei, and Yin Wang contributed equally to this work

*Correspondence: fuqinrui2018@163.com

DOI: https://doi.org/10.55976/atm.12022112661-76

  • Received

    23 September 2022

  • Revised

    24 October 2022

  • Accepted

    04 November 2022

  • Published

    07 November 2022

cardiovascular disease nanoprobe molecular imaging diagnosis

Show More

Abstract

Introduction


References
V

[1]Leong D., Joseph P., McKee M., et al. Reducing the Global Burden of Cardiovascular Disease, Part 2: Prevention and Treatment of Cardiovascular Disease. Circulation Research. 2017;121(6):m695-710.doi:https://doi.org/10.1161/CIRCRESAHA.117.311849.

[2]Soppert J., Lehrke M., Marx N., et al. Lipoproteins and Lipids in Cardiovascular Disease: from Mechanistic Insights to Therapeutic Targeting. Advanced Drug Delivery Reviews. 2020;159: 4-33. doi:https://doi.org/10.1016/j.addr.2020.07.019.

[3]Kim A. and Conte MS. Specialized Pro-Resolving Lipid Mediators in Cardiovascular Disease, Diagnosis, and Therapy. Advanced Drug Delivery Reviews.2020;159: 170-179. doi:https://doi.org/10.1016/j.addr.2020.07.011.

[4]Roger V., Sidney S., Fairchild A., et al. Recommendations for Cardiovascular Health and Disease Surveillance for 2030 and Beyond: A Policy Statement From the American Heart Association. Circulation. 2020;141(9): 104-119. doi:https://doi.org/10.1161/CIR.0000000000000756.

[5]Shen C. and Ge J. Epidemic of Cardiovascular Disease in China: Current Perspective and Prospects for the Future. Circulation. 2018;138(4): 342-344. doi:https://doi.org/10.1161/CIRCULATIONAHA.118.033484.

[6]Iida M., Harada S., and Takebayashi T. Application of Metabolomics to Epidemiological Studies of Atherosclerosis and Cardiovascular Disease. Journal of Atherosclerosis and Thrombosis. 2019;26(9): 747-757. doi:https://doi.org/10.5551/jat.RV17036.

[7]Frostegård J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Medicine. 2013;11: 117. doi:https://doi.org/10.1186/1741-7015-11-117.

[8]Ouimet M., Barrett T., and Fisher EA. HDL and Reverse Cholesterol Transport. Circulation Research. 2019;124(10): 1505-1518. doi:https://doi.org/10.1161/CIRCRESAHA.119.312617.

[9]Vasan R., Pan S, Larson M., et al. Arteriosclerosis, Atherosclerosis, and Cardiovascular Health: Joint Relations to the Incidence of Cardiovascular Disease. Hypertension. 2021;78(5): 1232-1240. doi:https://doi.or/10.1161/HYPERTENSIONAHA.121.18075.

[10]Zhao D., Liu J., Wang M., et al. Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology. 2019;16(4): 203-212. doi:https://doi.org/10.1038/s41569-018-0119-4.

[11]Lyngbakken M., Myhre P., Røsjø H., et al. Novel Biomarkers of Cardiovascular Disease: Applications in Clinical Practice. Critical Reviews in Clinical Laboratory Sciences. 2019;56(1): 33-60. doi:https://doi.org/10.1080 /10408363.2018.1525335.

[12]Lu D. and Thum T. RNA-based Diagnostic and Therapeutic Strategies for Cardiovascular Disease. Nature Reviews Cardiology. 2019;16(11): 661-674. doi:https://doi.org/10.1038/s41569-019-0218-x.

[13]Jansen F., Nickenig G., and Werner N. Extracellular Vesicles in Cardiovascular Disease: Potential Applications in Diagnosis, Prognosis, and Epidemiology. Circulation Research. 2017;120(10): 1649-1657. doi:https://doi.org/10.1161/CIRCRESAHA.117.310752.

[14]Celermajer D., Chow C., Marijon E, et al. Cardiovascular Disease in the Developing World: Prevalences, Patterns, and the Potential of Early Disease Detection. Journal of the American College of Cardiology. 2012;60(14): 1207-1216. Available from:https://www.jacc.org/doi/abs/10.1016/j.jacc.2012.03.074.

[15]Bengel F. Clinical Cardiovascular Molecular Imaging. Journal of Nuclear Medicine. 2009;50(6): 837-840. doi:https://doi.org/10.2967/jnumed.108.059246.

[16]Wang X., Zhang F., Zhang C., et al. The Biomarkers for Acute Myocardial Infarction and Heart Failure. BioMed Research International. 2020;2020: 2018035. doi:https://doi.org/10.1155/2020/2018035.

[17]Barstow C., Rice M., and McDivitt J. Acute Coronary Syndrome: Diagnostic Evaluation. American Family Physician. 2017;95(3): 170-177. Available from:https://www.aafp.org/pubs/afp/issues/2017/0201/p170.html.

[18]Wesselius F., van S., De G., et al. Digital Biomarkers and Algorithms for Detection of Atrial Fibrillation using Surface Electrocardiograms: A Systematic Review. Computers in Biology and Medicine. 2021;133: 104404. doi:https://doi.org/10.1016/j.compbiomed.2021.104404.

[19]McGarry M. and Shenvi C. Identification of Acute Coronary Syndrome in the Elderly. Emergency Medicine Clinics of North America. 2021;39(2): 339-346. doi:https://doi.org/10.1016/j.emc.2020.12.003.

[20]Clerico A., Zaninotto M., Padoan A., et al. Evaluation of Analytical Performance of Immunoassay Methods for cTnI and cTnT: From theory to practice. Advances in Clinical Chemistry. 2019;93: 239-262. doi:https://doi.org/10.1016/bs.acc.2019.07.005.

[21]Ma H., Cassedy A., O'Kennedy R.. The Role of Antibody-based Troponin Detection in Cardiovascular Disease: A Critical Assessment. Journal of Immunological Methods. 2021;497: 113108. doi:https://doi.org/10.1016/j.jim.2021.113108.

[22]Duque-Ossa L., García-Ferrera B., and Reyes-Retana J. Troponin I as a Biomarker for Early Detection of Acute Myocardial Infarction. Current Problems in Cardiology. 2021: 101067. doi:https://doi.org/10.1016/j.cpcardiol.2021.101067.

[23]Fathil M., Md A., Gopinath S., et al. Diagnostics on Acute Myocardial Infarction: Cardiac Troponin Biomarkers. Biosensors & Bioelectronics. 2015;70: 209-220. doi:https://doi.org/10.1016/j.bios.2015.03.037.

[24]Finocchiaro G, Sheikh N, Biagini E, et al. The Electrocardiogram in the Diagnosis and Management of Patients with Hypertrophic Cardiomyopathy. Heart Rhythm. 2020;17(1): 142-151. doi:https://doi.org/10.1016/j.hrthm.2019.07.019.

[25]Hornick J., Costantini O. The Electrocardiogram: Still a Useful Tool in the Primary Care Office. The Medical Clinics of North America. 2019;103(5): 775-784. doi:https://doi.org/10.1016/j.mcna.2019.04.003.

[26]Jin Z, Dong A, Shu M., et al. Sparse ECG Denoising with Generalized Minimax Concave Penalty. Sensors. 2019;19(7): 1718. doi:https://doi.org/10.3390/s19071718.

[27]Luz E., Schwartz W., Cámara-Chávez G., et al. ECG-based Heartbeat Classification for Arrhythmia Detection: A Survey. Computer Methods and Programs in Biomedicine. 2016;127: 144-164. doi:https://doi.org/10.1016/j.cmpb.2015.12.008.

[28]Rozanski A., Muhlestein J., and Berman DS. Primary Prevention of CVD: The Role of Imaging Trials. JACC Cardiovasc Imaging. 2017;10(3): 304-317. Available from:https://www.jacc.org/doi/abs/10.1016/j.jcmg.2017.01.009.

[29]Masri A., Bukhari S., Eisele Y., et al. Molecular Imaging of Cardiac Amyloidosis. Journal of Nuclear Medicine. 2020;61(7): 965-970. doi:https://doi.org/10.2967/jnumed.120.245381.

[30]Farber G., Boczar K., Wiefels CC., et al. The Future of Cardiac Molecular Imaging. Seminars in Nuclear Medicine. 2020;50(4): 367-385. doi:https://doi.org/10.1053/j.semnuclmed.2020.02.005.

[31]Brown E, Lindner JR. Ultrasound Molecular Imaging: Principles and Applications in Cardiovascular Medicine. Current Cardiology Reports. 2019;21(5): 30. doi:https://doi.org/10.1007/s11886-019-1117-9.

[32]Li H., Chen Y., Jin Q., et al. Noninvasive Radionuclide Molecular Imaging of the CD4-Positive T Lymphocytes in Acute Cardiac Rejection. Molecular Pharmaceutics. 2021;18(3): 1317-1326. doi:https://doi.org/10.1021/acs.molpharmaceut.0c01155.

[33]Ahmed M., Tegnebratt T., Tran T., et al. Molecular Imaging of Inflammation in a Mouse Model of Atherosclerosis Using a Zirconium-89-Labeled Probe. International Journal of Nanomedicine. 2020;15: 6137-6152. doi:https://doi.org/10.2147%2FIJN.S256395.

[34]Varasteh Z., Mohanta S., Robu S., et al. Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a 68Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. Journal of Nuclear Medicine. 2019;60(12): 1743-1749. doi:https://doi.org/10.2967/jnumed.119.226993.

[35]Wang X., Ziegler M., McFadyen J., et al. Molecular Imaging of Arterial and Venous Thrombosis. British Journal of Pharmacology. 2021; 178(21): 4246-4269. doi:https://doi.org/10.1111/bph.15635.

[36]Anderson C., and Lewis J. Current Status and Future Challenges for Molecular Imaging. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017;375: 20170023. doi:https://doi.org/10.1098/rsta.2017.0023

[37]Wang X., Peter K.. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arteriosclerosis, thrombosis, and vascular biology. 2017;37(6): 1029-1040. doi:https://doi.org/10.1161/ATVBAHA.116.306483.

[38]Larivière M., Bonnet S., Lorenzato C., et al. Recent Advances in the Molecular Imaging of Atherosclerosis. Seminars in Thrombosis and Hemostasis. 2020;46(5): 563-586. doi:10.1055/s-0039-1701019.

[39]Li Y., Chen Y., Du M., et al. Ultrasound Technology for Molecular Imaging: From Contrast Agents to Multimodal Imaging. ACS Biomaterials Science & Engineering. 2018; 4(8): 2716-2728. doi:https://doi.org/10.1021/acsbiomaterials.8b00421.

[40]Zhang X., Wu M., Zhang Y., et al. Molecular Imaging of Atherosclerotic Plaque with Lipid Nanobubbles as Targeted Ultrasound Contrast Agents. Colloids and Surfaces B, Biointerfaces. 2020;189: 110861. doi:https://doi.org/10.1016/j.colsurfb.2020.110861.

[41]Laramie M., Smith M., Marmarchi F., et al. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules. 2018; 23(11): 2766. doi:https://doi.org/10.3390/molecules23112766.

[42]Meng Q., Wu M., Shang Z., et al. Responsive Gadolinium(III) Complex-based Small Molecule Magnetic Resonance Imaging Probes: Design, Mechanism and Application. Coordination Chemistry Reviews. 2022;457: 214398. doi:https://doi.org/10.1016/j.ccr.2021.214398.

[43]Zhu J., Sun W., and Shi X. Nanogels as Contrast Agents for Molecular Imaging. Chinese Journal of Chemistry. 2016;34(6): 547-557. doi:https://doi.org/10.1002/cjoc.201500743.

[44]Zhou J., Guo D., Zhang Y., et al. Construction and Evaluation of Fe₃O₄-based PLGA Nanoparticles Carrying rtPA used in the Detection of Thrombosis and in Targeted Thrombolysis. ACS Applied Materials & interfaces. 2014;6(8): 5566-5576. doi:https://doi.org/10.1021/am406008k.

[45]Tuguntaev R., Hussain A., Fu C., et al. Bioimaging Guided Pharmaceutical Evaluations of Nanomedicines for Clinical Translations. Journal of Nanobiotechnology. 2022;20(1): 236. doi:https://doi.org/10.1186/s12951-022-01451-4.

[46]Chan C., Zhang L., Cheng C., et al. Recent Advances in Managing Atherosclerosis via Nanomedicine. Small. 2018;14(4):1702793. doi:https://doi.org/10.1002/smll.201702793.

[47]Wang S., Ren W., Hou J., et al. Fluorescence Imaging of Pathophysiological Microenvironments. Chemical Society Reviews. 2021; 50(16): 8887-8902. doi:https://doi.org/10.1039/D1CS00083G.

[48]Bourantas C., Crake T., Zhang Y., et al. Intravascular Imaging in Cardiovascular Ageing. Experimental Gerontology. 2018;109: 31-37. doi:https://doi.org/10.1016/j.exger.2017.05.011.

[49]Zhang M., Chen J., Wang M., et al. Pyrene-Based Nonwoven Fabric with Tunable Fluorescence Properties by Employing the Aggregation-Caused Quenching Effect. ACS Applied Materials & Interfaces. 2021;13(7): 9036-9042. doi:https://doi.org/10.1021/acsami.0c23132.

[50]Li Q., Jia Y., Feng Z., et al. A Highly Sensitive and Selective Fluorescent Probe without Quencher for Detection of Pb2+ Ions Based on AggregationCaused Quenching Phenomenon. RSC Advances. 2018;8(68): 38929-38934. doi:https://doi.org/10.1039/C8RA07903J.

[51]Zhao Y., Zhu W., Ren L., et al. Aggregation-Induced Emission Polymer Nanoparticles with pH-responsive Fluorescence. Polymer Chemistry. 2016;7(34): 5386-5395. doi:https://doi.org/10.1039/C6PY01009A.

[52]Feng X., Qi C., Feng H-T., et al. Dual Fluorescence of Tetraphenylethylene-Substituted Pyrenes with Aggregation-Induced Emission Characteristics for White-Light Emission. Chemical Science. 2018;9(25): 5679-5687. doi:https://doi.org/10.1039/C8SC01709C.

[53]Xu H., She P., Ma B., et al. ROS Responsive Nanoparticles Loaded with Lipid-Specific AIEgen for Atherosclerosis-Targeted Diagnosis and Bifunctional Therapy. Biomaterials. 2022;288: 121734. doi:https://doi.org/10.1016/j.biomaterials.2022.121734.

[54]Ye Z., Ji M., Wu K., et al. In-Sequence High-Specificity Dual-Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angewandte Chemie International Edition. 2022;61(29): e202204518. doi:https://doi.org/10.1002/anie.202204518.

[55]Steinberg I., Huland D., Vermesh O., et al. Photoacoustic Clinical Imaging. Photoacoustics. 2019;14: 77-98. doi:https://doi.org/10.1016/j.pacs.2019.05.001.

[56]Attia A., Balasundaram G., Moothanchery M., et al. A review of Clinical Photoacoustic Imaging: Current and Future Trends. Photoacoustics. 2019;16: 100144. doi:https://doi.org/10.1016/j.pacs.2019.100144.

[57]Wu M., Awasthi N., Rad N., et al. Advanced Ultrasound and Photoacoustic Imaging in Cardiology. Sensors. 2021;21(23): 7947. doi:https://doi.org/10.3390/s21237947.

[58]Gröhl J., Schellenberg M., Dreher K., et al. Deep Learning for Biomedical Photoacoustic Imaging: A review. Photoacoustics. 2021;22: 100241. doi:https://doi.org/10.1016/j.pacs.2021.100241.

[59]Fu Q., Zhu R., Song J., et al. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. Advanced Materials. 2019;31(6): e1805875. doi:https://doi.org/10.1002/adma.201805875.

[60]Upputuri P., and Pramanik M. Recent Advances in Photoacoustic Contrast Agents for In Vivo Imaging. Wiley Interdisciplinary Reviews Nanomedicine and nanobiotechnology. 2020;12(4): e1618. doi:https://doi.org/10.1002/wnan.1618.

[61]Han S., Lee D., Kim S., et al. Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. Biosensors. 2022;12(8): 594. doi:https://doi.org/10.3390/bios12080594.

[62]Sivasubramanian M., and Lo L.. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. Biosensors. 2022;12(5): 336. doi:https://doi.org/10.3390/bios12050336.

[63]Ge X., Cui H., Kong J., et al. A Non-Invasive Nanoprobe for In Vivo Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Advanced Materials. 2020;32(38): 2000037. doi:https://doi.org/10.100/adma.202000037.

[64]Huang X., Song J., Yung B., et al. Ratiometric Optical Nanoprobes enable Accurate Molecular Detection and Imaging. Chemical Society Reviews. 2018;47(8): 2873-2920. doi:https://doi.org/10.1039/C7CS00612H

[65]Liu Y., Teng L., Lyu Y., et al. Ratiometric afterglow Luminescent Nanoplatform Enables Reliable Quantification and Molecular Imaging. Nature Communications. 2022;13(1): 2216. doi:https://doi.org/10.1038/s41467-022-29894-1.

[66]Ma Y., Xu L., Yin B., et al. Ratiometric Semiconducting Polymer Nanoparticle for Reliable Photoacoustic Imaging of Pneumonia-Induced Vulnerable Atherosclerotic Plaque in Vivo. Nano Letters. 2021;21(10): 4484-4493. doi:https://doi.org/10.1021/acs.nanolett.1c01359.

[67]Han Y., Chen Y., Ferrari V. Contemporary Application of Cardiovascular Magnetic Resonance Imaging. Annual Review of Medicine. 2020;71(1): 221-234. doi:https://doi.org/10.1146/annurev-med-041818-015923.

[68]Wüst R., Calcagno C., Daal M., et al. Emerging Magnetic Resonance Imaging Techniques for Atherosclerosis Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology. 2019;39(5): 841-849. doi:https://doi.org/10.1161/ATVBAHA.118.311756.

[69]Wang T., Ayoub C., Chetrit M., et al. Cardiac Magnetic Resonance Imaging Techniques and Applications for Pericardial Diseases. Circulation: Cardiovascular Imaging. 2022;15(7): e014283. doi:https://doi.org/10.1161/CIRCIMAGING.122.014283.

[70]Guo S., Li K., Hu B., et al. Membrane-destabilizing Ionizable Lipid Empowered Imaging-guided siRNA Delivery and Cancer Treatment. Exploration. 2021;1(1):35-49. doi:https://doi.org/10.1002/EXP.20210008.

[71]Sinharay S., and Pagel MD. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection. Annual Review of Analytical Chemistry. 2016;9(1): 95-115. doi:https://doi.org/10.1146%2Fannurev anchem-071015-041514.

[72]Bao Y., Sherwood J., and Sun Z. Magnetic Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging. Journal of Materials Chemistry C. 2018;6(6): 1280-1290. doi:https://doi.org/10.1039/C7TC05854C.

[73]Wei Q., Wang J., Shi W., et al. Improved In Vivo Detection of Atherosclerotic Plaques with a Tissue Factor-Targeting Magnetic Nanoprobe. Acta Biomaterialia. 2019;90: 324-336. doi:https://doi.org/10.1016/j.actbio.2019.04.014.

[74]Wu Y., Wu F., Liu Y., et al. High-Resolution Magnetic Resonance Imaging of Cervicocranial Artery Dissection. Stroke. 2019;50(11): 3101-3107. doi:https://doi.org/10.1161/STROKEAHA.119.026362.

[75]Phinikaridou A., Andia M., Saha P., et al. In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects Thrombus Composition in a Mouse Model of Deep Vein Thrombosis. Circulation: Cardiovascular Imaging. 2013;6(3): 433-440. doi:https://doi.org/10.1161/CIRCIMAGING.112.000077.

[76]Zhang Y., Cheng S., He Y., et al. Activated PlateletHoming Nanoplatform for Targeting Magnetic Resonance Imaging of Aneurysm-Related Thrombus in Rabbits. ACS Applied Materials & Interfaces. 2021;13(43): 50705-50715. doi:https://doi.org/10.1021/acsami.1c13539.

[77]Heiles B., Terwiel D., and Maresca D. The Advent of Biomolecular Ultrasound Imaging. Neuroscience. 2021;474: 122-133. doi:https://doi.org/10.1016/j.neuroscience.2021.03.011.

[78]Dave J., Mc D., Mehrotra P., et al. Recent Technological Advancements in Cardiac Ultrasound Imaging. Ultrasonics. 2018;84: 329-340. doi:https://doi.org/10.1016/j.ultras.2017.11.013.

[79]Zamzmi G., Rajaraman S., Hsu L-Y., et al. Realtime Echocardiography Image Analysis and Quantification of Cardiac Indices. Medical Image Analysis. 2022;80: 102438. doi:https://doi.org/10.1016/j.media.2022.102438.

[80]Mehta KS., Lee J., Taha AA., et al. Vascular Applications of Contrast-Enhanced Ultrasound Imaging. Journal of Vascular Surgery. 2017;66(1): 266-274. doi:https://doi.org/10.1016/j.jvs.2016.12.133.

[81]Golemati S., and Cokkinos D. Recent Advances in Vascular Ultrasound Imaging Technology and their clinical implications. Ultrasonics. 2022;119: 106599. doi:https://doi.org/10.1016/j.ultras.2021.106599.

[82]Yan F., Sun Y., Mao Y., et al. Ultrasound Molecular Imaging of Atherosclerosis for Early Diagnosis and Therapeutic Evaluation through Leucocyte-like Multiple Targeted Microbubbles. Theranostics. 2018;8(7): 1879-1891. doi:https://doi.org/10.7150%2Fthno.22070.

[83]Zhong Y., Zhang Y., Xu J., et al. Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: A Synergistic Nonpharmaceutical Strategy. ACS Nano. 2019;13(3): 3387-3403. doi:https://doi.org/10.1021/acsnano.8b09277.

[84]Aslan N., Ceylan B., Koç M., et al. Metallic Nanoparticles as X-Ray Computed Tomography (CT) Contrast Agents: A Review. Journal of Molecular Structure. 2020;1219: 128599. doi:https://doi.org/10.1016/j.molstruc.2020.128599.

[85]Mahan M., Doiron A. Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. Journal of Nanomaterials. 2018;2018: 5837276. doi:https://doi.org/10.1155/2018/5837276.

[86]Diwakar M., and Kumar M. A Review on CT Image Noise and its Denoising. Biomedical Signal Processing and Control. 2018;42: 73-88. doi:https://doi.org/10.1016/j.bspc.2018.01.010.

[87]Liao W., Lei P., Pan J., et al. Bi-DTPA as a HighPerformance CT Contrast Agent for In Vivo Imaging. Biomaterials. 2019;203: 1-11. doi:https://doi.org/10.1016/j.biomaterials.2019.03.001.

[88]Hernández-Rivera M., Kumar I., Cho S., et al. HighPerformance Hybrid Bismuth–Carbon Nanotube Based Contrast Agent for X-ray CT Imaging. ACS Applied Materials & Interfaces. 2017;9(7): 5709-5716. doi:https://doi.org/10.1021/acsami.6b12768.

[89]Nieves L., Dong Y., Rosario-Berríos D., et al. Renally Excretable Silver Telluride Nanoparticles as Contrast Agents for X-ray Imaging. ACS Applied Materials & Interfaces. 2022;14(30): 34354-34364. doi:https://doi.org/10.1021/acsami.2c06190.

[90]Liu L., Gardecki J., Nadkarni S., et al. Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using Micro–Optical Coherence Tomography. Nature Medicine. 2011;17(8):1010-1014. doi:https://doi.org/10.1038/nm.2409.

[91]Wang X., Lane B., Eberth J., et al. Gold Nanoparticles that Target Degraded Elastin Improve Imaging and Rupture Prediction in an AngII Mediated Mouse Model of Abdominal Aortic Aneurysm. Theranostics. 2019;9(14): 4156-4167. doi:https://doi.org/10.7150%2Fthno.34441.

[92]Li D., Zeng D., Li S., et al. MDM-PCCT: Multiple Dynamic Modulations for High-Performance Spectral PCCT Imaging. IEEE Transactions on MedicalImaging. 2020;39(11): 3630-3642. doi:10.1109/TMI.2020.3001616..

[93]Thomsen F., Horstmeier S., Niehoff J., et al. Effective Spatial Resolution of Photon Counting CT for Imaging of Trabecular Structures is Superior to Conventional Clinical CT and Similar to High Resolution Peripheral CT. Investigative Radiology. 2022;57(9): 620-626. doi:https://doi.org/10.1097/RLI.0000000000000873.

[94]Si-Mohamed S., Sigovan M., Hsu J., et al. In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT. Radiology. 2021;300(1): 98-107. doi:https://doi.org/10.1148/radiol.2021203968.

[95]Khoury M., Yang H., and Liu B. Macrophage Biology in Cardiovascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology. 2021;41(2): e77-e81. doi:https://doi.org/10.1161/ATVBAHA.120.313584.

[96]Kietzmann T., Petry A., Shvetsova A., et al. The Epigenetic Landscape Related to Reactive Oxygen Species Formation in the Cardiovascular System. British Journal of Pharmacology. 2017;174(12): 1533-1554. doi:https://doi.org/10.1111/bph.13792.

[97]Ederhy S., Mansencal N,. Réant P., et al. Role of Multimodality Imaging in the Diagnosis and Management of Cardiomyopathies. Archives of Cardiovascular Diseases. 2019;112(10): 615-629. doi:https://doi.org/10.1016/j.acvd.2019.07.004.

[98]Güner A., Topel Ç., Cansever A., et al. Where is the Right Ventricle? Accurate Diagnosis with Cardiovascular Multimodality Imaging. Echocardiography. 2020;37(3): 456-461. doi:https://doi.org/10.1111/echo.14606.

[99]Xu M., Mao C., Chen H., et al. Osteopontin Targeted Theranostic Nanoprobes for Laser-induced Synergistic Regression of Vulnerable Atherosclerotic Plaques. Acta Pharmaceutica Sinica B. 2022;12(4): 2014-2028. doi:https://doi.org/10.1016/j.apsb.2021.12.020.

[100]Senders M., Hernot S., Carlucci G., et al. NanobodyFacilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging.2019;12(10):2015-2026. Available from:https://www.jacc.org/doi/abs/10.1016/j.jcmg.2018.07.027.

[101]Yao J., Yang Z., Huang L., et al. Low-Intensity Focused Ultrasound-Responsive Ferrite-Encapsulated Nanoparticles for Atherosclerotic Plaque Neovascularization Theranostics. Advanced Science. 2021;8(19): e2100850. doi:https://doi.org/10.1002/advs.202100850.

[102]Wang Y., Xu M., Yang N., et al. A ThrombinResponsive Nanoprobe for In Vivo Visualization of Thrombus Formation through Three-Dimensional Optical/Computed Tomography Hybrid Imaging. ACS Applied Materials & Interfaces. 2021;13(24): 27814-27824. doi:https://doi.org/10.1021/acsami.1c04065.

[103]Hu J., Ortgies D., Martín R., et al. Optical Nanoparticles for Cardiovascular Imaging. Advanced Optical Materials. 2018;6(22): 1800626. doi:https://doi.org/10.1002/adom.201800626.

[104]Varna M., Xuan H., and Fort E. Gold Nanoparticles in Cardiovascular Imaging. WIREs Nanomedicine and Nanobiotechnology. 2018;10(1): e1470. doi:https://doi.org/10.1002/wnan.1470.

[105]Chen W., Schilperoort M., Cao Y., et al. MacrophageTargeted Nanomedicine for the Diagnosis and Treatment of Atherosclerosis. Nature Reviews Cardiology. 2022;19(4): 228-249. doi:https://doi.org/10.1038/s41569-021-00629-x.

[106]Huang R., Zhou X., Chen G., et al. Advances of Functional Nanomaterials for Magnetic Resonance Imaging and Biomedical Engineering Applications. WIREs Nanomedicine and Nanobiotechnology. 2022;14(4): e1800. doi:https://doi.org/10.1002/wnan.1800.

[107]Chen J., Zhang X., Millican R., et al. Recent Advances in Nanomaterials for Therapy and Diagnosis for Atherosclerosis. Advanced Drug Delivery Reviews. 2021;170: 142-199. doi:https://doi.org/10.1016/j.addr.2021.01.005.

[108]Jamalipour S., and Iravani S. Eco-friendly and Sustainable Synthesis of Biocompatible Nanomaterials for Diagnostic Imaging: Current Challenges and Future Perspectives. Green Chemistry. 2020;22(9): 2662-2687. doi:https://doi.org/10.1039/D0GC00734J.

How to Cite

Chuang Wei, Yin Wang, Peifeng Li, and Qinrui Fu. “Molecular Nanoprobe for Diagnosis of Cardiovascular Diseases”. Advances in Translational Medicine, vol. 1, no. 1, Nov. 2022, pp. 61-76, doi:10.55976/atm.12022112661-76.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.